2020年山东省泰安市高考数学一模试卷(文科)含答案解析
- 格式:doc
- 大小:487.50 KB
- 文档页数:19
山东省泰安市2019-2020学年高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数0a >,1a ≠,函数()2,14ln ,1x a x f x x a x x x ⎧<⎪=⎨++≥⎪⎩在R 上单调递增,则实数a 的取值范围是( ) A .12a <≤ B .5a < C .35a << D .25a ≤≤【答案】D 【解析】 【分析】根据题意,对于函数分2段分析:当1,()xx f x a <=,由指数函数的性质分析可得1a >①,当241,()ln x f x x a x x ≥=++,由导数与函数单调性的关系可得24()20af x x x x'=-+≥,在[1,)+∞上恒成立,变形可得2a ≥②,再结合函数的单调性,分析可得14a ≤+③,联立三个式子,分析可得答案. 【详解】解:根据题意,函数()2,14ln ,1x a x f x x a x x x ⎧<⎪=⎨++≥⎪⎩在R 上单调递增,当1,()xx f x a <=,若()f x 为增函数,则1a >①,当241,()ln x f x x a x x≥=++, 若()f x 为增函数,必有24()20af x x x x'=-+≥在[1,)+∞上恒成立, 变形可得:242a x x≥-, 又由1x ≥,可得()242g x x x =-在[1,)+∞上单调递减,则2442212x x -≤-=,若242a x x≥-在[1,)+∞上恒成立,则有2a ≥②,若函数()f x 在R 上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值, 则需有145a ≤+=,③ 联立①②③可得:25a ≤≤. 故选:D. 【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.2.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )A .356B .328C .314D .14【答案】C 【解析】 【分析】分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解. 【详解】由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是233C =;仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是133C =,于是所求的概率2833314P C +==. 故选:C 【点睛】本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.3.设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 作圆222x y a +=的切线,与双曲线的左、右两支分别交于点,P Q ,若2||QF PQ =,则双曲线渐近线的斜率为( ) A .±1 B .)31±C .)31±D .5【答案】C 【解析】 【分析】如图所示:切点为M ,连接OM ,作PN x ⊥轴于N ,计算12PF a =,24PF a =,22a PN c=,12abF N c=,根据勾股定理计算得到答案. 【详解】如图所示:切点为M ,连接OM ,作PN x ⊥轴于N ,121212QF QF QP PF QF PF a -=+-==,故24PF a =,在1Rt MOF ∆中,1sin a MFO c ∠=,故1cos b MFO c ∠=,故22a PN c=,12ab F N c =, 根据勾股定理:242242162a ab a c c c ⎛⎫=+- ⎪⎝⎭,解得31b a =+. 故选:C .【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力. 4.设m r ,n r 均为非零的平面向量,则“存在负数λ,使得m n λ=r r ”是“0m n ⋅<r r”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据充分条件、必要条件的定义进行分析、判断后可得结论. 【详解】因为m r ,n r 均为非零的平面向量,存在负数λ,使得m n λ=r r, 所以向量m r ,n r共线且方向相反, 所以0m n ⋅<r r,即充分性成立;反之,当向量m r ,n r 的夹角为钝角时,满足0m n ⋅<r r ,但此时m r ,n r不共线且反向,所以必要性不成立.所以“存在负数λ,使得m n λ=r r ”是“0m n ⋅<r r”的充分不必要条件. 故选B . 【点睛】判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p ,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确. 5.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )A .1B .2C 3D .2【答案】B 【解析】 【分析】根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论. 【详解】正方体的面对角线长为2,又水的体积是正方体体积的一半, 且正方体绕下底面(底面与水平面平行)的某条棱任意旋转, 所以容器里水面的最大高度为面对角线长的一半, 2,故选B. 【点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题. 6.下列判断错误的是( )A .若随机变量ξ服从正态分布()()21,,40.78N P σξ≤=,则()20.22P ξ≤-=B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件C .若随机变量ξ服从二项分布: 14,4B ξ⎛⎫⎪⎝⎭:, 则()1E ξ= D .am bm >是a b >的充分不必要条件 【答案】D 【解析】 【分析】根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解. 【详解】对于A 选项,若随机变量ξ服从正态分布()()21,,40.78N P σξ≤=,根据正态分布曲线的对称性,有()()()241410.780.22P P P ξξξ≤-=≥=-≤=-=,故A 选项正确,不符合题意;对于B 选项,已知直线l ⊥平面α,直线//m 平面β,则当//αβ时一定有l m ⊥,充分性成立,而当l m ⊥时,不一定有//αβ,故必要性不成立,所以“//αβ”是“l m ⊥”的充分不必要条件,故B 选项正确,不符合题意;对于C 选项,若随机变量ξ服从二项分布: 14,4B ξ⎛⎫ ⎪⎝⎭:, 则()114E np ξ==4⨯=,故C 选项正确,不符合题意;对于D 选项,am bm >Q ,仅当0m >时有a b >,当0m <时,a b >不成立,故充分性不成立;若a b >,仅当0m >时有am bm >,当0m <时,am bm >不成立,故必要性不成立. 因而am bm >是a b >的既不充分也不必要条件,故D 选项不正确,符合题意. 故选:D 【点睛】本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.7.已知全集U =R ,集合{|31}M x x =-<<,{|||1}N x x =…,则阴影部分表示的集合是( )A .[1,1]-B .(3,1]-C .(,3)(1,)-∞--+∞UD .(3,1)--【答案】D 【解析】 【分析】先求出集合N 的补集U N ð,再求出集合M 与U N ð的交集,即为所求阴影部分表示的集合. 【详解】由U =R ,{|||1}N x x =…,可得{1U N x x =<-ð或1}x >, 又{|31}M x x =-<<所以{31}U M N xx ⋂=-<<-ð. 故选:D. 【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.8.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为 ( )A .4πB .16πC .36πD .643π【答案】C 【解析】 【分析】设球的半径为R ,根据组合体的关系,圆柱的表面积为222254S R R R πππ=+⨯=,解得球的半径3R =,再代入球的体积公式求解.【详解】 设球的半径为R ,根据题意圆柱的表面积为222254S R R R πππ=+⨯=, 解得3R =, 所以该球的体积为334433633V R πππ==⨯⨯= . 故选:C 【点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.9.若,x y 满足320020x y x y x y --≤⎧⎪-≥⎨⎪+≥⎩,且目标函数2(0,0)z ax by a b =+>>的最大值为2,则416a b +的最小值为( ) A .8 B .4C .22D.6【答案】A 【解析】 【分析】作出可行域,由2(0,0)z ax by a b =+>>,可得22a z y x b b =-+.当直线22a z y x b b=-+过可行域内的点()1,1B 时,z 最大,可得22a b +=.再由基本不等式可求416a b +的最小值. 【详解】作出可行域,如图所示由2(0,0)z ax by a b =+>>,可得22a zy x b b=-+. 平移直线22a z y x b b =-+,当直线过可行域内的点B 时,2zb最大,即z 最大,最大值为2. 解方程组3200x y x y --=⎧⎨-=⎩,得()1,1,11x B y =⎧∴⎨=⎩. 22(0,0)a b a b ∴+=>>.22224164424424248a b a b a b a b +∴+=+≥⨯===,当且仅当244a b =,即12,1222a a b a b b =⎧=⎧⎪⎨⎨+==⎩⎪⎩时,等号成立.416a b ∴+的最小值为8.故选:A . 【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题. 10.已知关于x 3sin 2x x m π⎛⎫+-=⎪⎝⎭在区间[)0,2π上有两个根1x ,2x ,且12x x π-≥,则实数m 的取值范围是( ) A .10,2⎡⎫⎪⎢⎣⎭B .[)1,2C .[)0,1D .[]0,1【答案】C 【解析】 【分析】先利用三角恒等变换将题中的方程化简,构造新的函数2sin()6y x π=+,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合12x x π-≥,解得m 的取值范围. 【详解】由题化简得3sin cos x x m +=,2sin()6m x π=+,作出2sin()6y x π=+的图象,又由12x x π-≥易知01m ≤<. 故选:C. 【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题. 11.若θ是第二象限角且sinθ =1213,则tan()4πθ+= A .177-B .717- C .177D .717【答案】B 【解析】由θ是第二象限角且sinθ =1213知:25cos 1sin 13θθ=--=-,5t n 1a 2θ-=. 所以tan tan 457tan()41tan tan 4517πθθθ+︒+==--︒.12.已知l 为抛物线24x y =的准线,抛物线上的点M 到l 的距离为d ,点P 的坐标为()4,1,则MP d +的最小值是( ) A 17 B .4C .2D .117+【答案】B【解析】 【分析】设抛物线焦点为F ,由题意利用抛物线的定义可得,当,,P M F 共线时,MP d +取得最小值,由此求得答案. 【详解】解:抛物线焦点()0,1F ,准线1y =-, 过M 作MN l ⊥交l 于点N ,连接FM由抛物线定义MN MF d ==,244MP d MP MF PF ∴+=+≥==,当且仅当,,P M F 三点共线时,取“=”号, ∴MP d +的最小值为4. 故选:B. 【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
山东省泰安市2019-2020学年第一次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( ) A .B .2C .D .【答案】C 【解析】 【分析】 计算得到,,代入双曲线化简得到答案.【详解】双曲线的一条渐近线方程为,是第一象限内双曲线渐近线上的一点,,故,,故,代入双曲线化简得到:,故.故选:. 【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.2.如果直线1ax by +=与圆22:1C x y +=相交,则点(),M a b 与圆C 的位置关系是( ) A .点M 在圆C 上 B .点M 在圆C 外 C .点M 在圆C 内 D .上述三种情况都有可能【答案】B 【解析】 【分析】根据圆心到直线的距离小于半径可得,a b 满足的条件,利用(),M a b 与圆心的距离判断即可. 【详解】Q 直线1ax by +=与圆22:1C x y +=相交,∴圆心(0,0)到直线1ax by +=的距离1d =<,1>.也就是点(,)M a b 到圆C 的圆心的距离大于半径. 即点(,)M a b 与圆C 的位置关系是点M 在圆C 外. 故选:B 【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题. 3.已知()y f x =是定义在R 上的奇函数,且当0x >时,2()3f x x x=+-.若0x ≤,则()0f x ≤的解集是( ) A .[2,1]--B .(,2][1,0]-∞-⋃-C .(,2][1,0)-∞-⋃-D .(,2)(1,0]-∞-⋃-【答案】B 【解析】 【分析】利用函数奇偶性可求得()f x 在0x <时的解析式和()0f ,进而构造出不等式求得结果. 【详解】()f x Q 为定义在R 上的奇函数,()00f ∴=.当0x <时,0x ->,()23f x x x∴-=---, ()f x Q 为奇函数,()()()230f x f x x x x∴=--=++<,由0230x x x <⎧⎪⎨++≤⎪⎩得:2x -≤或10x -≤<; 综上所述:若0x ≤,则()0f x ≤的解集为(][],21,0-∞--U . 故选:B . 【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在0x =处有意义时,()00f =的情况.4.己知函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点()()()()11123344,,,,.,,,A x y B x y C x y D x y ,其中1234x x x x <<<,则()442tan x x +=( ) A .1- B .0C .1D.22+ 【答案】A 【解析】 【分析】先将函数解析式化简为|cos |y x =,结合题意可求得切点4x 及其范围4,2x ππ⎛⎫∈ ⎪⎝⎭,根据导数几何意义,即可求得()442tan x x +的值. 【详解】函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩即|cos |y x =直线(2)(0)y m x m =+>与函数|cos |y x =图象恰有四个公共点,结合图象知直线(2)(0)y m x m =+>与函数cos y x =-相切于4x ,4,2x ππ⎛⎫∈ ⎪⎝⎭, 因为sin y x '=, 故444cos sin 2x k x x -==+,所以()()()()4444444sin 1221c 2tan os 2x x x x x x x -+⨯=+⨯=-++=.故选:A. 【点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题.5.已知函数3sin ()(1)()x x x xf x x m x e e-+=+-++为奇函数,则m =( )A .12B .1C .2D .3【答案】B 【解析】 【分析】根据()f x 整体的奇偶性和部分的奇偶性,判断出m 的值. 【详解】依题意()f x 是奇函数.而3sin y x x =+为奇函数,x xy e e -=+为偶函数,所以()()()1gx x m x =+-为偶函数,故()()0gx g x --=,也即()()()()110x m x x m x +---+=,化简得()220m x -=,所以1m =.故选:B 【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题. 6.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4πx =-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在区间(,)43ππ上单调,则ω的最大值是( )A .12B .11C .10D .9【答案】B 【解析】 【分析】由题意可得()4k πωϕπ-+=g ,且42k ππωϕπ+='+g ,故有2()1k k ω='-+①,再根据12234πππω-g …,求得12ω…②,由①②可得ω的最大值,检验ω的这个值满足条件.【详解】解:函数()sin()(0f x x ωϕω=+>,||)2πϕ…,4πx =-为()f x 的零点,4x π=为()y f x =图象的对称轴, ()4k πωϕπ∴-+=g ,且42k ππωϕπ+='+g ,k 、k Z '∈,2()1k k ω∴='-+,即ω为奇数①. ()f x Q 在(4π,)3π单调,∴12234πππω-g…,12ω∴…②. 由①②可得ω的最大值为1. 当11ω=时,由4x π=为()y f x =图象的对称轴,可得1142k ππϕπ⨯+=+,k Z ∈,故有4πϕ=-,()4k πωϕπ-+=g ,满足4πx =-为()f x 的零点, 同时也满足满足()f x 在,43ππ⎛⎫⎪⎝⎭上单调, 故11ω=为ω的最大值, 故选:B . 【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题. 7.某个命题与自然数n 有关,且已证得“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A .当8n =时,该命题不成立 B .当8n =时,该命题成立 C .当6n =时,该命题不成立 D .当6n =时,该命题成立【答案】C 【解析】 【分析】写出命题“假设()*n k k N=∈时该命题成立,则1n k =+时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断. 【详解】由逆否命题可知,命题“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”的逆否命题为“假设当()1n k k N*=+∈时该命题不成立,则当n k =时该命题也不成立”,由于当7n =时,该命题不成立,则当6n =时,该命题也不成立,故选:C. 【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.8.设等差数列{}n a 的前n 项和为n S ,若23S =,410S =,则6S =( ) A .21 B .22C .11D .12【答案】A 【解析】 【分析】由题意知24264,,S S S S S --成等差数列,结合等差中项,列出方程,即可求出6S 的值. 【详解】解:由{}n a 为等差数列,可知24264,,S S S S S --也成等差数列,所以()422642S S S S S -=+- ,即()62103310S ⨯-=+-,解得621S =. 故选:A. 【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.9.如图,平面四边形ACBD 中,AB BC ⊥,AB DA ⊥,1AB AD ==,2BC =,现将ABD △沿AB 翻折,使点D 移动至点P ,且PA AC ⊥,则三棱锥P ABC -的外接球的表面积为( )A .8πB .6πC .4πD .823π 【答案】C 【解析】 【分析】由题意可得PA ⊥面ABC ,可知PA BC ⊥,因为AB BC ⊥,则BC ⊥面PAB ,于是BC PB ⊥.由此推出三棱锥P ABC -外接球球心是PC 的中点,进而算出2CP =,外接球半径为1,得出结果. 【详解】解:由DA AB ⊥,翻折后得到PA AB ⊥,又PA AC ⊥, 则PA ⊥面ABC ,可知PA BC ⊥.又因为AB BC ⊥,则BC ⊥面PAB ,于是BC PB ⊥, 因此三棱锥P ABC -外接球球心是PC 的中点.计算可知2CP =,则外接球半径为1,从而外接球表面积为4π.故选:C. 【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.10.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 【答案】C 【解析】 【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 【详解】,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.11.已知函数()ln f x x ax b =++的图象在点(1,)a b +处的切线方程是32y x =-,则a b -=( ) A .2 B .3 C .-2 D .-3【答案】B 【解析】 【分析】根据(1)3f '=求出2,a =再根据(1,)a b +也在直线32y x =-上,求出b 的值,即得解. 【详解】 因为1()f x a x'=+,所以(1)3f '= 所以13,2a a +==,又(1,)a b +也在直线32y x =-上, 所以1a b +=, 解得2,1,a b ==- 所以3a b -=. 故选:B 【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平. 12.若某几何体的三视图如图所示,则该几何体的表面积为( )A .240B .264C .274D .282【答案】B 【解析】 【分析】将三视图还原成几何体,然后分别求出各个面的面积,得到答案. 【详解】由三视图可得,该几何体的直观图如图所示, 延长BE 交DF 于A 点,其中16AB AD DD ===,3AE =,4AF =, 所以表面积()3436536246302642S ⨯=⨯+⨯+⨯+⨯+=. 故选B 项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题 二、填空题:本题共4小题,每小题5分,共20分。
2020年山东省第一次高考模拟考试文科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
|﹣1<x<5},集合A={1,3},则集合∁U A的子集的个数是()1. 设全集U={x NA. 16B. 8C. 7D. 42. 下列各式的运算结果为纯虚数的是()A. i(1+i)2B. i2(1﹣i)C. (1+i)2D. i(1+i)3. 为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定。
其中所有正确结论的编号为()A. ①③B. ①④C. ②③D. ②④4. 已知直线,直线为,若则( )A.或 B.C .D .或5. 已知,条件甲:;条件乙:,则甲是乙的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 轴截面为正方形的圆柱的外接球的体积与该圆柱的体积的比值为( ) A . B .C .D .7. 在中,a ,b ,c 分别是角A ,B ,C 的对边,,则角B=( )A.B. C.D.8. 执行如图所示的程序框图,输出的S=( )A. 25B. 9C. 17D. 209. 设直线1:210l x y -+=与直线A 的交点为A ;,P Q 分别为12,l l 上任意两点,点M 为,P Q 的中点,若12AM PQ =,则m 的值为( ) A. 2B. 2-C. 3D. 3-10.在V ABC 中,sin B A =,BC =4C π=,则=AB ( )B. 5C. D.11. 已知函数,若,且函数存在最小值,则实数的取值范围为( ) A.B.C. D. 12.已知三棱锥的底面的顶点都在球的表面上,且,,,且三棱锥的体积为,则球的体积为( ) A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2020年山东省泰安市高考数学一模试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U =R ,集合M ={x |﹣3<x <1},N ={x ||x |≤1},则阴影部分表示的集合是( )A .[﹣1,1]B .(﹣3,1]C .(﹣∞,﹣3)∪(﹣1,+∞)D .(﹣3,﹣1)2.(5分)已知复数2−ai i=1−bi ,其中a ,b ∈R ,i 是虚数单位,则|a +bi |=( ) A .﹣1+2iB .1C .5D .√53.(5分)已知(2−mx)(1−1x)3的展开式中的常数项为8,则实数m =( ) A .2B .﹣2C .﹣3D .34.(5分)已知函数f (x )=log a (|x ﹣2|﹣a )(a >0,且a ≠1),则“f (x )在(3,+∞)”上是单调函数”是“0<a <1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.(5分)已知定义在R 上的函数f (x )的周期为4,当x ∈[﹣2,2)时,f(x)=(13)x −x −4,则f (﹣log 36)+f (log 354)=( ) A .32B .32−log 32C .−12D .23+log 326.(5分)如图,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=m AM →,AC →=n AN →,则m +n 的值为( )A .1B .2C .﹣2D .947.(5分)现有一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )A .1B .√2C .√3D .2√28.(5分)抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN||AB|的最大值是( )A .√3B .√32C .√33D .√34二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(5分)某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论正确的是( ) 注:90后指1990年及以后出生,80后指1980﹣1989年之间出生.80前指1979年及以前出生.A .互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多 10.(5分)下列说法正确的是( )A .“c =5”是“点(2,1)到直线3x +4y +c =0的距离为3”的充要条件B.直线x sinα﹣y+1=0的倾斜角的取值范围为[0,π4]∪[3π4,π)C.直线y=﹣2x+5与直线2x+y+1=0平行,且与圆x2+y2=5相切D.离心率为√3的双曲线的渐近线方程为y=±√2x11.(5分)已知α,β是两个不重合的平面,m,n是两条不重合的直线,则下列命题正确的是()A.若m⊥n,m⊥α,n∥β,则α⊥βB.若m⊥α,n∥α,则m⊥nC.若α∥β,m⊂α,则m∥βD.若m∥n,α∥β,则m与α所成的角和n与β所成的角相等12.(5分)已知函f(x)=e|x|sin x,则下列结论正确的是()A.f(x)是周期为2π的奇函数B.f(x)在(−π4,3π4)上为增函数C.f(x)在(﹣10π,10π)内有21个极值点D.f(x)≥ax在[0,π4]上恒成立的充要条件是a≤1三、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知α,β∈(3π4,π),sin(α+β)=−35,sin(β−π4)=1213,则cos(α+π4)=.14.(5分)一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷砖铺满房间地面的方法有种.15.(5分)《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(““表示一根阳线,““表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为.16.(5分)过点M (﹣m ,0)(m ≠0)的直线l 与直线3x +y ﹣3=0垂直,直线l 与双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B ,若点P (m ,0)满足|P A |=|PB |,则双曲线C 的渐近线方程为 ,离心率为 .四、解答题:本题共6小题,共70分.解答应写出文宇说明、证明过程或演算步骤. 17.(10分)在①A 5=B 3,②1a 1−1a 2=4B 2,③B 5=35这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n }的公差为d (d >0),等差数列{b n }的公差为2d .设A n ,B n 分别是数列{a n },{b n }的前n 项和,且b 1=3,A 2=3,________. (1)求数列{a n },{b n }的通项公式;(2)设c n =2a n +3b n b n+1,求数列{c n }的前n 项和S n .18.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且8cos 2B+C 2−2cos2A =3.(1)求A ;(2)若a =2,且△ABC 面积的最大值为√3,求△ABC 周长的取值范围. 19.(12分)在四边形ABCP 中,AB =BC =√2,∠P =π3,PA =PC =2;如图,将△P AC 沿AC 边折起,连结PB ,使PB =P A ,求证: (1)平面ABC ⊥平面P AC ;(2)若F 为棱AB 上一点,且AP 与平面PCF 所成角的正弦值为√34,求二面角F ﹣PC ﹣A 的大小.20.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工A :410,390,330,360,320,400,330,340,370,350 乙公司员工B :360,420,370,360,420,340,440,370,360,420 每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元.超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工A 在这10天投递的快件个数的平均数和众数; (2)为了解乙公司员工B 每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为ξ(单位:元),求ξ的分布列和数学期望; (3)根据题中数据估算两公司被抽取员工在该月所得的劳务费. 21.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,直线l :y =kx +m 与椭圆C 相交于P ,Q 两点;当直线l 经过椭圆C 的下顶点A 和右焦点F 2时,△F 1PQ 的周长为4√2,且l 与椭圆C 的另一个交点的横坐标为43.(1)求椭圆C 的方程;(2)点M 为△POQ 内一点,O 为坐标原点,满足MP →+MO →+MQ →=0,若点M 恰好在圆O :x 2+y 2=49,求实数m 的取值范围. 22.(12分)已知函数f(x)=lnx+axe x,a ∈R . (1)若函数y =f (x )在x =x 0(ln 2<x 0<ln 3)处取得极值1,证明:2−1ln2<a <3−1ln3; (2)若f(x)≤x −1e x 恒成立,求实数a 的取值范围.2020年山东省泰安市高考数学一模试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U =R ,集合M ={x |﹣3<x <1},N ={x ||x |≤1},则阴影部分表示的集合是( )A .[﹣1,1]B .(﹣3,1]C .(﹣∞,﹣3)∪(﹣1,+∞)D .(﹣3,﹣1)【解答】解:因为全集U =R ,集合M ={x |﹣3<x <1}, N ={x ||x |≤1}=[﹣1,1],∴∁U N =(﹣∞,﹣1)∪(1,+∞);∴阴影部分表示的集合是M ∩(∁U N )=(﹣3,﹣1). 故选:D . 2.(5分)已知复数2−ai i=1−bi ,其中a ,b ∈R ,i 是虚数单位,则|a +bi |=( ) A .﹣1+2i B .1C .5D .√5【解答】解:由2−ai i =1−bi ,得:2﹣ai =i (1﹣bi )=b +i ,所以a =﹣1,b =2, 则a +bi =﹣1+2i ,所以|a +bi |=|﹣1+2i |=√(−1)2+22=√5. 故选:D .3.(5分)已知(2−mx)(1−1x )3的展开式中的常数项为8,则实数m =( ) A .2B .﹣2C .﹣3D .3【解答】解:∵(1−1x )3的展开式的通项公式为:∁3r •(−1x )r =(﹣1)r •∁3r •x ﹣r;﹣r =0得r =0;﹣r =﹣1得r =1;∴(2−mx)(1−1x )3的展开式中的常数项为:2×(﹣1)0•∁30+(﹣m )•(﹣1)1⋅∁31=8; ∴m =2; 故选:A .4.(5分)已知函数f (x )=log a (|x ﹣2|﹣a )(a >0,且a ≠1),则“f (x )在(3,+∞)”上是单调函数”是“0<a <1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【解答】解:|x ﹣2|﹣a =x ﹣2﹣a 在(3,+∞)上是单调递增, 要使f (x )在(3,+∞)上是单调函数函数, 则|3﹣2|﹣a >0,且a >0,且a ≠1, 解之得0<a <1,则0<a <1是0<a <1的充要条件, 故选:C .5.(5分)已知定义在R 上的函数f (x )的周期为4,当x ∈[﹣2,2)时,f(x)=(13)x −x −4,则f (﹣log 36)+f (log 354)=( ) A .32B .32−log 32C .−12D .23+log 32【解答】解:因为函数f (x )的周期为4,当x ∈[﹣2,2)时,f(x)=(13)x −x −4,∴f (﹣log 36)=f (log 316)=(13)log 316−log 316−4=2+log 36; f (log 354)=f (3+log 32)=f (log 32﹣1)=f (log 323)=(13)log 323−log 323−4=32−log 32+1﹣4=32−log 32﹣3; ∴f (﹣log 36)+f (log 354)=2+log 36+32−log 32﹣3=32; 故选:A .6.(5分)如图,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=m AM →,AC →=n AN →,则m +n 的值为( )A .1B .2C .﹣2D .94【解答】解:由已知得AO →=12(AB →+AC →),结合AB →=m AM →,AC →=n AN →,所以AO →=12mAM →+12nAN →.又因为O ,M ,N 三点共线,所以12m +12n =1,所以m +n =2. 故选:B .7.(5分)现有一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )A .1B .√2C .√3D .2√2【解答】解:∵现有一个封闭的棱长为2的正方体容器, 当水平放置时,如图,水面的高度正好为棱长的一半, ∴正方体的面对角线长为2√2,将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转, 当旋转到对角线与小平面垂直时容器里水面的高度最大, ∴容器里水面的最大高度为面对角线长的一半, ∴容器里水面的最大高度为√2. 故选:B .8.(5分)抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN||AB|的最大值是( ) A .√3B .√32C .√33D .√34【解答】解:设|AF |=a ,|BF |=b ,A 、B 在准线上的射影点分别为Q 、P , 连接AQ 、BQ由抛物线定义,得|AF |=|AQ |且|BF |=|BP |,在梯形ABPQ 中根据中位线定理,得2|MN |=|AQ |+|BP |=a +b . 由余弦定理得|AB |2=a 2+b 2﹣2ab cos 2π3=a 2+b 2+ab ,配方得|AB |2=(a +b )2﹣ab , 又∵ab ≤(a+b 2) 2,∴(a +b )2﹣ab ≥(a +b )2﹣( a+b 2) 2=34(a +b )2得到|AB |≥√32(a +b ). 所以|MN||AB|≤a+b2√32(a+b)=√33, 即|MN||AB|的最大值为√33. 故选:C .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(5分)某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论正确的是( )注:90后指1990年及以后出生,80后指1980﹣1989年之间出生.80前指1979年及以前出生.A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多【解答】解:在A中,由整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图得到:56%×(39.6%+17%)=31.696%>30%,互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上,故A正确;在B中,由整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图得到:56%×39.6%=22.176%>20%,互联网行业中从事技术岗位的人数超过总人数的20%,故B正确;在C中,由整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图得到:17%×56%=9.52%互联网行业中从事运营岗位的人数90后比80前多,故C正确;在D中,由整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图得到:互联网行业中从事技术岗位的人数90后不一定比80后多,故D错误.故选:ABC.10.(5分)下列说法正确的是()A.“c=5”是“点(2,1)到直线3x+4y+c=0的距离为3”的充要条件B .直线x sin α﹣y +1=0的倾斜角的取值范围为[0,π4]∪[3π4,π) C .直线y =﹣2x +5与直线2x +y +1=0平行,且与圆x 2+y 2=5相切D .离心率为√3的双曲线的渐近线方程为y =±√2x【解答】解:“c =5”是“点(2,1)到直线3x +4y +c =0的距离为3”的充分条件,所以A 不正确;直线x sin α﹣y +1=0的斜率为:sin α,直线的倾斜角为θ,所以tan θ=sin α∈[﹣1,1], 所以直线倾斜角的取值范围为[0,π4]∪[3π4,π),所以B 正确;直线y =﹣2x +5与直线2x +y +1=0平行,正确,因为圆的圆心到直线的距离为:√5=√5,所以两条直线与圆x 2+y 2=5相切,所以C 正确; 离心率为√3的双曲线,可得ca =√3,即c 2=3a 2,所以b 2=2a 2,所以双曲线的渐近线方程为:y =±√2x 或y =±√22x ,所以D 不正确; 故选:BC .11.(5分)已知α,β是两个不重合的平面,m ,n 是两条不重合的直线,则下列命题正确的是( )A .若m ⊥n ,m ⊥α,n ∥β,则α⊥βB .若m ⊥α,n ∥α,则m ⊥nC .若α∥β,m ⊂α,则m ∥βD .若m ∥n ,α∥β,则m 与α所成的角和n 与β所成的角相等【解答】解:A .满足m ⊥n ,m ⊥α,n ∥β时,得不出α⊥β,α与β可能平行,如图所示:∴该选项错误;B .∵n ∥α,∴设过n 的平面β与α交于a ,则n ∥a ,又m ⊥α,∴m ⊥a ,∴m ⊥n ,∴该选项正确;C .∵α∥β,∴α内的所有直线都与β平行,且m ⊂α,∴m ∥β,∴该选项正确;D .根据线面角的定义即可判断该选项正确. 故选:BCD .12.(5分)已知函f (x )=e |x |sin x ,则下列结论正确的是( ) A .f (x )是周期为2π的奇函数 B .f (x )在(−π4,3π4)上为增函数C .f (x )在(﹣10π,10π)内有21个极值点D .f (x )≥ax 在[0,π4]上恒成立的充要条件是a ≤1 【解答】解:A 错,因为函数是奇函数,但不是周期函数. B 对,利用奇函数去绝对值,求导可判断f (x )在(−π4,3π4)上递增;C 错,x ≥0时,f (x )=e x sin x ,则f ′(x )=e x sin x +e x cos x =0,即sin x +cos x =0,0<x <10π,方程有10个根.有奇偶性﹣10π<x <0时,有10个根,故计算得f (x )在(﹣10π,10π)内有20个极点;D 对,当x ∈[0,π4],f (x )=e x sin x ,则f ′(x )=e x sin x +e x cos x ,即f ′(0)=1,a 表示过原点直线的斜率,则由恒成立可求a ≤1. 故选:BD .三、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知α,β∈(3π4,π),sin(α+β)=−35,sin(β−π4)=1213,则cos(α+π4)= −5665. 【解答】解:已知α,β∈(3π4,π),sin(α+β)=−35, sin(β−π4)=1213,α+β∈(3π2,2π),β−π4∈(π2,3π4), ∴cos(α+β)=45,cos(β−π4)=−513, ∴cos(α+π4)=cos[(α+β)−(β−π4)]=cos(α+β)cos(β−π4)+sin(α+β)sin(β−π4) =45⋅(−513)+(−35)⋅1213=−5665故答案为:−56 6514.(5分)一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷砖铺满房间地面的方法有11种.【解答】解:由题意只能分成三类铺砖:第一类.横5竖1:竖砖只能排在上两行中(如图所示的竖线位置之一),两头与中间,其余排竖砖,共3种;第二类.横3竖3:左下角一块横砖,另外三块竖砖排在上面两行,中间形成四个空,两块横砖上下并排插空共4种铺法;或左上角一块横砖,另两块横砖并排排在上面两行右边部分,其余空排竖砖,有2种排法.所以此类共有6种排法.第三类.横1竖5:横砖只能排在最左边最上一行或最下一行,其余排竖砖,共有2种铺法;综上一共有3+6+2=11种排法.故答案为:11.15.(5分)《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(““表示一根阳线,““表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为314.【解答】解:观察八卦图可知,含3根阴线的共有1卦,含3根阳线的共有1卦,还有2根阴线1根阳线的共有3卦,含有1根阴线2根阳线的共有3卦,∴从八卦中任取两卦,这两卦的六根线恰有两根阳线,四根阴线的概率为:P=C31+C32C82=314.故答案为:314.16.(5分)过点M(﹣m,0)(m≠0)的直线l与直线3x+y﹣3=0垂直,直线l与双曲线C:x2 a2−y2b2=1(a>0,b>0)的两条渐近线分别交于点A,B,若点P(m,0)满足|P A|=|PB|,则双曲线C的渐近线方程为y=±12x,离心率为√52.【解答】解:过点M(﹣m,0)(m≠0)的直线l与直线3x+y﹣3=0垂直,可得:直线l:x﹣3y+m=0(m≠0),由双曲线的方程可知,渐近线为y=±ba x,分别与x﹣3y+m=0(m≠0)联立,解得A(−ama−3b,−bma−3b),B(−ama+3b,bma+3b),∴AB中点坐标为(ma29b2−a2,3mb29b2−a2),∵点P(m,0)满足|P A|=|PB|,∴3mb29b2−a2−0 ma29b2−a2−m=−3,∴a =2b ,∴双曲线C 的渐近线方程为:y =±12x . ∴c =√5b , ∴e =ca =√52. 故答案为:y =±12x :√52. 四、解答题:本题共6小题,共70分.解答应写出文宇说明、证明过程或演算步骤. 17.(10分)在①A 5=B 3,②1a 1−1a 2=4B 2,③B 5=35这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n }的公差为d (d >0),等差数列{b n }的公差为2d .设A n ,B n 分别是数列{a n },{b n }的前n 项和,且b 1=3,A 2=3,________. (1)求数列{a n },{b n }的通项公式; (2)设c n =2a n +3b n b n+1,求数列{c n }的前n 项和S n . 【解答】解:方案一:选条件① (1)由题意,可知∵数列{a n },{b n }都是等差数列,且A 2=3,A 5=B 3, ∴{2a 1+d =35a 1+10d =9+6d ,解得{a 1=1d =1, ∴a n =1+1•(n ﹣1)=n ,n ∈N *, b n =3+2•1•(n ﹣1)=2n +1,n ∈N *, 综上所述,可得a n =n ,b n =2n +1. (2)由(1)知,c n =2n +3(2n+1)(2n+3)=2n +32(12n+1−12n+3), ∴S n =c 1+c 2+…+c n=[2+32(13−15)]+[22+32(15−17)]+…+[2n +32(12n+1−12n+3)]=(2+22+⋯+2n )+32[(13−15)+(15−17)+⋯+(12n+1−12n+3)]=2(1−2n)1−2+32(13−12n+3)=2n+1−3(n+2)2n+3.方案二:选条件② (1)由题意,可知∵数列{a n },{b n }都是等差数列,且A 2=3,1a 1−1a 2=4B 2,∴{2a 1+d =31a 1−1a 1+d =42×3+2d,整理,得{2a 1+d =34a 1(a 1+d)=d(6+2d),解得{a 1=1d =1,∴a n =1+1•(n ﹣1)=n ,n ∈N *, b n =3+2•1•(n ﹣1)=2n +1,n ∈N *, 综上所述,可得a n =n ,b n =2n +1. (2)同方案一第(2)小题解题过程. 方案三:选条件③ (1)由题意,可知∵数列{a n },{b n }都是等差数列,且A 2=3,B 5=35, ∴{2a 1+d =33×5+5×42×2d =35,解得{a 1=1d =1, ∴a n =1+1•(n ﹣1)=n ,n ∈N *, b n =3+2•1•(n ﹣1)=2n +1,n ∈N *, 综上所述,可得a n =n ,b n =2n +1. (2)同方案一第(2)小题解题过程.18.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且8cos 2B+C 2−2cos2A =3.(1)求A ;(2)若a =2,且△ABC 面积的最大值为√3,求△ABC 周长的取值范围. 【解答】解:(1)∵8cos 2B+C2−2cos2A =3, ∴4(1+cos (B +C ))﹣2cos2A =3, 整理得4cos 2A +4cos •A ﹣3=0, 解得cosA =12或cosA =−32(舍去), 又A ∈(0,π)∴A =π3,(2)由题意知S △ABC =12bcsinA =√34bc ≤√3,∴bc ≤4,又b 2+c 2﹣a 2=2bc cos A ,a =2, ∴b 2+c 2=4+bc ,∴(b +c )2=4+3bc ≤16, 又b +c >2,所以2<b +c ≤4,4<a +b +c ≤6,,∴△ABC 周长的取值范围是(4,6].19.(12分)在四边形ABCP 中,AB =BC =√2,∠P =π3,PA =PC =2;如图,将△P AC 沿AC 边折起,连结PB ,使PB =P A ,求证: (1)平面ABC ⊥平面P AC ;(2)若F 为棱AB 上一点,且AP 与平面PCF 所成角的正弦值为√34,求二面角F ﹣PC ﹣A 的大小.【解答】证明:(1)在△PAC 中,PA =PC =2,∠P =π3∴△P AC 为正三角形,且AC =2在△ABC 中,AB =BC =√2∴△ABC 为等腰直角三角形,且AB ⊥BC 取AC 的中点O ,连接OB ,OP∴OB ⊥AC ,OP ⊥AC#/DEL/#∵OB =1,OP =√3,PB =PA =2#/DEL/#∴OP ⊥OBOP ∩AC =O ,AC ,OP ⊂平面P AC ∴OB ⊥平面P AC ∵OB ⊂平面ABC ∴平面ABC ⊥平面P AC (2)以O 为坐标原点,建立如图所示的空间直角坐标系O ﹣xyz ,则A(0,−1,0),B(1,0,0),C(0,1,0),P(0,0,√3),AB →=(1,1,0),AP →=(0,1,√3),CP →=(0,−1,√3),CA →=(0,−2,0),设AF →=mAB →(0<m <1),则CF →=CA →+AF →=(m ,m −2,0)设平面PFC 的一个法向量为n =(x ,y ,z ),则{n ⋅CF →=0n ⋅CP →=0∴{mx +y(m −2)=0−y +√3z =0令y =√3,解得{x =2−mm √3z =1∴n =(2−mm √3,√3,1)∵AP 与平面PFC 所成角的正弦值为√34, ∴|n⋅AP→|n|⋅|AP|→|=√3√3(2−m)2m 2+3+1=√34整理得3m 2+4m ﹣4=0解得m =23或m =−2(舍去)∴n =(2√3,√3,1) 又OB →为平面P AC 的一个法向量 ∴cos〈n ,OB →〉=n⋅OB→|n||OB|→=√32#/DEL/#∴〈n ,OB →〉=π6#/DEL/#∴二面角F ﹣P A ﹣C 的大小为π6.20.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工A :410,390,330,360,320,400,330,340,370,350 乙公司员工B :360,420,370,360,420,340,440,370,360,420 每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元.超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工A 在这10天投递的快件个数的平均数和众数; (2)为了解乙公司员工B 每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为ξ(单位:元),求ξ的分布列和数学期望; (3)根据题中数据估算两公司被抽取员工在该月所得的劳务费. 【解答】解:(1)由题意知:甲公司员工A 在这10天投递的快递件数的平均数为:110(410+390+330+360+320+400+330+340+370+350)=360,众数为330.(2)设乙公司员工B 1天的投递件数为X ,则X 的可能取值为340,360,370,420,440, 当X =340时,ξ=340×0.6=204,P(ξ=204)=110,当X =360时,ξ=350×0.6+(360−350)×0.9=219,P(ξ=219)=310, 当X =370时,ξ=350×0.6+(370−350)×0.9=228,P(ξ=228)=15, 当X =420时,ξ=350×0.6+(420−350)×0.9=273,P(ξ=273)=310, 当X =440时,ξ=350×0.6+(440−350)×0.9=291,P(ξ=291)=110, ∴ξ的分布列为ξ 204 219 228 273 291 P11031015310110∴E(ξ)=204×110+219×310+228×15+273×310+291×110=242.7. (3)由(1)估计甲公司被抽取员工在该月所得的劳务费为 360×30×0.65=7020(元)由(2)估计乙公司被抽取员工在该月所得的劳务费为: 242.7×0.6×30=4368.6(元). 21.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,直线l :y =kx +m 与椭圆C 相交于P ,Q 两点;当直线l 经过椭圆C 的下顶点A 和右焦点F 2时,△F 1PQ 的周长为4√2,且l 与椭圆C 的另一个交点的横坐标为43.(1)求椭圆C 的方程;(2)点M 为△POQ 内一点,O 为坐标原点,满足MP →+MO →+MQ →=0,若点M 恰好在圆O :x 2+y 2=49,求实数m 的取值范围. 【解答】解:(1)由题意知4a =4√2,∴a =√2, 直线AF 2的方程为y =b c (x −c),∵直线AF 2与椭圆C 的另一个交点的横坐标为43,∴{y =b c (43−c)(43)22+y 2b2=1,解得c =1或c =2(舍去), ∴b 2=a 2﹣c 2=1, ∴椭圆C 的方程为x 22+y 2=1;(2)设P (x 1,y 1),Q (x 2,y 2),∵MP →+MO →+MQ →=0,∴点M 为△POQ 的重心,得M(x 1+x 23,y 1+y 23), ∵点M 在O :x 2+y 2=49上,∴(x 1+x 2)2+(y 1+y 2)2=4, 由{y =kx +m x 22+y 2=1,得(1+2k 2)x 2+4kmx +2m 2﹣2=0,∴x 1+x 2=−4km 1+2k2,x 1x 2=2m 2−21+2k 2,∴(x 1+x 2)2+(y 1+y 2)2=(−4km 1+2k2)2+(k(−4km 1+2k2)+2m)2=4,即16(1+k 2)k 2m 2(1+2k 2)2−16k 2m 21+2k 2+4m 2=4,得m 2=(1+2k 2)24k 2+1,由△>0得1+2k 2>m 2,∴1+2k 2>(1+2k 2)24k 2+1,解得k ≠0, ∴m 2=(1+2k 2)24k 2+1=1+4k44k 2+1=1+44k 2+1k4>1, ∴m >1或m <﹣1. 22.(12分)已知函数f(x)=lnx+axe x,a ∈R . (1)若函数y =f (x )在x =x 0(ln 2<x 0<ln 3)处取得极值1,证明:2−1ln2<a <3−1ln3;(2)若f(x)≤x−1e x恒成立,求实数a的取值范围.【解答】解:(1)f′(x)=1x+a−(lnx+ax)e x.∵函数y=f(x)在x=x0处取得极值1,∴f′(x0)=1x0+a−(lnx0+ax0)e x0=0,且f(x0)=lnx0+ax0e x0=1,∴1x0+a=lnx0+ax0=e x0,∴a=e x0−1x0,令r(x)=e x−1x(x>0),则r′(x)=e x+1x2>0,∴r(x)为增函数,∵0<ln2<x0<ln3,∴r(ln2)<a<r(ln3),即2−1ln<a<3−1ln3.(2)不等式f(x)≤x−1e x恒成立,即不等式xe x﹣lnx﹣ax≥1恒成立,即a≤e x−lnxx−1x恒成立.令g(x)=e x−lnxx−1x,则g′(x)=e x−1−lnxx2+1x2=x2e2+lnxx2.令ℎ(x)=x2e x+lnx,则ℎ′(x)=(x2+2x)e x+1 x.∵x>0,∴h'(x)>0.∴h(x)在(0,+∞)上单调递增,且ℎ(1)=e>0,ℎ(12)=√e4−ln2<0.∴h(x)有唯一零点x1,且12<x1<1.当x∈(0,x1)时,h(x)<0,g'(x)<0,g(x)单调递减;∴a≤e x1−lnx1x1−1x1.由h(x1)=0整理得x1e x1=−lnx1x1,∵12<x1<1,−lnx1>0,令k(x)=xe x(x>0),则方程x1e x1=−lnx1x1等价于k(x1)=k(﹣lnx1),而k'(x)=(x+1)e x在(0,+∞)上恒大于零,∴k(x)在(0,+∞)上单调递增,∵k(x1)=k(﹣lnx1),∴x1=﹣lnx1,∴e x1=1x1,∴g(x1)=e x1−lnx1x1−1x1=1x1−(−x1)x1−1=1.x1∴a≤1.∴实数a的取值范围为(﹣∞,1].。
2022年山东泰安市高考数学一模试卷1. 已知复数z满足方程为虚数单位,则( )A. B. C. D.2. 设集合,则( )A. RB.C. D.3. 下列选项中,p是q的必要不充分条件的是( )A. p:,q:且在上为增函数B. p:,,q:且的图象不过第二象限C. p:且,q:D. p:,q:且4. 若双曲线的一条渐近线被圆所截得的弦长为2,则双曲线C的离心率为( )A. B. C. 2 D.5. 某食品的保鲜时间单位:小时与储藏温度单位:满足函数关系…为自然对数的底数,k,b为常数若该食品在的保鲜时间是192小时,在的保鲜时间是48小时,则该食品在的保鲜时间是( )A. 16小时B. 20小时C. 24小时D. 28小时6. 已知,则( )A. B. C. D.7. 已知抛物线C:的焦点为F,点M在抛物线C上,射线FM与y轴交于点与抛物线C的准线交于点N,,则p的值等于( )A. B. 2 C. D. 48. 已知数列是首项为a,公差为1的等差数列,数列满足若对任意的,都有成立,则实数a的取值范围为 ( )A. B. C. D.9. 某工厂研究某种产品的产量单位:吨与需求某种材料单位:吨之间的相关关系,在生产过程中收集了4组数据如表所示:x3467y34根据表中的数据可得回归直线方程,则以下正确的是( )A. 变量x与y正相关B. y与x的相关系数C. D. 产量为8吨时预测所需材料约为吨10. 已知函数将的图象上所有点向右平移个单位长度,然后横坐标缩短到原来的倍纵坐标不变,得到函数的图象.若为偶函数,且最小正周期为,则下列说法正确的是( )A. 的图象关于对称B. 在上单调递减C. 的解集为,D. 方程在上有且只有两个相异实根11. 如图,在直三棱柱中,,,D是棱的中点,,点E在上,且,则下列结论正确的是( )A. 直线与BC所成角为B. 三棱锥的体积为C. 平面D. 直三棱柱外接球的表面积为12. 已知函数,,,则下列结论正确的是( )A. 在上单调递增B. 当时,方程有且只有3个不同实根C. 的值域为D. 若对于任意的,都有成立,则13. 在的展开式中,含的项的系数是______.14. 如图,在四边形ABCD中,,E为边BC的中点,若,则______.15. 随着时代发展和社会进步,教师职业越来越受青睐,考取教师资格证成为不少人的就业规划之一.当前,中小学教师资格考试分笔试和面试两部分.已知某市2021年共有10000名考生参加了中小学教师资格考试的笔试,现从中随机抽取100人的笔试成绩满分100分作为样本,整理得到如表频数分布表:笔试成绩X人数51025302010由频数分布表可认为该市全体考生的笔试成绩X近似服从正态分布,其中,近似为100名样本考生笔试成绩的平均值同一组的数据用该组区间的中点值代替,则______.若,据此估计该市全体考生中笔试成绩高于的人数结果四舍五入精确到个位为______.参考数据:若,则,,16. 已知,是椭圆和双曲线的公共焦点,P是它们的一个公共点,且设椭圆,双曲线的离心率分别为,,则的最小值为______.17. 在中,内角A,B,C所对的边分别为a,b,c,且求A;若D为BC上一点,且,,求的面积.18.已知各项均为正数的等差数列,,,,成等比数列.求的通项公式;设数列满足,为数列的前n项和,求证:19. 如图,在五面体ABCDE中,已知平面BCD,,且,求证:平面平面ABC;求二面角的余弦值.20. 某工厂对一批零件进行质量检测.具体检测方案为:从这批零件中任取10件逐一进行检测,当检测到有2件不合格零件时,停止检测,此批零件检测未通过,否则检测通过.假设每件零件为不合格零件的概率为,且每件零件是否为不合格零件之间相互独立.若此批零件检测未通过,求恰好检测5次的概率:已知每件零件的生产成本为80元,合格零件的售价为150元/件,现对不合格零件进行修复,修复后合格的零件正常销售,修复后不合格的零件以10元/件按废品处理,若每件零件的修复费用为20元,每件不合格零件修复后为合格零件的概率为,记X为生产一件零件获得的利润,求X的分布列和数学期望.21.已知椭圆C:的左,右焦点分别为,,上,下顶点分别为A ,B,四边形的面积和周长分别为2和求椭圆C的方程;若直线l:与椭圆C交于E,F两点,线段EF的中垂线交y轴于M点,且为直角三角形,求直线l的方程.22. 已知函数,其中,a为非零实数.当时,求的极值;讨论的单调性;若有两个极值点,,且,求证;答案和解析1.【答案】A【解析】解:由,得,则故选:把已知的等式变形,然后利用复数代数形式的乘除运算化简求得z,则可求.本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.2.【答案】C【解析】【分析】本题考查一元二次不等式的解法,并集及其运算,考查计算能力,属于基础题.可求出集合A,B,然后进行并集的运算即可.【解答】解:,,,故选:3.【答案】D【解析】解:若p是q的必要不充分条件,则,p不能推出q,A:p:,q:且在上为增函数,则,此时,不满足题意;B:p:,,q:且的图象不过第二象限,则,,此时,q不能推出p,不满足题意;C:p:且,q:,则,q不能推出p,不满足题意;D:p:,q:且,此时,p不能推出q,符合题意.故选:结合对数函数的单调性,指数函数的单调性,不等式的性质分别检验各选项的充分性及必要性即可判断.本题主要考查了充分及必要条件的判断,属于基础题.4.【答案】C【解析】【分析】通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,主要是离心率的求法,考查圆的方程的应用,考查计算能力,是中档题.【解答】解:双曲线的一条渐近线不妨为:,圆即为的圆心,半径为,双曲线的一条渐近线被圆所截得的弦长为2,可得圆心到直线的距离为:,解得:,由,可得,即故选:5.【答案】C【解析】【分析】本题考查指数函数模型的运用,属于基础题.由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程求出,的值,运用指数幂的运算性质求解即可.【解答】解:…为自然对数的底数,k,b为常数当时,,当时,,,解得,当时,故选6.【答案】B【解析】解:因为,所以由已知利用诱导公式可得,进而根据诱导公式,二倍角的余弦公式化简所求即可求解.本题考查了诱导公式,二倍角的余弦公式在三角函数求值中的应用,属于基础题.7.【答案】B【解析】解:依题意F点的坐标为,设M在准线上的射影为K由抛物线的定义知,,,可得,则::1,,,求得,故选:作出M在准线上的射影,根据:确定:的值,进而列方程求得本题主要考查了抛物线的简单性质.抛物线中涉及焦半径的问题常利用抛物线的定义转化为点到准线的距离来解决.8.【答案】D【解析】【分析】本题考查的知识要点:数列的递推关系式,数列的通项公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.直接利用数列的递推关系式,数列的通项公式的应用求出结果.【解答】解:根据题意:数列是首项为a,公差为1的等差数列,所以,由于数列满足,所以对任意的都成立,故数列单调递增,且满足,,所以,故选:9.【答案】ACD【解析】【分析】本题考查了相关关系的判断问题,也考查了相关系数和回归直线方程的应用问题,属于基础题.根据表中数据判断变量y与x之间的相关关系,求出样本中心点坐标,写出回归直线方程,用方程计算即可.【解答】解:对于A,表中变量y随x的增大而增大,是正相关关系,选项A正确;对于B,因为y与x是正相关,所以相关系数,选项B错误;对于C,计算,,代入回归直线方程得,所以选项C正确;对于D,由题意得回归直线方程,时,,即产量为8吨时预测所需材料约为吨,选项D正确.故选10.【答案】AC【解析】解:将的图象上所有点向右平移个单位长度,得到,然后横坐标缩短到原来的倍纵坐标不变,得到函数的图象.即,若的最小正周期为,则,得,此时,为偶函数,,,即,,,当时,,,,则当时,,则的图象关于对称,故A正确,当,则,,此时不是单调函数,故B错误,由得得即,即,,得,,故C正确,由得,则①或,②得①不成立,由②得,,,时,,时,,时,,则在上有且只有3个相异实根,故D错误,故选:根据图象变换关系求出和的解析式,根据三角函数的对称性,单调性分别进行求解判断即可.本题主要考查三角函数的图象和性质,根据图象变换求出函数和的解析式,利用三角函数的性质分别进行判断是解决本题的关键,是中档题.11.【答案】ABD【解析】解:对于A,在矩形中,因为,,D为棱的中点,所以,则²²²,所以,又因为,,所以平面BCD,则,即直线与BC所成角为,故A正确;对于B,在直三棱柱中,,又,,所以平面,又平面,所以,则,故B正确;对于C,由AB可知,AC,BC,两两垂直,如图,以C为原点建立空间直角坐标系,则,,,则,,所以,则CE,BD不垂直,所以CE不垂直平面,故C错误;对于D,连接,则线段即为直三棱柱外接球的直径,则,所以外接球的半径,所以直三棱柱的外接球表面积为²,故D正确;故选:对于A,证明,根据线面垂直的判定定理可得平面BCD,再根据线面垂直的性质可得,即可判断A;对于B,证明平面,可得,再根据求出体积,即可判断B;对于C,以C为原点建立空间直角坐标系,利用向量法证明CE,BD不垂直,即可判断C;对于D,连接,则线段即为直三棱柱外接球的直径,求出外接球的半径,即可求出外接球的面积,即可判断本题考查命题真假性的判断,涉及线面垂直的性质和判定,三棱柱体积求解,空间向量的应用,三棱柱外接球的直径,数形结合,属于中档题.12.【答案】BCD【解析】解:对于A:,因为,,所以,所以,所以在上不是增函数.故A错误;对于B:当时,方程可化为:或,由可解得:,对于,显然代入方程成立,所以是方程的根,当时,记,,所以令,解得:;令,解得:;所以在上单增,在上单减,所以,所以在上没有零点;而在上单减,且,,所以在上有且只有一个零点.综上所述:当时,方程有且只有3个不同实根,故B正确;对于C:对于,.当时,,,所以;当时,,令,解得:;令,,解得:;所以在上单减,在上单增,所以;故的值域为成立,故C正确;对于D:对于任意的,都有成立,所以及恒成立.若恒成立,则有令,只需令,则,则,所以,即;若恒成立,当,无论k取何值,不等式均成立,所以当,则有,令,只需记,则,所以在上单减,所以,即,所以在上单减,所以,所以综上所述:故D正确.故选:对于A:取特殊函数值,否定结论;对于B:当时,解方程得到和是方程的根.利用零点存在定理证明在上有且只有一个零点即可证明.对于C:根据单调性求出的值域.对于D:对x分类讨论:、和三种情况,利用分离参数法分别求出k得到范围,取交集即可.本题考查了分段函数的单调性、最值、极值及分类讨论思想、极限思想,综合性较强,属于难题.13.【答案】6【解析】解:二项式可以化为,则二项式的展开式中含的项为,所以的系数为6,故答案为:二项式可以化为,然后根据二项式定理求出含的项,进而可以求解.本题考查了二项式定理的应用,考查了学生的运算求解能力,属于基础题.14.【答案】【解析】解:连接AC,因为E是BC的中点,所以,又因为,所以,即,,故答案为:把和看作基底,来表示,即可求出结果.本题考查平面向量的线性运算及其平面向量的基本定理,属于基础题.15.【答案】73 16【解析】解:由题意知,易知,故该市全体考生中笔试成绩高于的人数大约为故答案为:73,结合均值的计算方法求出的近似值,然后再据此算出笔试成绩高于的人数的频率,则结果可求.本题考查正态分布的性质,属于基础题.16.【答案】【解析】解:由题意,可设椭圆的长半轴为,双曲线的实半轴为,由椭圆和双曲线的定义可知,,,则,,又,由余弦定理可得,整理得,即,则,所以,当且仅当时,等号成立,故答案为:设椭圆的长半轴为,双曲线的实半轴为,结合定义可得,,在三角形中,由余弦定理可得,然后结合柯西不等式可得结果.本题考查了椭圆与双曲线的离心率的综合,属于中档题.17.【答案】解:在中,因为,所以由正弦定理得:,即,因为,,所以,即,因为,所以在中,因为,,所以,由余弦定理得:,即,解得:舍去,因为,所以即,因为,所以,解得:,所以的面积,即的面积为【解析】利用三角函数恒等变形得到,即可求出角A;先由余弦定理求得,利用向量的运算求出,直接代入面积公式即可求出的面积.本题考查了三角函数恒等变形,余弦定理,向量的运算以及三角形的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.18.【答案】解:设等差数列的公差为d,由,,,成等比数列,得,即,解得或舍去;证明:由,得,,假设数列的前n项和为,,则,,验证时成立.要证,即证,只需证,也就是证,即证,此式显然成立.【解析】设等差数列的公差为d,由已知结合等比数列的性质列式求得d,则通项公式可求;由,得,由题意假设数列的前n项和为,,求得,问题转化为证,再由对数函数的单调性证明.本题考查等差数列的通项公式与等比数列的性质,考查对数的运算性质,考查化归与转化思想,考查运算求解能力,是中档题.19.【答案】证明:取BC中点M,AB中点N,连接DM,MN,且,又,,且,所以四边形MNED是平行四边形,且,又平面BCD,平面ABC,平面平面BCD,,,又平面平面,平面BCD,平面ABC,平面ABC,又平面ABE,所以平面平面ABC解:由知,,且,平面ABC,平面平面ABC,以C为原点,CA,CB所在直线为x,y轴,建立如图所示的空间直角坐标系,则,,,,则,,,设平面BCE的一个法向量为,则,取,则,,又,则,又平面平面,平面ABC,所以平面ABE,即为平面ABE的一个法向量,,显然二面角为锐角,故其余弦值为【解析】利用面面垂直的判定定理及性质定理,及线面垂直的判定定理可证得;建立空间直角坐标系,利用空间向量求二面角的余弦值即可得解.本题主要考查面面垂直的判定,二面角的相关计算,空间向量及其应用等知识,属于中等题.20.【答案】解:若此批零件检测未通过,恰好检测5次,则第五次检验不合格,前四次有一次检验不合格,故恰好检测5次的概率由题意可得,合格产品利润为70元,不合格产品修复合格后利润为50元,不合格产品修复后不合格的利润为元,则X可取70,50,,故,,,故X的分布列为:X 70 50P故元【解析】若此批零件检测未通过,恰好检测5次,则第五次检验不合格,前四次有一次检验不合格,再结合二项分布的概率公式,即可求解.由题意可得,合格产品利润为70元,不合格产品修复合格后利润为50元,不合格产品修复后不合格的利润为元,则X可取70,50,,分别求出对应的概率,即可得X的分布列,并结合期望公式,即可求解.本题主要考查了离散型随机变量及其分布列,需要学生熟练掌握期望公式,属于中档题.21.【答案】解:由题意可知,,解得,所以椭圆C的方程为;设,,联立,消去y,整理得所以,,,所以,,所以线段EF的中垂线,令,解得,因此,,所以,,因为为直角三角形,且,所以,所以,所以,即,所以直线l的方程为或【解析】根据椭圆的性质,列方程求出a和b的值,即可得到椭圆的方程;将直线l的方程,代入椭圆方程,求得EF的中点坐标,然后气促M点坐标,求得和,再根据,求出k的值即可.本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,中点坐标公式,向量的坐标运算,考查转化思想,计算能力,属于中档题.22.【答案】解:函数的定义域为当时,,,令,解得或舍,当时,,单调递减,当时,,单调递减,所以当时,有极小值,所以的极小值为,无极大值.,当时,,在上单调递增;当时,令,解得或,且,所以在,上单调递增,在上单调递减;当时,令,解得或,且,所以在上单调递减,在上单调递增,综上,当时,在上单调递增;当时,在,上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.证明:由知,若有两个极值点,则,且,,所以,,,,所以等价于,因为,所以,所以,因为,所以要证,只需证,令,则,所以在上单调递增,又,所以当时,,即,因为,所以,所以,所以【解析】对求导,由导数与单调性的关系求出单调性,从而可求得函数的极值;对求导,再对a分类讨论,利用导数与单调性的关系求解即可;先根据极值点化简所证不等式为,令,利用导数证得即可.本题主要考查利用导数研究函数的单调性、极值与最值,考查分类讨论思想与转化思想的应用,考查运算求解能力与逻辑推理能力,属于难题.。
2016年山东省泰安市高考数学一模试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4},则(∁U A )∪B=( )A .{4}B .{2,3,4}C .{3,4,5}D .{2,3,4,5}2.已知为实数,则实数t 的值为( )A .1B .﹣1C .D .3.如图是一个程序框图,则输出S 的值是( )A .84B .35C .26D .104.下列说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为:“若x 2=1,则x ≠1”B .已知y=f (x )是R 上的可导函数,则“f ′(x 0)=0”是“x 0是函数y=f (x )的极值点”的必要不充分条件C .命题“存在x ∈R ,使得x 2+x+1<0”的否定是:“对任意x ∈R ,均有x 2+x+1<0”D .命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题5.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的( )A .B .C .D .6.已知点及抛物线x 2=﹣4y 上一动点P (x ,y ),则|y|+|PQ|的最小值是( ) A . B .1 C .2 D .37.已知A (2,1),O (0,0),点M (x ,y )满足,则的最大值为( )A .﹣5B .﹣1C .0D .18.已知下列三个命题:①若两组数据的平均数相等,则它们的标准差也相等;②在区间[﹣1,5]上随机选取一个数x ,则x ≥3的概率为;③直线x+y+1=0与圆相切;其中真命题的个数是( )A .0B .1C .2D .39.已知函数的图象向右平移个单位后与原图象重合,则ω的最小值是( )A .3B .C .D . 10.奇函数f (x )的定义域为R ,若f (x+1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .﹣1D .﹣2二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置.11.已知,则cos (30°﹣2α)的值为______.12.随机抽取100名年龄在[10,20),[20,30)…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于30岁的人中按年龄段分层抽样的方法随机抽取22人,则在[50,60)年龄段抽取的人数为______.13.已知{a n }为等比数列,下列结论①a 3+a 5≥2a 4; ②;③若a 3=a 5,则a 1=a 2;④若a 5>a 3,则a 7>a 5.其中正确结论的序号是______.14.在平行四边形ABCD 中,为CD 的中点,若.则AD 的长为______.15.若函数f (x )=﹣2x 3+2tx 2+1存在唯一的零点,则实数t 的取值范围为______.三、解答题:本大题共6个小题,满分75分,解答应写出文字说明、证明过程或演算步骤.16.已知函数f (x )=sinxcos (x+)+1.(1)求函数f (x )的单调递减区间;(2)在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边f (C )=,b=4, •=12,求c .17.有两个袋子,其中甲袋中装有编号分别为1、2、3、4的4个完全相同的球,乙袋中装有编号分别为2、4、6的3个完全相同的球.(Ⅰ)从甲、乙袋子中各取一个球,求两球编号之和小于8的概率;(Ⅱ)从甲袋中取2个球,从乙袋中取一个球,求所取出的3个球中含有编号为2的球的概率.18.已知等比数列{a n }的公比q >1,a 1=1,且a 1,a 3,a 2+14成等差数列,数列{b n }满足:a 1b 1+a 2b 2+…+a n b n =(n ﹣1)•3n +1,n ∈N .(I )求数列{a n }和{b n }的通项公式;(Ⅱ)若ma n ≥b n ﹣8恒成立,求实数m 的最小值.19.如图,在三棱锥P ﹣ABC 中,AB ⊥平面PAC ,∠APC=90°,E 是AB 的中点,M 是CE 的中点,N 点在PB 上,且4PN=PB .(Ⅰ)证明:平面PCE ⊥平面PAB ;(Ⅱ)证明:MN ∥平面PAC .20.如图:A ,B ,C 是椭圆的顶点,点F (c ,0)为椭圆的右焦点,离心率为,且椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)若P 是椭圆上除顶点外的任意一点,直线CP 交x 轴于点E ,直线BC 与AP 相交于点D ,连结DE .设直线AP 的斜率为k ,直线DE 的斜率为k 1,证明:.21.已知函数f(x)=lnx(Ⅰ)求函数的最大值.(Ⅱ)证明:;(Ⅲ)若不等式mf(x)≥a+x对所有的都成立,求实数a的取值范围.2016年山东省泰安市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4},则(∁UA)∪B=()A.{4} B.{2,3,4} C.{3,4,5} D.{2,3,4,5}【考点】交、并、补集的混合运算.【分析】根据全集U求出A的补集,找出A补集与B的并集即可.【解答】解:∵全集U={1,2,3,4,5},集合A={1,2,3},∴∁UA={4,5},∵B={3,4},则(∁UA)∪B={3,4,5}.故选:C.2.已知为实数,则实数t的值为()A.1 B.﹣1 C.D.【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,由虚部为0求得t值.【解答】解:∵z1=2t+i,z2=1﹣2i,∴=,又为实数,∴4t+1=0,即t=﹣.故选:D.3.如图是一个程序框图,则输出S的值是()A.84 B.35 C.26 D.10【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=1时,不满足退出循环的条件,执行循环后,S=1,k=3;当k=3时,不满足退出循环的条件,执行循环后,S=10,k=5;当k=5时,不满足退出循环的条件,执行循环后,S=35,k=7;当k=7时,满足退出循环的条件,故输出的S 值为35,故选:B .4.下列说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为:“若x 2=1,则x ≠1”B .已知y=f (x )是R 上的可导函数,则“f ′(x 0)=0”是“x 0是函数y=f (x )的极值点”的必要不充分条件C .命题“存在x ∈R ,使得x 2+x+1<0”的否定是:“对任意x ∈R ,均有x 2+x+1<0”D .命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题【考点】命题的真假判断与应用.【分析】利用命题的定义判断A 的正误;函数的极值的充要条件判断B 的正误;命题的否定判断C 的正误;四种命题的逆否关系判断D 的正误;【解答】解:对于A ,命题“若x 2=1,则x=1”的否命题为:“若x 2=1,则x ≠1”,不满足否命题的定义,所以A 不正确;对于B ,已知y=f (x )是R 上的可导函数,则“f ′(x 0)=0”函数不一定有极值,“x 0是函数y=f (x )的极值点”一定有导函数为0,所以已知y=f (x )是R 上的可导函数,则“f ′(x 0)=0”是“x 0是函数y=f (x )的极值点”的必要不充分条件,正确;对于C ,命题“存在x ∈R ,使得x 2+x+1<0”的否定是:“对任意x ∈R ,均有x 2+x+1<0”,不满足命题的否定形式,所以不正确;对于D ,命题“角α的终边在第一象限角,则α是锐角”是错误命题,则逆否命题为假命题,所以D 不正确;故选:B .5.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的( )A .B .C .D .【考点】由三视图求面积、体积.【分析】剩余几何体为四棱锥,分别计算出三棱柱和剩余几何体的体积.【解答】解:由俯视图可知三棱柱的底面积为=2,∴原直三棱柱的体积为2×4=8.由剩余几何体的直观图可知剩余几何体为四棱锥,四棱锥的底面为侧视图梯形的面积=6,由俯视图可知四棱锥的高为2,∴四棱锥的体积为=4.∴该几何体体积与原三棱柱的体积比为.故选C.6.已知点及抛物线x2=﹣4y上一动点P(x,y),则|y|+|PQ|的最小值是()A.B.1 C.2 D.3【考点】抛物线的简单性质;抛物线的标准方程;直线与圆锥曲线的关系.【分析】抛物线的准线是y=1,焦点F(0,﹣1).设P到准线的距离为d,利用抛物线的定义得出:y+|PQ|=d﹣1+|PQ|=|PF|+|PQ|﹣1≥|FQ|﹣1,利用当且仅当F、Q、P共线时取最小值,从而得出故y+|PQ|的最小值.【解答】解:抛物线x2=4y的准线是y=1,焦点F(0,﹣1).设P到准线的距离为d,则y+|PQ|=d﹣1+|PQ|=|PF|+|PQ|﹣1≥|FQ|﹣1=3﹣1=2(当且仅当F、Q、P共线时取等号)故y+|PQ|的最小值是2.故选:C.7.已知A(2,1),O(0,0),点M(x,y)满足,则的最大值为()A.﹣5 B.﹣1 C.0 D.1【考点】简单线性规划.【分析】先画出平面区域D,进行数量积的运算即得z=2x+y﹣5,所以y=﹣2x+5+z,所以根据线性规划的方法求出z的最大值即可.【解答】解:表示的平面区域D,如图中阴影部分所示,A(2,1),O(0,0),点M(x,y)的=(2,1)•(x﹣2,y﹣1)=2x+y﹣5;∴y=﹣2x+5+z;∴5+z表示直线y=﹣2x+5+z在y轴上的截距,所以截距最大时z最大;(2,2)时,截距最大,此时z最大;如图所示,当该直线经过点A1(2,2)代入直线y=﹣2x+5+z即得z=1.所以点A1故选:D.8.已知下列三个命题:①若两组数据的平均数相等,则它们的标准差也相等;②在区间[﹣1,5]上随机选取一个数x,则x≥3的概率为;③直线x+y+1=0与圆相切;其中真命题的个数是()A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】根据标准差的含义,可判断①;根据几何概型概率计算公式,可判断②;根据直线与圆的位置关系,可判断③【解答】解:①若两组数据的平均数相等,不表示离散程度相等,则它们的标准差可能不相等,故为假命题;②在区间[﹣1,5]上随机选取一个数x,则x≥3的概率为=≠,故为假命题;③(0,0)点到直线x+y+1=0的距离d=,故直线x+y+1=0与圆相切,故为真命题;故选:B.9.已知函数的图象向右平移个单位后与原图象重合,则ω的最小值是()A.3 B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】函数的图象向右平移个单位后与原图象重合可判断出是周期的整数倍,由此求出ω的表达式,判断出它的最小值【解答】解:∵函数的图象向右平移个单位后与原图象重合,∴=n×,n∈z,∴ω=3n,n∈z,又ω>0,故其最小值是3.故选:A.10.奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=2,则f(4)+f(5)的值为()A.2 B.1 C.﹣1 D.﹣2【考点】抽象函数及其应用;奇偶性与单调性的综合.【分析】根据函数的奇偶性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:∵f(x+1)为偶函数,f(x)是奇函数,∴设g(x)=f(x+1),则g(﹣x)=g(x),即f(﹣x+1)=f(x+1),∵f(x)是奇函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),即f(x+2)=﹣f(x),f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),则f(4)=f(0)=0,f(5)=f(1)=2,∴f(4)+f(4)=0+2=2,故选:A.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置. 11.已知,则cos(30°﹣2α)的值为.【考点】二倍角的余弦;两角和与差的余弦函数.【分析】利用诱导公式求得sin(15°﹣α)=,再利用二倍角的余弦公式可得cos(30°﹣2α)=1﹣2sin2(15°﹣α),运算求得结果.【解答】解:∵已知,∴sin(15°﹣α)=,则cos(30°﹣2α)=1﹣2sin2(15°﹣α)=,故答案为.12.随机抽取100名年龄在[10,20),[20,30)…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于30岁的人中按年龄段分层抽样的方法随机抽取22人,则在[50,60)年龄段抽取的人数为 2 .【考点】频率分布直方图.【分析】根据频率分布直方图,求出样本中不小于30岁人的频率与频数,再求用分层抽样方法抽取的人数【解答】解:根据频率分布直方图,得;样本中不小于30岁的人的频率是1﹣0.020×10+0.025×10=0.55,∴不小于30岁的人的频数是100×0.55=55;从不小于30岁的人中按年龄段分层抽样的方法随机抽取22人,在[50,60)年龄段抽取的人数为22×=22×=2.故答案为:2.13.已知{a n }为等比数列,下列结论①a 3+a 5≥2a 4; ②;③若a 3=a 5,则a 1=a 2;④若a 5>a 3,则a 7>a 5. 其中正确结论的序号是 ②④ .【考点】命题的真假判断与应用.【分析】根据等比数列的性质结合不等式的关系进行判断即可.【解答】解:①a n =(﹣1)n ,则a 3+a 5≥2a 4不成立,故①错误,②∵a 32+a 52≥2|a 3a 5|=2a 42;故;故②正确,③若a n =(﹣1)n ,则a 3=a 5=﹣1,但a 1=﹣1,a 2=1,a 1=a 2;不成立,故③错误,④若a 5>a 3,则q 2a 3>a 3,∵q 2>0,∴q 2a 5>q 2a 3,即a 7>a 5成立,故④正确,故正确的是②④,故答案为:②④.14.在平行四边形ABCD 中,为CD 的中点,若.则AD 的长为 1 .【考点】平面向量数量积的运算.【分析】用表示出,代入数量积公式解出AD .【解答】解:, ==﹣+.∴=()•(﹣)=﹣++=1.∵=, =AD2,.∴AD2+﹣=1,解得AD=1.故答案为:1.15.若函数f(x)=﹣2x3+2tx2+1存在唯一的零点,则实数t的取值范围为t>﹣.【考点】函数零点的判定定理.【分析】求解导数f′(x)=﹣6x2+4tx,分类讨论得出极值点,根据单调性判断极值的大小,即可得出零点的个数.【解答】解:∵函数f(x)=﹣2x3+2tx2+1,∴f′(x)=﹣6x2+4tx=0,∴x=0,x=(1)当t=0时,f(x=﹣2x3+1单调递减,f(0)=1>0,f(2)=﹣15<0∴存在唯一的零点,是正数.(2)当t>0时,f′(x)=﹣6x2+4tx>0,即0f′(x)=﹣6x2+4tx<00,即x<0,x∴f(x)在(﹣∞,0),(,+∞)单调递减在(0,)单调递增∴极大值f()>f(1),极小值f(0)=1>0,∴存在唯一的零点,(3)当t<0时,f′(x)=﹣6x2+4tx>0,即<x<0f′(x)=﹣6x2+4tx<00,即x<,x>0∴f(x)在(﹣∞,),(0,+∞)单调递减在(,0)单调递增∴极小值f()<f(1),极大值f(0)=1>0,∵只需极小值f()>0即可,+1>0,且t<0∴﹣<t<0,综上:﹣<t<0,或t≥0故答案为:t>﹣.三、解答题:本大题共6个小题,满分75分,解答应写出文字说明、证明过程或演算步骤. 16.已知函数f(x)=sinxcos(x+)+1.(1)求函数f(x)的单调递减区间;(2)在△ABC中,a,b,c分别是角A、B、C的对边f(C)=,b=4,•=12,求c.【考点】解三角形;两角和与差的余弦函数.【分析】(1)使用和角公式展开再利用二倍角公式与和角的正弦公式化简f(x),利用正弦函数的单调性列出不等式解出;(2)根据f(C)=求出C,根据,•=12解出a,使用余弦定理解出c.【解答】解:(1)f(x)=sinx(cosx﹣sinx)+1=sin2x﹣+1=sin(2x+)+.令≤2x+≤,解得≤x≤.∴函数f(x)的单调递减区间是[,],k∈Z.(2)∵f(C)=sin(2C+)+=,∴sin(2C+)=1,∴C=.∵•=abcosA=2a=12,∴a=2.由余弦定理得c2=a2+b2﹣2abcosC=12+16﹣24=4.∴c=2.17.有两个袋子,其中甲袋中装有编号分别为1、2、3、4的4个完全相同的球,乙袋中装有编号分别为2、4、6的3个完全相同的球.(Ⅰ)从甲、乙袋子中各取一个球,求两球编号之和小于8的概率;(Ⅱ)从甲袋中取2个球,从乙袋中取一个球,求所取出的3个球中含有编号为2的球的概率.【考点】古典概型及其概率计算公式.【分析】(Ⅰ)利用列举法能求出两球编号之和小于8的概率.(Ⅱ)从甲袋中任取2球,从乙袋中任取一球,先求出所有基本事件个数,再求出含有编号2的基本事件个数,由此能求出所取出的3个球中含有编号为2的球的概率.【解答】解:(Ⅰ)将甲袋中编号分别为1,2,3,4的4个分别记为A1,A2,A3,A4,将乙袋中编号分别为2,4,6的三个球分别记为B 2,B 4,B 6, 从甲、乙两袋中各取一个小球的基本事件为: (A 1,B 2),(A 1,B 4),(A 1,B 6),(A 2,B 2),(A 2,B 4),(A 2,B 6), (A 3,B 2),(A 3,B 4),(A 3,B 6),(A 4,B 2),(A 4,B 4),(A 4,B 6), 共12种,其中两球面镜编号之和小于8的共有8种,所以两球编号之和小于8的概率为:=.(Ⅱ)从甲袋中任取2球,从乙袋中任取一球,所有基本事件个数n==18,其中不含有编号2的基本事件有,∴含有编号2的基本事件个数m=18﹣6=12,∴所取出的3个球中含有编号为2的球的概率p=.18.已知等比数列{a n }的公比q >1,a 1=1,且a 1,a 3,a 2+14成等差数列,数列{b n }满足:a 1b 1+a 2b 2+…+a n b n =(n ﹣1)•3n +1,n ∈N . (I )求数列{a n }和{b n }的通项公式;(Ⅱ)若ma n ≥b n ﹣8恒成立,求实数m 的最小值. 【考点】数列的求和;等比数列的通项公式. 【分析】(I )数列{a n }是首项为1,公比为q 的等比数列,运用等比数列的通项公式和等差数列的中项性质,解方程可得a n =3n ﹣1,再将n 换为n ﹣1,两式相减可得b n =2n ﹣1; (2)若ma n ≥b n ﹣8恒成立,即为m ≥的最大值,由c n =,作差,判断单调性,即可得到最大值,进而得到m 的最小值. 【解答】解:(I )∵数列{a n }是首项为1,公比为q 的等比数列, ∴a n =q n ﹣1,由a 1,a 3,a 2+14成等差数列,可得2a 3=a 1+a 2+14, 即为2q 2=1+q+14,解得q=3(负的舍去), 即有a n =3n ﹣1,∴a 1b 1+a 2b 2+a 3b 3+…+a n b n =b 1+3b 2+32b 3+…+3n ﹣1b n =(n ﹣1)•3n +1, ∴b 1+3b 2+32b 3+…+3n ﹣2b n ﹣1=(n ﹣1﹣1)•3n ﹣1+1(n ≥2), 两式相减得:3n ﹣1b n =(n ﹣1)•3n ﹣(n ﹣2)•3n ﹣1=(2n ﹣1)•3n ﹣1, ∴b n =2n ﹣1,当n=1时,a 1b 1=1, 即b 1=1满足上式,∴数列{b n }的通项公式是b n =2n ﹣1; (2)若ma n ≥b n ﹣8恒成立,即为m ≥的最大值,由c n =,n ≥2时,c n ﹣1=,c n ﹣cn﹣1=﹣=,可得n=2,3,…,6时,cn ≥cn﹣1;n=7,…时,cn<cn﹣1.即有n=5或6时,cn取得最大值,且为,即为m≥,可得m的最小值为.19.如图,在三棱锥P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中点,M是CE的中点,N点在PB上,且4PN=PB.(Ⅰ)证明:平面PCE⊥平面PAB;(Ⅱ)证明:MN∥平面PAC.【考点】平面与平面垂直的判定;直线与平面平行的判定;直线与平面垂直的性质.【分析】(I)由AB⊥平面PAC可得AB⊥PC,再结合AP⊥PC得出PC⊥平面PAB,故而平面PCE⊥平面PAB;(II)取AE中点Q,连结NQ,MQ,则可证明平面MNQ∥平面PAC,故而MN∥平面PAC.【解答】证明:(I)∵AB⊥平面PAC,PC⊂平面PAC,∴AB⊥PC,∵∠APC=90°,∴AP⊥PC,又∵AP⊂平面PAB,AB⊂平面PAB,AP∩AB=A,∴PC⊥平面PAB,∵PC⊂平面PCE,∴平面PCE⊥平面PAB.(II)取AE中点Q,连结NQ,MQ,∵M是CE中点,∴MQ∥AC,∵PB=4PN,AB=4AQ,∴QN∥AP,又∵AP∩PC=P,AP⊂平面APC,PC⊂平面APC,QN∩QM=Q,QN⊂平面MNQ,QM⊂平面MNQ,∴平面MNQ∥平面PAC,∵MN⊂平面MNQ,∴MN∥平面PAC.20.如图:A,B,C是椭圆的顶点,点F(c,0)为椭圆的右焦点,离心率为,且椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为k1,证明:.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.【分析】(I)由题意得=, +=1,a2=b2+c2.联立解得即可得出椭圆方程.(Ⅱ)由截距式可得直线BC的方程为:y=x+2.直线AP的方程为:y=k(x﹣4),与椭圆方程联立可得:(4k2+1)x2﹣32k2x+64k2﹣16=0,又点P在椭圆上,利用根与系数的关系可得P.利用斜率计算公式可得kCP,可得直线CP的方程,可得E.把直线BC与AP的方程联立可得D.可得直线DE的斜率,化简整理即可证明.【解答】解:(I)由题意得=, +=1,a2=b2+c2.联立解得a2=16,b2=4,∴椭圆C: +=1.证明:(Ⅱ)A(4,0),B(﹣4,0),C(0,2),直线BC的方程为: =1,化为:y=x+2.直线AP的方程为:y=k(x﹣4),与椭圆方程联立可得:(4k2+1)x2﹣32k2x+64k2﹣16=0,又点P在椭圆上,∴4xP =,解得xP=,∴yP =k(xP﹣4)=,故P.kCP==,故直线CP的方程为:y=x+2,令y=0,解得x=,可得E.把直线BC与AP的方程联立可得:,解得,∴D.直线DE的斜率为k1===,∴.21.已知函数f(x)=lnx(Ⅰ)求函数的最大值.(Ⅱ)证明:;(Ⅲ)若不等式mf(x)≥a+x对所有的都成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值即可;(Ⅱ)令h(x)=x﹣f(x),求出h(x)的导数,得到函数的单调区间,求出h(x)的最小值,结合F(x)的最大值,从而证出结论即可;(Ⅲ)利用参数分离法,转化为以m为变量的函数关系进行求解即可.【解答】解:(Ⅰ)F(x)=+=+,F′(x)=,令F′(x)>0,解得:x<e,令F′(x)<0,解得:x>e,∴F(x)在(0,e)递增,在(e,+∞)递减,=+;故F(x)max证明:(Ⅱ)令h(x)=x﹣f(x),则h′(x)=,从而h(x)在(0,1)递减,在(1,+∞)递增,∴h(x)的最小值是h(1)=1,又F(x)的最大值是+<1,∴F(x)<h(x),即+<x﹣f(x);解:(Ⅲ)不等式mf(x)≥a+x对所有的m∈[0,],x∈[1,e2]都成立,则a≤mlnx﹣x对所有的m∈[0,],x∈[1,e2]都成立,令H(x)=mlnx﹣x,m∈[0,],x∈[1,e2]是关于m的一次函数,∵x∈[1,e2],∴lnx∈[0,2],∴当m=0时,H(m)取得最小值﹣x,即a≤﹣x,当x∈[1,e2]时,恒成立,故a≤﹣e2.2016年9月19日。
山东省肥城2020届高三新高考数学模拟试题一、单选题1.已知集合A ={x |﹣1<x <1},B ={x |0<x <2},则A ∪B =( ) A. (﹣1,2) B. (﹣1,0)C. (0,1)D. (1,2)【答案】A 【解析】 【分析】根据并集的概念直接计算即可得解.【详解】由题意得{}()121,2A B x x ⋃=-<<=-. 故选:A.【点睛】本题考查了集合并集的运算,属于基础题.2.若集合{}{}1234|05P Q x x x R ==<<∈,,,,,,则“x P ∈”是“x Q ∈”的( ) A. 充分非必要条件 B. 必要非充分条件C. 充分必要条件D. 既不充分也非不必要条件【答案】A 【解析】 【分析】根据题意,对充分性和必要性进行讨论,即可判断和选择. 【详解】由题可知,若x P ∈,则一定有x Q ∈,故充分性满足; 但是若x Q ∈,则不一定有x Q ∈,故必要性不满足. 故“x P ∈”是“x Q ∈”的充分不必要条件. 故选:A .【点睛】本题考查充分条件和必要条件的判断,属基础题.3.已知(),4,2a x =-r ,()3,,5b y =-r ,若a b ⊥r r ,则22x y+取值范围为( )A. [)2,+∞B. [)3,+∞C. [)4,+∞ D. [)5,+∞【答案】C 【解析】 【分析】根据向量的坐标与垂直关系,可得,x y 的等量关系.由22xy +可知其意义为(),x y 到原点距离平方,即可由点到直线距离公式求解.【详解】(),4,2a x =-r,()3,,5b y =-r ,且a b ⊥r r由向量数量积的运算可得34100a b x y ⋅=--=rr22x y +的意义为(),x y 到原点距离平方由点到直线距离公式可知原点到直线34100x y --=的距离为()2210234d -==+-因为点到直线的距离为最短距离,所以22x y +的最小值为4即22xy +的取值范围为[)4,+∞故选:C【点睛】本题考查了空间向量垂直的坐标关系,向量数量积的运算.点到直线距离公式的应用,两点间距离公式的理解,属于基础题.4.若a ,b ,c 满足23a =,2log 5b =,32c =.则( ) A. c a b << B. b c a <<C. a b c <<D. c b a <<【答案】A 【解析】 【分析】利用指数函数和对数函数的单调性即可比较大小. 【详解】Q 23a =,12232<<,∴12a <<,Q 22log 5log 4b =>,∴2b >, Q 32c =,01323<<,∴01c <<,∴c a b <<,故选:A.【点睛】本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题. 5.对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--在同一坐标系内的图象可能是( )A. B. C. D.【答案】A 【解析】 【分析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案. 【详解】由题意,若01a <<,则log ay x =在(0,)+∞上单调递减,又由函数2(1)y a x x =--开口向下,其图象的对称轴12(1)x a =-在y 轴左侧,排除C , D.若1a >,则log ay x =在(0,)+∞上是增函数,函数2(1)y a x x =--图象开口向上,且对称轴12(1)x a =-在y 轴右侧,因此B 项不正确,只有选项A 满足.【点睛】本题主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 6.函数2log y x x =-的图象大致是( )A.B.C. D.【答案】A 【解析】 【分析】结合图象只需研究函数零点个数,即可判断选择. 【详解】当4x =时2log 0y x x ==,所以舍去D; 当16x =时2log 0y x x ==,所以舍去BC ; 故选:A【点睛】本题考查利用函数零点判断函数图象,考查基本分析判断能力,属基础题.7.已知函数31(0)()2(0)x a x f x x x -⎧+≤=⎨+>⎩,若((1))18f f -=,那么实数a 的值是( )A. 4B. 1C. 2D. 3【答案】C 【解析】 【分析】先求出(1)4f -=,((1))18f f -=变成(4)18f =,可得到4218a +=,解方程即可得解. 【详解】(1)4f -=,((1))18f f -=变成(4)18f =,即4218a +=,解之得:2a =. 故选:C.【点睛】本题考查已知函数值求参数的问题,考查分段函数的知识,考查计算能力,属于常考题. 8.2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着312++的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A. 样本中的女生数量多于男生数量B. 样本中有学物理意愿的学生数量多于有学历史意愿的学生数量C. 样本中的男生偏爱物理D. 样本中的女生偏爱历史 【答案】D【解析】 【分析】根据这两幅图中的信息,即可得出结论.【详解】由图1知,样本中的女生数量对于男生数量,样本中有学物理意愿的学生数量多于有学历史意愿的学生数量,样本中的男生偏爱物理,女生也偏爱物理. 故选:D.【点睛】本题考查等高堆积条形图,考查学生对图形的认识,属于基础题.二、多选题9.设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A. 是偶函数B. 在0,2π⎛⎫⎪⎝⎭单调递减 C. 最大值为2 D. 其图像关于直线2x π=对称【答案】ABD 【解析】 【分析】利用辅助角公式、诱导公式化简函数()f x 的解析式,然后根据余弦函数的性质对四个选项逐一判断即可.【详解】()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.选项A :()2))()f x x x f x -=-==,它是偶函数,本说法正确;选项B :0,2x π⎛⎫∈ ⎪⎝⎭,所以()20,x π∈,因此()f x 是单调递减,本说法正确;选项C :()2f x x =,本说法不正确;选项D :当2x π=时,()22f x π=⨯=因此当2x π=时,函数有最小值,因此函数图象关于2x π=对称,本说法正确. 故选:ABD【点睛】本题考查了辅助角公式、诱导公式、考查了余弦型函数的性质,属于基础题. 10.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:则下列判断中正确的是()A. 该公司2018年度冰箱类电器销售亏损B. 该公司2018年度小家电类电器营业收入和净利润相同C. 该公司2018年度净利润主要由空调类电器销售提供D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低 【答案】ACD 【解析】 【分析】根据题意,分析表中数据,即可得出正确的选项.【详解】根据表中数据知,该公司2018年度冰箱类电器销售净利润所占比为﹣0.48,是亏损的,A 正确; 小家电类电器营业收入所占比和净利润所占比是相同的,但收入与净利润不一定相同,B 错误; 该公司2018年度净利润空调类电器销售所占比为95.80%,是主要利润来源,C 正确;所以剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低,D 正确. 故选ACD .【点睛】本题考查了数据分析与统计知识的应用问题,考查了读表与分析能力,是基础题.11.在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 上的点,当//BD 平面EFGH 时,下面结论正确的是( )A. ,,,E F G H 一定是各边的中点B. ,G H 一定是,CD DA 的中点C. ::AE EB AH HD =,且::BF FC DG GC =D. 四边形EFGH 是平行四边形或梯形 【答案】CD 【解析】 【分析】根据线面平行的性质定理即可得解.【详解】解:由//BD 平面EFGH ,所以由线面平行的性质定理,得//BD EH ,//BD FG ,则::AE EB AH HD =,且::BF FC DG GC =,且//EH FG ,四边形EFGH 是平行四边形或梯形.故选:CD .【点睛】本题考查线面平行的性质定理的应用,属于基础题.12.如图,正方体1111ABCD A B C D -的棱长为1,则下列四个命题正确的是( )A. 直线BC 与平面11ABC D 所成的角等于4π B. 点C 到面11ABC D 2C. 两条异面直线1D C 和1BC 所成的角为4π D. 三棱柱1111AA D BB C -3【答案】ABD 【解析】 【分析】根据线面角的定义及求法,点面距的定义,异面直线所成角的定义及求法,三棱柱的外接球的半径求法,即可判断各选项的真假.【详解】正方体1111ABCD A B C D -的棱长为1, 对于A ,直线BC 与平面11ABC D 所成的角为14CBC π∠=,故选项A 正确;对于B ,因为1B C ⊥面11ABC D ,点C 到面11ABC D 的距离为1B C 长度的一半,即22h =,故选项B 正确;对于C ,因为11//BC AD ,所以异面直线1D C 和1BC 所成的角为1AD C ∠,而1AD C V 为等边三角形,故两条异面直线1D C 和1BC 所成的角为3π,故选项C 错误; 对于D ,因为11111,,A A A B A D 两两垂直,所以三棱柱1111AA D BB C -外接球也是正方体1111ABCD A B C D -的外接球,故22r ==,故选项D 正确. 故选:ABD .【点睛】本题主要考查线面角的定义以及求法,点面距的定义以及求法,异面直线所成角的定义以及求法,三棱柱的外接球的半径求法的应用,属于基础题.三、填空题13.(1arcsin arccos arctan 22⎛⎫⎛⎫-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭______. 【答案】3π【解析】 【分析】利用反三角函数的定义和性质,求得要求式子的值.【详解】(1arcsin arccos arctan 2⎛⎛⎫-++ ⎪ ⎝⎭⎝⎭1arcsin arccos arctan 2π⎛⎫=-+-- ⎪⎝⎭⎝⎭663ππππ⎛⎫=-+-- ⎪⎝⎭ 3π=.故答案为:3π. 【点睛】本题主要考查反三角函数的定义和性质,考查学生的计算能力,属于基础题.14.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 方程是________________. 【答案】6x -8y +1=0 【解析】 【分析】根据平移得到l 1:y =k (x -3)+5+b 和直线:y =kx +3-4k +b ,解得k =34,再根据对称解得b =18,计算得到答案.【详解】由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,则直线l 1:y =k (x -3)+5+b ,平移后的直线方程为y =k (x -3-1)+b +5-2 即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34, ∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b取直线l 上的一点3,4P m m b ⎛⎫+ ⎪⎝⎭ ,则点P 关于点(2,3)的对称点为34,64m b m ⎛⎫--- ⎪⎝⎭ , ()331164444b m m b --=-++ ,解得b =18.∴直线l 的方程是3148y x =+ ,即6x -8y +1=0.故答案为:6x -8y +1=0【点睛】本题考查了直线的平移和对称,意在考查学生对于直线知识的综合应用.15.在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱111ABC A B C -是一个“堑堵”,其中12AB BC BB ===,点M 是11A C 的中点,则四棱锥11M B C CB -的外接球的表面积为__________. 【答案】8π 【解析】 【分析】先根据对称性确定四棱锥11M B C CB -的外接球球心位置,再求球半径,最后代入球表面积公式即可. 【详解】由题意得四边形11B C CB 为正方形,设其中心为O ,取11B C 中点N,则111,1ON MN ON MN OM OB OC OB OC ⊥==∴=====Q ,即O 为四棱锥11M B C CB -的外接,球表面积为24π8π=.【点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 16.定义在R 上的偶函数f (x )满足f (e +x )=f (e ﹣x ),且f (0)=0,当x ∈(0,e ]时,f (x )=lnx 已知方程122f x sin x e π=()在区间[﹣e ,3e ]上所有的实数根之和为3ea ,将函数2314g x sin x π=+()的图象向右平移a 个单位长度,得到函数h (x )的图象,,则h (7)=_____. 【答案】33104+ 【解析】 【分析】根据题意可知函数f (x )是一个周期为2e 的偶函数,即可作出函数f (x )在[﹣e ,3e ]上的图象,由方程的根与两函数图象交点的横坐标的关系可求得a 的值,再利用二倍角公式化简函数()g x ,然后根据平移法则即可求得()h x ,从而求得()7h .【详解】因为f (e +x )=f (e ﹣x ),所以f (x )关于x =e 对称,又因为偶函数f (x ), 所以f (x )的周期为2e .当x ∈(0,e ]时,f (x )=lnx ,于是可作出函数f (x )在[﹣e ,3e ]上的图象如图所示, 方程1()22f x sin x eπ=的实数根是函数y =f (x )与函数122y sin x e π=的交点的横坐标,由图象的对称性可知,两个函数在[﹣e ,3e ]上有4个交点,且4个交点的横坐标之和为4e ,所以4e =3ea ,故a 43=, 因为235()314222g x sin x cos x ππ=+=-+, 所以345325()()()22322232h x cos x cos x πππ=--+=--+, 故3253310(7)232h sin π+=+=. 故答案为:33104+.【点睛】本题主要考查函数的性质应用,图象的应用,方程的根与两函数图象交点的横坐标的关系的应用,二倍角公式的应用,以及平移法则的应用,意在考查学生的转化能力和数形结合能力,属于中档题.四、解答题17.记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.【答案】(1)*(2)10n a n n ∈=-N (2)当4n =或5n =时,n S 有最大值为20.【解析】 【分析】(1)将已知条件转化为1,a d 的形式列方程,由此解得1,a d ,进而求得{}n a 的通项公式.(2)根据等差数列前n 项和公式求得n S ,利用配方法,结合二次函数的性质求得n S 的最大值及对应n 的大小.【详解】(1)设{}n a 的公差为d ,且0d ≠.由2219a a =,得140a d +=,由618S =,得1532a d +=, 于是18a =,2d =-.所以{}n a 的通项公式为*(2)10n a n n ∈=-N .(2)由(1)得(1)8(2)2n n n S n -=+⨯- 29n n =-+2981()24n =--+因为*n ∈N ,所以当4n =或5n =时,n S 有最大值为20.【点睛】本小题主要考查等差数列通项公式和前n 项和公式基本量的计算,考查等差数列前n 项和的最值的求法,属于基础题.18.已知函数4()cos f x x =-42sin cos sin x x x - (1)求()f x 的单调递增区间;(2)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值及取最小值时的x 的集合.【答案】(1)()5,88k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦;(2)最小值为,x 的集合为38π⎧⎫⎨⎬⎩⎭. 【解析】 【分析】(1)利用平方差公式、二倍角公式以及辅助角公式得出()24f x x π⎛⎫=-⎪⎝⎭,然后解不等式()3222242k x k k Z πππππ-+≤-≤-+∈,解此不等式即可得出函数()y f x =的单调递增区间; (2)由0,2x π⎡⎤∈⎢⎥⎣⎦求出24x π-的取值范围,结合正弦函数的基本性质得出函数()y f x =的最小值,并求出对应的x 的值. 【详解】(1)()()()442222cos 2sin cos sin cos sin cos sin 2sin cos f x x x x x x x x x x x=--=-+-Q22cos sin 2sin cos cos 2sin 224x x x x x x x π⎛⎫=--=-=- ⎪⎝⎭,解不等式()3222242k x k k Z πππππ-+≤-≤-+∈, 得()588k x k k Z ππππ-+≤≤-+∈, 因此,函数()y f x =的单调递增区间为()5,88k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦;(2)0,2x π⎡⎤∈⎢⎥⎣⎦Q ,32444x πππ∴-≤-≤,当242x ππ-=时,即当38x π=时,函数()y f x =取得最小值.因此,函数()y f x =的最小值为,对应的x 的集合为38π⎧⎫⎨⎬⎩⎭. 【点睛】本题考查正弦型函数单调性区间与最值的求解,一般要利用三角恒等变换思想将函数解析式进行化简,考查运算求解能力,属于中等题.19.如图所示的几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,1AA AC =,四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒.(1)求证:AB ⊥平面11ACC A ;(2)若2CD =,求四棱锥111C A B CD -的体积. 【答案】(1)证明见解析(2)8 【解析】 【分析】(1)推导出AB AC ⊥,1AB AA ⊥,由此能证明AB ⊥平面11ACC A ;(2)连结1A C ,则CD ⊥平面11CC A ,四棱锥111C A B CD -的体积:11111D CC A C A B C V V V --=+,由此能求出结果. 【详解】(1)证明:Q 四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒.90ACD BAC ∠∠∴==︒,AB AC ∴⊥,Q 几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,1AB AA ∴⊥,1AC AA A Q ⋂=,AB ∴⊥平面11ACC A .(2)连结1A C ,AB ⊥Q 平面11ACC A ,//CD AB ,CD \^平面11CC A ,∴四棱锥111C A B CD -的体积:11111D CC A C A B C V V V --=+1111111133A C C ABC CD S CC S =⨯⨯+⨯⨯V V1111223232=⨯⨯⨯⨯⨯⨯8=.【点睛】本题考查线面垂直的证明,考查四棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=()0a b >>的焦距为2,且过点1,2⎛ ⎝⎭. (1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程:若不存在,说明理由.【答案】(1)2212x y +=(2)存在,43y x =-【解析】 【分析】(1)把点的坐标代入椭圆方程,利用椭圆中,,a b c 的关系和已知,可以求出椭圆方程;(2)设直线l 的方程,与椭圆方程联立,根据一元二次方程根与系数关系,结合已知和斜率公式,可以求出直线l 的方程.【详解】解:(1)由已知可得:22222221112c a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩解得22a =,21b =,1c =, 所以椭圆C :2212x y +=.(2)由已知可得,()0,1B ,()1,0F ,∴1BF k =-,∵BF l ⊥, 设直线l 的方程为:y x m =+,代入椭圆方程整理得2234220x mx m ++-=,设()11,M x y ,()22,N x y ,则1243m x x +=-,212223m x x -⋅=,∵BN MF ⊥,∴1212111y y x x -⋅=--. 即1212120y y x x y x +--=,因为11y x m =+,22y x m =+,()()()1212120x m x m x x x m x +++-+-= 即()212122(1)0x x m x x m m +-++-=.()2222421033m m m m m --+-+-=.所以2340m m +-=,43m =-或1m =. 又1m =时,直线l 过B 点,不合要求,所以43m =-. 故存在直线l :43y x =-满足题设条件. 【点睛】本题考查了求椭圆的标准方程,考查了直线与椭圆的位置关系,考查了垂心的概念,考查了数学运算能力.21.现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表:(Ⅰ)由以上统计数据填下面2×2列联表并问是否有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;(Ⅱ)若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3人“红包”奖励,求收到“红包”奖励的3人中至少有1人收入在[15,25)的概率.参考公式:K 2()()()()2()n ad bd a b c d a c b d -=++++,其中n =a +b +c +d . 参考数据:【答案】(Ⅰ)填表见解析,没有 (Ⅱ)45【解析】 【分析】(Ⅰ)由题意填表,计算K 2,对照临界值得出结论 (Ⅱ)由分层抽样求出抽取的人数,列举法写出基本事件,计算概率即可.【详解】(Ⅰ)由题意填2×2列联表如下,由表中数据,计算K 2()25029731140103218⨯⨯-⨯=≈⨯⨯⨯ 6.27<6.635,所以没有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;(Ⅱ)用分层抽样在月收入在[15,25),[25,35)的被调查人中随机抽取6人,则月收入在[15,25)内有65510⨯=+2(人)记为A 、B ,在[25,35)有6﹣2=4(人),记为c 、d 、e 、f ; 从这6人中抽取3人,基本事件是ABc 、ABd 、ABe 、ABf 、Acd 、Ace 、Acf 、Ade 、Adf 、Aef 、Bcd 、Bce 、Bcf 、Bde 、Bdf 、Bef 、cde 、cdf 、cef 、def 共20种,这3人中至少收入在[15,25)的事件是ABc 、ABd 、ABe 、ABf 、Acd 、Ace 、Acf 、Ade 、Adf 、Aef 、Bcd 、Bce 、Bcf 、Bde 、Bdf 、Bef 共16种,故所求的概率值为P 164205==. 【点睛】本题主要考查了22⨯列联表与独立性检验问题,古典概型的概率问题,属于中档题. 22.已知函数()22()xf x eaxx a =++1x =-处取得极小值.(1)求实数a 的值;(2)若函数()f x 存在极大值与极小值,且函数()()2g x f x x m =--有两个零点,求实数m 的取值范围.(参考数据:e 2.718≈ 2.236≈) 【答案】(1)0a =或1a =(2)(1,)+∞ 【解析】 【分析】(1)根据极值的定义,求出0a =或1a =,再对a 的两种取值分别进行验证; (2)由第(1)问先确定1a =,得到()2()12xg x exx x m =+--+,利用导数研究函数()g x 的单调性,即函数()g x 在(0,)+∞上单调递增,在(,0)-∞上单调递减,再结合零点存在定理的条件,得到参数m 的取值范围.【详解】解:(1)由题意得22()(21)1x f x e ax a x a '⎡⎤=++++⎣⎦.因为函数()22()xf x eaxx a =++在1x =-处取得极小值,依题意知'(1)0f -=,解得0a =或1a =.当0a =时,'()(1)xf x e x =+,若1x <-,'()0f x <,则函数()f x 单调递减,若1x >-,'()0f x >,则函数()f x 单调递增,所以,当1x =-时,()f x 取得极小值,无极大值,符合题意.当1a =时,'()(1)(2)xf x e x x =++,若2x <-或1x >-,'()0f x >,则函数()f x 单调递增;若21x -<<-,'()0f x <,则函数()f x 单调递减,所以函数()f x 在1x =-处取得极小值,2x =-处取得极大值,符合题意, 综上,实数0a =或1a =.(2)因为函数()f x 存在极大值与极小值,所以由(1)知,1a =. 所以()2()12xg x exx x m =+--+,()(1)(2)2x g x e x x '=++-.当0x >时,'()0g x >,故函数()g x 在(0,)+∞上单调递增,当0x <时,令()(1)(2)2x h x e x x =++-,则()2()55xh x e xx '=++,所以当x <x >时,()0h x '>,()h x 单调递增,x <<时,()0h x '<,()h x 单调递减,因为(0)0h =, 3.6183356( 3.618)( 2.618)( 1.618)2e 3222e h h e --⎛-≈-=⨯-⨯--<⨯⨯-= ⎝⎭ 20-<,所以当0x <时,'0g x <(),故()g x 在(,0)-∞上单调递减. 因为函数()g x 在R 上有两个零点,所以(0)10g m =-<,所以1m >.取02m x =-<,22222224(1)312e e 0242244m m m m m m m m m m g e m ---⎛⎫-+-+⎛⎫⎛⎫-=-+-⨯--==> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;取1x m =>,()2222()e131321(1)0mg m mm m m m m m m m =++->++-=-+=->,所以,实数m 的取值范围是(1,)+∞.【点睛】本题考查利用导数研究函数的极值、单调性及零点存在定理的应用,考查逻辑推理能力和运算求解能力,求解过程中要做中脑中有图,充分利用数形结合思想分析和解决问题,同时注意分类讨论思想的运用.。
2020年山东省泰安市高考数学一模试卷1一、选择题(本大题共12小题,共60.0分)1.若集合A={x|−4<x<3},B={−5,−4,−3,−2},则A∩B=()A. {−4,−3,−2}B. {−3,−2}C. {−4,−3}D. {−5,−4}2.设i是虚数单位,如果复数z=a−i2+i,其实部与虚部互为相反数,那么实数a=()A. −3B. 3C. −13D. 133.某老师从自己所带的两个班级中各抽取6人,记录他们的考试成绩,得到如图所示的茎叶图,已知甲班6名同学成绩的平均数为82,乙班6名同学成绩的中位数为77,则x−y=()A. 3B. −3C. 4D. −44.过焦点为F的抛物线y2=12x上一点M向其准线作垂线,垂足为N,若直线NF的斜率为−√33,则|MF|=()A. 2B. 2√3C. 4D. 4√35.如图是一个算法流程图,则输出的n的值为()A. 3B. 4C. 5D. 66.设x,y满足约束条件{y−x≤0,x+2y≤4,x−2y≤2,则z=x−3y的最大值为()A. 4B. 32C. −83D. 27.一个正三棱柱的三视图如图所示,则该棱柱的表面积为()A. 24+√3B. 24+2√3C. 14√3D. 12√3 8. 在等比数列{a n }中,若a 1=2,a 4=16,则{a n }的前5项和S 5等于 ( )A. 30B. 31C. 62D. 649. 函数f(x)=Asin(ωx +φ)(其中A >0,ω>0,|φ|<π2)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象 ( )A. 向左平移π6个长度单位 B. 向右平移π3个长度单位 C. 向右平移π6个长度单位D. 向左平移π3个长度单位10. 已知函数则f(2019)=( )A. 45B. 23C. 12D. 1311. 3、已知,则等于( ) A.B.C.D.12. 若函数恰有三个极值点,则m 的取值范围是( )A. (−12,−13)B. (−12,0)C. (−1,−13)D. (−1,−12)二、填空题(本大题共4小题,共20.0分)13. 在△ABC 中,BD⃗⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =m AD ⃗⃗⃗⃗⃗⃗ +n AC ⃗⃗⃗⃗⃗ ,则mn = ______ . 14. 已知数列{a n }满足S n =2n 2+n −1,则通项a n = ______ . 15. 已知直三棱柱ABC −A 1B 1C 1的高为8,∠BAC =5π6,BC =3,则该直三棱柱的外接球的表面积为________.16. 如图,F 1,F 2分别是双曲线C :x 2a 2−y 2b2=1(a,b >0)的左、右焦点,B是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ的垂直平分线与x轴交于点M,若|MF2|=|F1F2|,则C的离心率是______.三、解答题(本大题共7小题,共82.0分)17.已知函数f(x)=sinxcosx−sin2x+1.2(Ⅰ)求f(x)的单调递增区间;(Ⅱ)在△ABC中,a,b,c为角A,B,C的对边,且满足bcos2A=bcosA−asinB,且0<A<π,2求f(B)的取值范围.18.如图,在三棱柱ABC−A1B1C1中,侧棱AA1⊥底面ABC,△ABC是等边三角形,D为AC的中点,求证:(1)平面C1BD⊥平面A1ACC1;(2)AB1//平面C1BD.19.从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分布直方图.(1)求这100份数学试卷成绩的中位数.(2)从总分在[55,65)和[135,145)的试卷中随机抽取2份试卷,求抽取的2份试卷中至少有一份总分少于65分的概率.20.已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为√22,右焦点为F(1,0).(1)求椭圆的方程;(2)设点O为坐标原点,过点F作直线l与椭圆E交于M,N两点,若OM⊥ON,求直线l的方程.21.已知函数f(x)=e x,x∈R.(Ⅰ)求函数f(x)在x=1处的切线方程;(Ⅱ)若m>0,讨论函数g(x)=f(x)x2−m零点的个数.22. 在直角坐标系xOy 中,曲线C 1的参数方程为{x =costy =sin 2t (t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线C 2的极坐标方程为ρ(sinθ−acosθ)=12(a ∈R). (1)写出曲线C 1的普通方程和直线C 2的直角坐标方程; (2)若直线C 2与曲线C 1有两个不同交点,求a 的取值范围.23. 已知函数f(x)=|x −a|−|x +3|,a ∈R .(1)当a =−1时,解不等式f(x)≤1;(2)不等式f(x)≤4在x ∈[−2,3]时恒成立,求a 的取值范围.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查了交集及其运算,是基础题.直接利用交集运算得答案.【解答】解:集合A={x|−4<x<3},B={−5,−4,−3,−2},则A∩B={−3,−2},故选B.2.答案:B解析:【分析】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.直接由复数代数形式的乘除运算化简复数a−i2+i ,又已知复数a−i2+i的实部与虚部互为相反数列等式求解即可得答案.【解答】解:a−i2+i =2a−1−(a+2)i5,又复数a−i2+i的实部与虚部互为相反数,则2a−15=a+25,解得a=3.故选B.3.答案:C解析:【分析】本题考查了平均数与中位数的概念与应用问题,是基础题目.根据茎叶图中的数据,结合平均数与中位数的概念,求出x、y的值.【解答】解:根据茎叶图中的数据,由甲班6名同学成绩的平均数可得:72+77+81+80+x+86+90=82,6解得x=6,又乙班6名同学的中位数为=77,得y=2,由70+y+822∴x−y=6−2=4.故选C.4.答案:C解析:解:抛物线y2=12x的焦点坐标(3,0),则DF=6,直线NF的斜率为−√3,可得DN=2√3,3则抛物线y2=12x可得:12=12x,解得x=1,所以M(1,2√3),|MF|=|MN|=3+1=4.故选:C.利用抛物线的方程求出焦点坐标,利用已知条件转化求解|MF|即可.本题考查抛物线的简单性质的应用,考查转化思想以及计算能力.5.答案:C解析:解:模拟程序的运行,可得n=0执行循环体,n=1满足条件21≤16,执行循环体,n=2满足条件22≤16,执行循环体,n=3满足条件23≤16,执行循环体,n=4满足条件24≤16,执行循环体,n=5不满足条件25≤16,退出循环,输出n的值为5.故选:C.由已知中的程序语句,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.答案:A解析:【分析】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域,如图,由图象可知当直线经过点A(−2,−2)时,此时z最大.此时z的最大值为z=−2+6=4,故选A.7.答案:B解析:【分析】本题考查由三视图求几何体的表面积,由三视图正确求出几何体的棱长是解题的关键,属于基础题.由三视图和题意求出三棱柱的棱长、判断出结构特征,由面积公式求出各个面的面积,加起来求出该棱柱的全面积.【解答】解:根据三视图和题意知,三棱柱的底面是正三角形:边长2,边上的高是√3,侧棱与底面垂直,侧棱长是4,×2×√3∴该棱柱的全面积S=3×2×4+2×12=24+2√3,故选B.8.答案:C解析:【分析】本题考查等比的通项公式以及前n项和公式,属于基础题.先运用等比的通项公式得到q=2,再运用求和公式计算,即可得到答案.【解答】解:设数列{a n}的公比为q,则a4a1=q3=8,解得q=2.则此数列的前5项的和S5=a1(1−q5)1−q =2×(1−25)1−2=62,故选C.9.答案:C解析:【分析】本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,y=Asin(ωx+φ)的图象变换规律,属于基础题.由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再根据y= Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:由函数f(x)=Asin(ωx+φ)的图象可得A=1,根据T4=14⋅2πω=7π12−π3,求得ω=2,再根据五点法作图可得2×π3+φ=π,求得φ=π3,∴f(x)=sin(2x+π3)=sin2(x+π6),故把f(x)的图象向右平移π6个长度单位,可得g(x)=sin2x的图象,故选C.10.答案:C解析:【分析】本题考查分段函数,函数的周期性,属于中档题.当x>0时,f(x)的周期为8,根据分段函数及周期性求解即可.【解答】解:函数当x>0时,因为f(x)=−1f(x−4),则f(x+4)=−1f(x),所以f(x+8)=−1f(x+4)=f(x),所以当x>0时,f(x)的周期为8,则f(2019)=f(252×8+3)=f(3)=−1f(−1),又,则f(2019)=−1f(−1)=12.故选C.11.答案:B解析:lg12=lg4+lg3=2lg2+lg3=2a+b.12.答案:A解析:【分析】本题考查导数与函数的极值之间的关系,属于中档题.利用导数研究函数的极值即可得出答案.【解答】解:由题意知,当x>0时,令f′(x)=0,可化为:,令,则,则函数g(x)在(0,1)递增,在(1,+∞)递减,g(x)的图象如图所示:,故0<−2m<1即−12<m<0时,f(x)有2个不同的解,当x ≤0时,令f ′(x )=0,x =3m+12<0,解得:m <−13, 综上,m 的取值范围为(−12,−13) .故选A .13.答案:−6解析:解:∵在△ABC 中,BD ⃗⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,∴AD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ ,∴AB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −23BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =AD ⃗⃗⃗⃗⃗⃗ −23AC ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ , ∴13AB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −23AC ⃗⃗⃗⃗⃗ , ∴AB ⃗⃗⃗⃗⃗ =3AD ⃗⃗⃗⃗⃗⃗ −2AC⃗⃗⃗⃗⃗ , ∵AB ⃗⃗⃗⃗⃗ =m AD ⃗⃗⃗⃗⃗⃗ +n AC⃗⃗⃗⃗⃗ , ∴m =3,n =−2.∴mn =−6.故答案为:−6.由已知AD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ ,从而AB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −23BC ⃗⃗⃗⃗⃗ ,由此能求出mn 的值. 本题考查向量的线性运算,是基础题,解题时要认真审题,注意加法法则的合理运用. 14.答案:{2,n =14n −1,n ≥2解析:解:当n =1时,a 1=S 1=2+1−1=2.当n ≥2时,a n =S n −S n−1=2n 2+n −1−[2(n −1)2+(n −1)−1]=4n −1.∴a n ={2,n =14n −1,n ≥2. 故答案为:{2,n =14n −1,n ≥2. 利用“当n =1时,a 1=S 1.当n ≥2时,a n =S n −S n−1”即可得出.本题考查了利用“当n =1时,a 1=S 1.当n ≥2时,a n =S n −S n−1”求数列通项公式,属于基础题.15.答案:100π解析:【分析】本题考查该三棱柱外接球的表面积,考查学生的计算能力,属于中档题.求出外接球的半径,即可求出该三棱柱外接球的表面积.【解答】解:三角形外接圆的半径为r ,,外接球的半径为R , R =√32+(82)2=5.外接球的表面积为.故答案为100π.16.答案:√62解析:【分析】本题考查两条直线的交点坐标,中点坐标公式,双曲线的性质及几何意义.写出直线F 1B 的方程,分别与双曲线的渐近线方程联立,求出P ,Q 的坐标,则可得线段PQ 的中点N 的坐标,又|MF 2|=|F 1F 2|,知M(3c,0),可得直线MN 的斜率,根据直线MN 与F 1B 垂直,可得到斜率之间的关系,化简后,结合c 2=a 2+b 2,即得答案.【解答】解:依题意F 1(−c,0),B(0,b),∴直线F 1B 的方程为:y =b c x +b , 由{y =b c x +b y =−b a x,得P(−ac c+a ,bc c+a ), 由{y =b c x +b y =b a x,得Q(ac c−a ,bc c−a ), 则线段PQ 的中点N(a 2c b 2,c 2b ),又|MF 2|=|F 1F 2|,知M(3c,0), 则直线MN 的斜率k =bc a 2−3b 2,则b c ×bca −3b =−1,得a 2=2b 2,即2c 2=3a 2,故e=ca =√62.故答案为√62.17.答案:解:(Ⅰ)由题知f(x)=12sin2x−12(1−cos2x)+12,=12sin2x+12cos2x,=√22sin(2x+π4).由2kπ−π2≤2x+π4≤2kπ+π2(k∈Z),解得kπ−3π8≤x≤kπ+π8.所以f(x)单调递增区间为[kπ−3π8,kπ+π8](k∈Z).(Ⅱ)依题意,由正弦定理,sinBcos2A=sinBcosA−sinAsinB.因为在三角形中sinB≠0,所以cos2A=cosA−sinA.即(cosA−sinA)(cosA+sinA−1)=0当cosA=sinA时,A=π4;当cosA+sinA=1时,A=π2.由于0<A<π2,所以A=π4.则B+C=34π.则0<B<34π.又π4<2B+π4<7π4,所以−1≤sin(2B+π4)≤1.由f(B)=√22sin(2B+π4),则f(B)的取值范围是[−√22,√22].解析:(Ⅰ)首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用整体思想求出函数的单调区间.(Ⅱ)首先利用正弦定理求出相应的角,进一步利用三角函数的关系式求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,正弦定理的应用.18.答案:证明:(1)因为△ABC是等边三角形,D为AC的中点,所以BD⊥AC,又因为AA1⊥底面ABC,所以AA1⊥BD,根据线面垂直的判定定理得BD⊥平面A1ACC1,又因为BD⊂平面C1BD,所以平面C1BD⊥平面A1ACC1;(2)如图所示,连接B1C交BC1于O,连接OD,因为四边形BCC1B1是平行四边形,所以点O为B1C的中点,又因为D为AC的中点,所以OD为△AB1C的中位线,所以OD//B1A,又OD⊂平面C1BD,AB1⊄平面C1BD,所以AB1//平面C1BD.解析:(1)由线面垂直的判定定理得出BD⊥平面A1ACC1,再由面面垂直的判定定理得出平面C1BD⊥平面A1ACC1;(2)连接B1C交BC1于O,连接OD,证明OD//B1A,由线面平行的判定定理证明AB1//平面C1BD.本题考查了空间中的平行与垂直关系的应用问题,也考查了空间想象能力与逻辑思维能力的应用问题,是综合性题目.19.答案:解:(1)记这 100 份数学试卷成绩的中位数为x(95<x<105),则0.002×10+0.008×10+0.013×10+0.015×10+(x−95)×0.024=0.5,解得x=100,∴这100份数学试卷成绩的中位数为100.(2)总分在[55,65)的试卷共有0.002×10×100=2份,记为A,B,总分在[135,145)的试卷共有0.004×10×100=4份,记为a,b,c,d,则从上述6份试卷中随机抽取2份的抽取结果为:{A,B},{A,a},{A,b},{A,c},{A,d},{B,a},{B,b},{B,c},{B,d},{a,b},{a,c},{a,d},{b,c},{b,d},{c,d},共15种结果,至少一份总分少于65分的有:{A,B},{A,a},{A,b},{A,c},{A,d},{B,a},{B,b},{B,c},{B,d},共9种结果,∴抽取的2份试卷中至少有一份总分少于65分的概率为:p =915=35.解析:(1)利用频率分布直方图能求出这100份数学试卷成绩的中位数.(2)总分在[55,65)的试卷共有2份,记为A ,B ,总分在[135,145)的试卷共有4份,记为a ,b ,c ,d ,利用列举法能求出抽取的2份试卷中至少有一份总分少于65分的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.20.答案:解:(1)依题意可得{c a=1a =√22a 2=b 2+c 2=b 2+1, 解得a =√2 ,b =1,所以椭圆E 的标准方程为x 22+y 2=1;(2)设M(x 1,y 1),N(x 2,y 2),①当MN 垂直于x 轴时,直线l 的方程为x =1,不符合题意;②当MN 不垂直于x 轴时,设直线l 的方程为y =k(x −1),联立得方程组{x 22+y 2=1y =k(x −1), 消去y 整理得(1+2k 2)x 2−4k 2x +2(k 2−1)=0,由Δ=(−4k 2)2−4(1+2k 2)·2(k 2−1)=8k 2+8>0,所以x 1+x 2=4k 21+2k 2 ,x 1·x 2=2(k 2−1)1+2k 2,所以y 1⋅y 2=k 2(x 1−1)·(x 2−1)=k 2[x 1·x 2−(x 1+x 2)+1]=−k 21+2k 2,因为OM ⊥ON ,所以OM⃗⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =0 , 即x 1·x 2+y 1⋅y 2=k 2−21+2k 2=0, 所以k =±√2,即直线l 的方程为y =±√2(x −1).解析:本题主要考查了椭圆性质的运用,椭圆标准方程的求法,椭圆与直线位置关系的判定与运用,向量垂直的充要条件,考查了计算能力,属于中档题.(1)根据椭圆的几何性质,求出a 、b 的值即可;(2)讨论直线MN 的斜率是否存在,设出MN 的方程,与椭圆方程联立,利用根与系数的关系,结合OM ⊥ON ,OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON⃗⃗⃗⃗⃗⃗ =0,求出直线的斜率k ,即可求出直线l 的方程.21.答案:解:(Ⅰ)函数的导数f′(x)=e x ,则f′(1)=e ,f(1)=e ,则函数f(x)在x =1处的切线方程y −e =e(x −1),即y =ex ;(Ⅱ)由g(x)=f(x)x 2−m =0, 得m =f(x)x 2=e x x 2,设ℎ(x)=e x x 2,则ℎ′(x)=e x ⋅x 2−e x ⋅2x x 4=e x (x−2)x 3,当x <0时,ℎ′(x)>0,此时函数单调递增,且ℎ(x)>0,当x >2时,ℎ′(x)>0,此时函数单调递增,当0<x <2时,ℎ′(x)<0,此时函数单调递减,即当x =2时,函数ℎ(x)取得极小值ℎ(2)=e 24, 作出函数ℎ(x)的草图如图当m >0时,若m >e 24时,ℎ(x)=m 有3个不同的根,即函数g(x)有3个不同的零点, 若m =e 24时,ℎ(x)=m 有2个不同的根,即函数g(x)有2个不同的零点,若0<m <e 24时,ℎ(x)=m 有1个不同的根,即函数g(x)有1个不同的零点.解析:(Ⅰ)求函数的导数,利用导数的几何意义即可求函数f(x)在x =1处的切线方程; (Ⅱ)由g(x)=0,利用参数转化法,构造函数,求函数的导数,研究函数的单调性和极值,利用数形结合进行求解即可.本题主要考查导数的综合应用,求函数的导数,利用导数的几何意义求切线方程,利用函数与方程之间的关系转化为两个函数的交点个数问题,构造函数,求函数的导数,利用导数研究函数的极值单调性是解决本题的关键.22.答案:解:(1)曲线C 1的普通方程为y =1−x 2(−1≤x ≤1),把x =ρcosθ,y =ρsinθ代入ρ(cosθ−asinθ)=12,得直线C 2的直角坐标方程为y −ax =12,即ax −y +12=0,(2)由直线C 2:ax −y +12=0,知C 2恒过点M(0,12),由y =1−x 2(−1≤x ≤1),当时,得x =±1,所以曲线C 1过点P(−1,0),Q(1,0),则直线MP 的斜率为k 1=0−12−1−0=12,直线MQ 的斜率k 2=0−121−0=−12, 因为直线C 2的斜率为a ,且直线C 2与曲线C 1有两个不同的交点,所以k 2≤a ≤k 1,即−12≤a ≤12,所以a 的取值范围为[−12,12].解析:本题考查了简单曲线的极坐标方程,曲线的参数方程,属中档题.(1)利用平方关系消去参数t 可得C 1的普通方程,利用x =ρcosθ,y =ρsinθ可得C 2的直角坐标方程; (2)根据直线的斜率可得.23.答案:解:(1)a =−1时,f(x)=|x +1|−|x +3|≤1,⇔{x ≤−3−x −1+x +3≤1或{−3<x <−1−x −1−x −3≤1或{x ≥−1x +1−x −3≤1, 解得:⌀或−52≤x <−1或x ≥−1,综上,不等式的解集为[−52,+∞);(2)∵x ∈[−2,3],∴x +3>0,∴不等式f(x)≤4在x ∈[−2,3]时恒成立,⇔|x −a|≤x +7在x ∈[−2,3]时恒成立,⇔−(x +7)≤x −a ≤x +7在x ∈[−2,3]时恒成立,⇔−x −7−x ≤−a ≤7在x ∈[−2,3]时恒成立,⇔−7≤a ≤2x +7在x ∈[−2,3]时恒成立,而2x +7在x ∈[−2,3]的最小值是3,∴−7≤a ≤3,即a 的取值范围为[−7,3].解析:本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.(1)将a =−1代入f(x),通过讨论x 的范围,得到不等式组,解出即可;(2)问题转化为−7≤a ≤2x +7在x ∈[−2,3]时恒成立,而2x +7在x ∈[−2,3]的最小值是3,从而求出a 的范围即可.。
山东省泰安市2019-2020学年高考数学一月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在棱长为a 的正方体1111ABCD A B C D -中,E 、F 、M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 、11A D 上,且11(0)A P AQ m m a ==<<,设平面MEF I 平面MPQ l =,则下列结论中不成立的是( )A .//l 平面11BDDB B .l MC ⊥C .当2am =时,平面MPQ MEF ⊥ D .当m 变化时,直线l 的位置不变【答案】C 【解析】 【分析】根据线面平行与垂直的判定与性质逐个分析即可. 【详解】因为11A P AQ m ==,所以11//PQB D ,因为E 、F 分别是AB 、AD 的中点,所以//EF BD ,所以//PQ EF ,因为面MEF I 面MPQ l =,所以PQ EF l ////.选项A 、D 显然成立;因为BD EF l ////,BD ⊥平面11ACC A ,所以l ⊥平面11ACC A ,因为MC ⊂平面11ACC A ,所以l MC ⊥,所以B 项成立;易知1AC ⊥平面MEF,1A C ⊥平面MPQ,而直线1AC 与1A C 不垂直,所以C 项不成立. 故选:C 【点睛】本题考查直线与平面的位置关系.属于中档题.2.已知ABC V 的内角A 、B 、C 的对边分别为a 、b 、c ,且60A =︒,3b =,AD 为BC 边上的中线,若72AD =,则ABC V 的面积为( ) A 253B .153C .154D 353【答案】B 【解析】【分析】延长AD 到E ,使AD DE =,连接,BE CE ,则四边形ABEC 为平行四边形,根据余弦定理可求出5AB =,进而可得ABC V 的面积.【详解】解:延长AD 到E ,使AD DE =,连接,BE CE ,则四边形ABEC 为平行四边形, 则3BE AC ==,18060120ABE ∠=-=o o o ,27AE AD ==, 在ABE △中,2222cos AE AB BE AB BE ABE =+-⋅∠ 则2227323cos120AB AB =+-⨯⨯⨯o ,得5AB =,113153sin 605322ABC S AB AC =⋅⋅=⨯⨯⨯=o V . 故选:B.【点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.3.直角坐标系 xOy 中,双曲线2222 1x y a b -=(0a b ,>)与抛物线2 2?y bx =相交于 A 、B 两点,若△ OAB 是等边三角形,则该双曲线的离心率e =( ) A .43B .54C .65D .76【答案】D 【解析】 【分析】根据题干得到点A 坐标为()33x x ,代入抛物线得到坐标为()63b b ,再将点代入双曲线得到离心率. 【详解】因为三角形OAB 是等边三角形,设直线OA为3y x =,设点A坐标为()3x ,代入抛物线得到x=2b,故点A的坐标为()6b,代入双曲线得到22137.366b e a =⇒== 故答案为:D. 【点睛】求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,结合222b c a =-转化为,a c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 4.下列函数中,既是奇函数,又是R 上的单调函数的是( ) A .()()ln 1f x x =+B .()1f x x -=C .()()()222,02,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩D .()()()()2,00,01,02x xx f x x x ⎧<⎪⎪⎪==⎨⎪⎛⎫⎪-> ⎪⎪⎝⎭⎩【答案】C 【解析】 【分析】对选项逐个验证即得答案. 【详解】对于A ,()()()()ln 1ln 1f x x x f x -=-+=+=,()f x ∴是偶函数,故选项A 错误; 对于B ,()11x xf x-==,定义域为{}0x x ≠,在R 上不是单调函数,故选项B 错误; 对于C ,当0x >时,()()()()()2220,222x f x x x x x x x f x -<∴-=--+-=--=-+=-;当0x <时,()()()()()2220,222x f x x x x x x x f x ->∴-=-+-=-=--+=-;又0x =时,()()000f f -=-=.综上,对x ∈R ,都有()()f x f x -=-,()f x ∴是奇函数.又0x ≥时,()()22211f x x x x =+=+-是开口向上的抛物线,对称轴1x =-,()f x ∴在[)0,+∞上单调递增,()f x Q 是奇函数,()f x ∴在R 上是单调递增函数,故选项C 正确;对于D ,()f x 在(),0-∞上单调递增,在()0,∞+上单调递增,但()()111122f f -=>=-,()f x ∴在R 上不是单调函数,故选项D 错误.故选:C . 【点睛】本题考查函数的基本性质,属于基础题.5.已知过点(1,1)P 且与曲线3y x =相切的直线的条数有( ). A .0 B .1 C .2 D .3【答案】C 【解析】 【分析】设切点为()00x ,y ,则300y x =,由于直线l 经过点()1,1,可得切线的斜率,再根据导数的几何意义求出曲线在点0x 处的切线斜率,建立关于0x 的方程,从而可求方程. 【详解】若直线与曲线切于点()()000x ,y x 0≠,则32000000y 1x 1k x x 1x 1x 1--===++--, 又∵2y'3x =,∴200y'x x 3x ==,∴2002x x 10--=,解得0x 1=,01x 2=-, ∴过点()P 1,1与曲线3C :y x =相切的直线方程为3x y 20--=或3x 4y 10-+=, 故选C . 【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题. 6.若函数()3cos 4sin f x x x =+在x θ=时取得最小值,则cos θ=( ) A .35B .45-C .45D .35-【答案】D 【解析】 【分析】利用辅助角公式化简()f x 的解析式,再根据正弦函数的最值,求得()f x 在x θ=函数取得最小值时cos θ的值. 【详解】解:34()3cos 4sin 5cos sin 5sin()55f x x x x x x α⎛⎫=+=+=+ ⎪⎝⎭,其中,3sin 5α=,4cos 5α=,故当22k πθαπ+=-()k ∈Z ,即2()2k k Z πθπα=--∈时,函数取最小值()5fθ=-,所以3cos cos(2)cos()sin 225k ππθπααα=--=--=-=-, 故选:D 【点睛】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题.7.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数12()4324x x f x -=-⋅+(02x <<),则函数[]()y f x =的值域为( ) A .13,22⎡⎫-⎪⎢⎣⎭ B .{}1,0,1-C .{}1,0,1,2-D .{}0,1,2【答案】B 【解析】 【分析】利用换元法化简()f x 解析式为二次函数的形式,根据二次函数的性质求得()f x 的取值范围,由此求得[]()y f x =的值域.【详解】 因为12()4324x x f x -=-⋅+(02x <<),所以()21241324232424x x x x y =-⋅+=-⋅+,令2x t =(14t <<),则21()342f t t t =-+(14t <<),函数的对称轴方程为3t =,所以min 1()(3)2f t f ==-,max 3()(1)2f t f ==,所以13(),22f x ⎡⎫∈-⎪⎢⎣⎭,所以[]()y f x =的值域为{}1,0,1-. 故选:B 【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.8.若[]1,6a ∈,则函数2x ay x+=在区间[)2,+∞内单调递增的概率是( )A .45 B .35 C .25 D .15【答案】B【解析】Q 函数2x ay x+=在区间[)2,+∞内单调递增, 222'10a x a y x x -∴=-=≥,在[)2,+∞恒成立,2a x ∴≤在[)2,+∞恒成立, 4a ∴≤, [][]1,6,1,4,a a ∈∴∈∴Q 函数2x ay x+=在区间[)2,+∞内单调递增的概率是413615-=-,故选B. 9.如图,ABC V 中260A B ∠=∠=︒,点D 在BC 上,30BAD ∠=︒,将ABD △沿AD 旋转得到三棱锥B ADC '-,分别记B A ',BD '与平面ADC 所成角为α,β,则α,β的大小关系是( )A .2αβα<≤B .23αβα≤≤C .2βα≤,23αβα<≤两种情况都存在D .存在某一位置使得3a β> 【答案】A 【解析】 【分析】根据题意作出垂线段,表示出所要求得α、β角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案. 【详解】由题可得过点B 作BE AD ⊥交AD 于点E ,过B ′作CD 的垂线,垂足为O ,则易得B AO α=∠',B DO β=∠'.设1CD =,则有2BD AD ==,1DE =,3BE =∴可得23AB AB '==,2B D BD '==.sin ,sin OB OB AB DB αβ''==''Q ,sin sin βαα∴=>,βα∴>;QOB '∈,∴1sin [0,]2α∈; Qsin 22sin cos 2sin ααα==,2],∴sin 2sin ααβ=,2αβ∴….综上可得,2αβα<…. 故选:A . 【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.10.直线1y kx =+与抛物线C :24x y =交于A ,B 两点,直线//l AB ,且l 与C 相切,切点为P ,记PABV 的面积为S ,则S AB -的最小值为( ) A .94-B .274-C .3227-D .6427-【答案】D 【解析】 【分析】设出,A B 坐标,联立直线方程与抛物线方程,利用弦长公式求得AB ,再由点到直线的距离公式求得P 到AB 的距离,得到PAB ∆的面积为S ,作差后利用导数求最值.【详解】设()11,A x y ,()22,B x y ,联立214y kx x y=+⎧⎨=⎩,得2440x kx --= 则124x x k +=,()21212242y y k x x k +=++=+则21244AB y y p k =++=+由24x y =,得24x y =12y x ⇒'= 设()00,P x y ,则012x k = 02x k ⇒=,20y k =则点P 到直线1y kx =+的距离1d =≥从而()21212S AB d k =⋅=+()()()22322141241S AB k k d d d -=++=-≥.令()3224f x x x =- ()()2681f x x x x ⇒-'=≥当413x ≤≤时,()0f x '<;当43x >时,()0f x '>故()min 464327f x f ⎛⎫==-⎪⎝⎭,即S AB -的最小值为6427- 本题正确选项:D 【点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.11.若双曲线22214x y a -= )A.B .C .6D .8【答案】A 【解析】 【分析】依题意可得24b =,再根据离心率求出2a ,即可求出c ,从而得解; 【详解】解:∵双曲线22214x y a -=所以22413e a=+=,∴22a =,∴c =故选:A 【点睛】本题考查双曲线的简单几何性质,属于基础题.12.已知3log 5a =,0.50.4b =,2log 5c =,则a ,b ,c 的大小关系为( ) A .c b a >> B .b c a >>C .a b c >>D .c a b >>【答案】D 【解析】 【分析】与中间值1比较,,a c 可用换底公式化为同底数对数,再比较大小. 【详解】0.50.41<,3log 51>,又550log 2log 3<<,∴5511log 2log 3>,即23log 5log 5>, ∴c a b >>. 故选:D. 【点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较.二、填空题:本题共4小题,每小题5分,共20分。
2020年山东省高考模拟考试文科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}1,2A =,集合{}0,2B =,设集合{},,C z z xy x A y B ==∈∈,则下列结论中正确的是A. A C φ⋂=B. A C C ⋃=C. B C B ⋂=D. A B C =2. 若复数2(1)z m m m i =+++是纯虚数,其中m 是实数,则1z= A. i B. i - C. 2iD. 2i -3. 若1sin()43x π-=,则sin 2x = A.79B. 79-C.13D. 13-4. 在矩形ABCD 中,8AB =,6AD =,若向该矩形内随机投一点P ,那么使ABP ∆与ADP ∆ 的面积都小于4的概率为 A.136B.112C.19D.495. 在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于 A. 66B. 132C. -66D. -1326. 设函数2()23f x x x =--,若从区间[2,4]-上任取一个实数x ,则所选取的实数x 满足()0f x ≤的概率为A.12B.13C.23D.147. 设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥β D .若α∥β,则l ∥m8. 已知双曲线)0(13222>=-a y a x 的离心率为2,则 =aA. 2B.26C. 25D. 19. 函数ln ()xf x x=的图象大致为 A. B.C. D.10.已知函数532sin 2064y x x ππ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图象与一条平行于x 轴的直线有两个交点,其横坐标分别为1x ,2x ,则12x x =+ A.43πB.23π C.3π D.6π 11.已知三棱锥ABC D -四个顶点均在半径为R 的球面上,且22===AC BC AB ,,若该三棱锥体积的最大值为1,则这个球的表面积为 A.81500π B. 9100π C. 925πD. π412. 已知椭圆22221(0)x y a b a b+=>>的左、右焦点分別为12,F F ,过2F 的直线与椭圆交于,A B 两点,若1F AB ∆是以A 为直角项点的等腰直角三角形,则椭圆的离心率为A B .22 D -二、填空题:本题共4小题,每小题5分,共20分。
2020年山东省泰安市高考数学一模试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4},则(∁U A)∪B=()A.{4}B.{2,3,4}C.{3,4,5}D.{2,3,4,5}2.已知为实数,则实数t的值为()A.1 B.﹣1 C.D.3.如图是一个程序框图,则输出S的值是()A.84 B.35 C.26 D.104.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题5.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的()A.B.C.D.6.已知点及抛物线x2=﹣4y上一动点P(x,y),则|y|+|PQ|的最小值是()A.B.1 C.2 D.37.已知A(2,1),O(0,0),点M(x,y)满足,则的最大值为()A.﹣5 B.﹣1 C.0 D.18.已知下列三个命题:①若两组数据的平均数相等,则它们的标准差也相等;②在区间[﹣1,5]上随机选取一个数x,则x≥3的概率为;③直线x+y+1=0与圆相切;其中真命题的个数是()A.0 B.1 C.2 D.39.已知函数的图象向右平移个单位后与原图象重合,则ω的最小值是()A.3 B.C.D.10.奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=2,则f(4)+f(5)的值为()A.2 B.1 C.﹣1 D.﹣2二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置. 11.已知,则cos(30°﹣2α)的值为______.12.随机抽取100名年龄在[10,20),[20,30)…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于30岁的人中按年龄段分层抽样的方法随机抽取22人,则在[50,60)年龄段抽取的人数为______.13.已知{a n}为等比数列,下列结论①a3+a5≥2a4;②;③若a3=a5,则a1=a2;④若a5>a3,则a7>a5.其中正确结论的序号是______.14.在平行四边形ABCD中,为CD的中点,若.则AD的长为______.15.若函数f(x)=﹣2x3+2tx2+1存在唯一的零点,则实数t的取值范围为______.三、解答题:本大题共6个小题,满分75分,解答应写出文字说明、证明过程或演算步骤. 16.已知函数f(x)=sinxcos(x+)+1.(1)求函数f(x)的单调递减区间;(2)在△ABC中,a,b,c分别是角A、B、C的对边f(C)=,b=4,•=12,求c.17.有两个袋子,其中甲袋中装有编号分别为1、2、3、4的4个完全相同的球,乙袋中装有编号分别为2、4、6的3个完全相同的球.(Ⅰ)从甲、乙袋子中各取一个球,求两球编号之和小于8的概率;(Ⅱ)从甲袋中取2个球,从乙袋中取一个球,求所取出的3个球中含有编号为2的球的概率.18.已知等比数列{a n}的公比q>1,a1=1,且a1,a3,a2+14成等差数列,数列{b n}满足:a1b1+a2b2+…+a n b n=(n﹣1)•3n+1,n∈N.(I)求数列{a n}和{b n}的通项公式;(Ⅱ)若ma n≥b n﹣8恒成立,求实数m的最小值.19.如图,在三棱锥P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中点,M是CE 的中点,N点在PB上,且4PN=PB.(Ⅰ)证明:平面PCE⊥平面PAB;(Ⅱ)证明:MN∥平面PAC.20.如图:A,B,C是椭圆的顶点,点F(c,0)为椭圆的右焦点,离心率为,且椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为k1,证明:.21.已知函数f(x)=lnx(Ⅰ)求函数的最大值.(Ⅱ)证明:;(Ⅲ)若不等式mf(x)≥a+x对所有的都成立,求实数a的取值范围.2020年山东省泰安市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4},则(∁U A)∪B=()A.{4}B.{2,3,4}C.{3,4,5}D.{2,3,4,5}【考点】交、并、补集的混合运算.【分析】根据全集U求出A的补集,找出A补集与B的并集即可.【解答】解:∵全集U={1,2,3,4,5},集合A={1,2,3},∴∁U A={4,5},∵B={3,4},则(∁U A)∪B={3,4,5}.故选:C.2.已知为实数,则实数t的值为()A.1 B.﹣1 C.D.【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,由虚部为0求得t值.【解答】解:∵z1=2t+i,z2=1﹣2i,∴=,又为实数,∴4t+1=0,即t=﹣.故选:D.3.如图是一个程序框图,则输出S的值是()A.84 B.35 C.26 D.10【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=1时,不满足退出循环的条件,执行循环后,S=1,k=3;当k=3时,不满足退出循环的条件,执行循环后,S=10,k=5;当k=5时,不满足退出循环的条件,执行循环后,S=35,k=7;当k=7时,满足退出循环的条件,故输出的S值为35,故选:B.4.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题【考点】命题的真假判断与应用.【分析】利用命题的定义判断A的正误;函数的极值的充要条件判断B的正误;命题的否定判断C的正误;四种命题的逆否关系判断D的正误;【解答】解:对于A,命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”,不满足否命题的定义,所以A不正确;对于B,已知y=f(x)是R上的可导函数,则“f′(x0)=0”函数不一定有极值,“x0是函数y=f(x)的极值点”一定有导函数为0,所以已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件,正确;对于C,命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”,不满足命题的否定形式,所以不正确;对于D,命题“角α的终边在第一象限角,则α是锐角”是错误命题,则逆否命题为假命题,所以D不正确;故选:B.5.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的()A.B.C.D.【考点】由三视图求面积、体积.【分析】剩余几何体为四棱锥,分别计算出三棱柱和剩余几何体的体积.【解答】解:由俯视图可知三棱柱的底面积为=2,∴原直三棱柱的体积为2×4=8.由剩余几何体的直观图可知剩余几何体为四棱锥,四棱锥的底面为侧视图梯形的面积=6,由俯视图可知四棱锥的高为2,∴四棱锥的体积为=4.∴该几何体体积与原三棱柱的体积比为.故选C.6.已知点及抛物线x2=﹣4y上一动点P(x,y),则|y|+|PQ|的最小值是()A.B.1 C.2 D.3【考点】抛物线的简单性质;抛物线的标准方程;直线与圆锥曲线的关系.【分析】抛物线的准线是y=1,焦点F(0,﹣1).设P到准线的距离为d,利用抛物线的定义得出:y+|PQ|=d﹣1+|PQ|=|PF|+|PQ|﹣1≥|FQ|﹣1,利用当且仅当F、Q、P共线时取最小值,从而得出故y+|PQ|的最小值.【解答】解:抛物线x2=4y的准线是y=1,焦点F(0,﹣1).设P到准线的距离为d,则y+|PQ|=d﹣1+|PQ|=|PF|+|PQ|﹣1≥|FQ|﹣1=3﹣1=2(当且仅当F、Q、P共线时取等号)故y+|PQ|的最小值是2.故选:C.7.已知A(2,1),O(0,0),点M(x,y)满足,则的最大值为()A.﹣5 B.﹣1 C.0 D.1【考点】简单线性规划.【分析】先画出平面区域D,进行数量积的运算即得z=2x+y﹣5,所以y=﹣2x+5+z,所以根据线性规划的方法求出z的最大值即可.【解答】解:表示的平面区域D,如图中阴影部分所示,A(2,1),O(0,0),点M(x,y)的=(2,1)•(x﹣2,y﹣1)=2x+y﹣5;∴y=﹣2x+5+z;∴5+z表示直线y=﹣2x+5+z在y轴上的截距,所以截距最大时z最大;如图所示,当该直线经过点A1(2,2)时,截距最大,此时z最大;所以点A1(2,2)代入直线y=﹣2x+5+z即得z=1.故选:D.8.已知下列三个命题:①若两组数据的平均数相等,则它们的标准差也相等;②在区间[﹣1,5]上随机选取一个数x,则x≥3的概率为;③直线x+y+1=0与圆相切;其中真命题的个数是()A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】根据标准差的含义,可判断①;根据几何概型概率计算公式,可判断②;根据直线与圆的位置关系,可判断③【解答】解:①若两组数据的平均数相等,不表示离散程度相等,则它们的标准差可能不相等,故为假命题;②在区间[﹣1,5]上随机选取一个数x,则x≥3的概率为=≠,故为假命题;③(0,0)点到直线x+y+1=0的距离d=,故直线x+y+1=0与圆相切,故为真命题;故选:B.9.已知函数的图象向右平移个单位后与原图象重合,则ω的最小值是()A.3 B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】函数的图象向右平移个单位后与原图象重合可判断出是周期的整数倍,由此求出ω的表达式,判断出它的最小值【解答】解:∵函数的图象向右平移个单位后与原图象重合,∴=n×,n∈z,∴ω=3n,n∈z,又ω>0,故其最小值是3.故选:A.10.奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=2,则f(4)+f(5)的值为()A.2 B.1 C.﹣1 D.﹣2【考点】抽象函数及其应用;奇偶性与单调性的综合.【分析】根据函数的奇偶性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:∵f(x+1)为偶函数,f(x)是奇函数,∴设g(x)=f(x+1),则g(﹣x)=g(x),即f(﹣x+1)=f(x+1),∵f(x)是奇函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),即f(x+2)=﹣f(x),f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),则f(4)=f(0)=0,f(5)=f(1)=2,∴f(4)+f(4)=0+2=2,故选:A.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置. 11.已知,则cos(30°﹣2α)的值为.【考点】二倍角的余弦;两角和与差的余弦函数.【分析】利用诱导公式求得sin(15°﹣α)=,再利用二倍角的余弦公式可得cos(30°﹣2α)=1﹣2sin2(15°﹣α),运算求得结果.【解答】解:∵已知,∴sin(15°﹣α)=,则cos(30°﹣2α)=1﹣2sin2(15°﹣α)=,故答案为.12.随机抽取100名年龄在[10,20),[20,30)…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于30岁的人中按年龄段分层抽样的方法随机抽取22人,则在[50,60)年龄段抽取的人数为2.【考点】频率分布直方图.【分析】根据频率分布直方图,求出样本中不小于30岁人的频率与频数,再求用分层抽样方法抽取的人数【解答】解:根据频率分布直方图,得;样本中不小于30岁的人的频率是1﹣0.020×10+0.025×10=0.55,∴不小于30岁的人的频数是100×0.55=55;从不小于30岁的人中按年龄段分层抽样的方法随机抽取22人,在[50,60)年龄段抽取的人数为22×=22×=2.故答案为:2.13.已知{a n}为等比数列,下列结论①a3+a5≥2a4;②;③若a3=a5,则a1=a2;④若a5>a3,则a7>a5.其中正确结论的序号是②④.【考点】命题的真假判断与应用.【分析】根据等比数列的性质结合不等式的关系进行判断即可.【解答】解:①a n=(﹣1)n,则a3+a5≥2a4不成立,故①错误,②∵a32+a52≥2|a3a5|=2a42;故;故②正确,③若a n=(﹣1)n,则a3=a5=﹣1,但a1=﹣1,a2=1,a1=a2;不成立,故③错误,④若a5>a3,则q2a3>a3,∵q2>0,∴q2a5>q2a3,即a7>a5成立,故④正确,故正确的是②④,故答案为:②④.14.在平行四边形ABCD中,为CD的中点,若.则AD的长为1.【考点】平面向量数量积的运算.【分析】用表示出,代入数量积公式解出AD.【解答】解:,==﹣+.∴=()•(﹣)=﹣++=1.∵=,=AD2,.∴AD2+﹣=1,解得AD=1.故答案为:1.15.若函数f(x)=﹣2x3+2tx2+1存在唯一的零点,则实数t的取值范围为t>﹣.【考点】函数零点的判定定理.【分析】求解导数f′(x)=﹣6x2+4tx,分类讨论得出极值点,根据单调性判断极值的大小,即可得出零点的个数.【解答】解:∵函数f(x)=﹣2x3+2tx2+1,∴f′(x)=﹣6x2+4tx=0,∴x=0,x=(1)当t=0时,f(x=﹣2x3+1单调递减,f(0)=1>0,f(2)=﹣15<0∴存在唯一的零点,是正数.(2)当t>0时,f′(x)=﹣6x2+4tx>0,即0f′(x)=﹣6x2+4tx<00,即x<0,x∴f(x)在(﹣∞,0),(,+∞)单调递减在(0,)单调递增∴极大值f()>f(1),极小值f(0)=1>0,∴存在唯一的零点,(3)当t<0时,f′(x)=﹣6x2+4tx>0,即<x<0f′(x)=﹣6x2+4tx<00,即x<,x>0∴f(x)在(﹣∞,),(0,+∞)单调递减在(,0)单调递增∴极小值f()<f(1),极大值f(0)=1>0,∵只需极小值f()>0即可,+1>0,且t<0∴﹣<t<0,综上:﹣<t<0,或t≥0故答案为:t>﹣.三、解答题:本大题共6个小题,满分75分,解答应写出文字说明、证明过程或演算步骤. 16.已知函数f(x)=sinxcos(x+)+1.(1)求函数f(x)的单调递减区间;(2)在△ABC中,a,b,c分别是角A、B、C的对边f(C)=,b=4,•=12,求c.【考点】解三角形;两角和与差的余弦函数.【分析】(1)使用和角公式展开再利用二倍角公式与和角的正弦公式化简f(x),利用正弦函数的单调性列出不等式解出;(2)根据f(C)=求出C,根据,•=12解出a,使用余弦定理解出c.【解答】解:(1)f(x)=sinx(cosx﹣sinx)+1=sin2x﹣+1=sin(2x+)+.令≤2x+≤,解得≤x≤.∴函数f(x)的单调递减区间是[,],k∈Z.(2)∵f(C)=sin(2C+)+=,∴sin(2C+)=1,∴C=.∵•=abcosA=2a=12,∴a=2.由余弦定理得c2=a2+b2﹣2abcosC=12+16﹣24=4.∴c=2.17.有两个袋子,其中甲袋中装有编号分别为1、2、3、4的4个完全相同的球,乙袋中装有编号分别为2、4、6的3个完全相同的球.(Ⅰ)从甲、乙袋子中各取一个球,求两球编号之和小于8的概率;(Ⅱ)从甲袋中取2个球,从乙袋中取一个球,求所取出的3个球中含有编号为2的球的概率.【考点】古典概型及其概率计算公式.【分析】(Ⅰ)利用列举法能求出两球编号之和小于8的概率.(Ⅱ)从甲袋中任取2球,从乙袋中任取一球,先求出所有基本事件个数,再求出含有编号2的基本事件个数,由此能求出所取出的3个球中含有编号为2的球的概率.【解答】解:(Ⅰ)将甲袋中编号分别为1,2,3,4的4个分别记为A1,A2,A3,A4,将乙袋中编号分别为2,4,6的三个球分别记为B2,B4,B6,从甲、乙两袋中各取一个小球的基本事件为:(A1,B2),(A1,B4),(A1,B6),(A2,B2),(A2,B4),(A2,B6),(A3,B2),(A3,B4),(A3,B6),(A4,B2),(A4,B4),(A4,B6),共12种,其中两球面镜编号之和小于8的共有8种,所以两球编号之和小于8的概率为:=.(Ⅱ)从甲袋中任取2球,从乙袋中任取一球,所有基本事件个数n==18,其中不含有编号2的基本事件有,∴含有编号2的基本事件个数m=18﹣6=12,∴所取出的3个球中含有编号为2的球的概率p=.18.已知等比数列{a n}的公比q>1,a1=1,且a1,a3,a2+14成等差数列,数列{b n}满足:a1b1+a2b2+…+a n b n=(n﹣1)•3n+1,n∈N.(I)求数列{a n}和{b n}的通项公式;(Ⅱ)若ma n≥b n﹣8恒成立,求实数m的最小值.【考点】数列的求和;等比数列的通项公式.【分析】(I)数列{a n}是首项为1,公比为q的等比数列,运用等比数列的通项公式和等差数列的中项性质,解方程可得a n=3n﹣1,再将n换为n﹣1,两式相减可得b n=2n﹣1;(2)若ma n≥b n﹣8恒成立,即为m≥的最大值,由c n=,作差,判断单调性,即可得到最大值,进而得到m的最小值.【解答】解:(I)∵数列{a n}是首项为1,公比为q的等比数列,∴a n=q n﹣1,由a1,a3,a2+14成等差数列,可得2a3=a1+a2+14,即为2q2=1+q+14,解得q=3(负的舍去),即有a n=3n﹣1,∴a1b1+a2b2+a3b3+…+a n b n=b1+3b2+32b3+…+3n﹣1b n=(n﹣1)•3n+1,∴b1+3b2+32b3+…+3n﹣2b n﹣1=(n﹣1﹣1)•3n﹣1+1(n≥2),两式相减得:3n﹣1b n=(n﹣1)•3n﹣(n﹣2)•3n﹣1=(2n﹣1)•3n﹣1,∴b n=2n﹣1,当n=1时,a1b1=1,即b1=1满足上式,∴数列{b n}的通项公式是b n=2n﹣1;(2)若ma n≥b n﹣8恒成立,即为m≥的最大值,由c n=,n≥2时,c n﹣1=,c n﹣c n﹣1=﹣=,可得n=2,3,…,6时,c n≥c n﹣1;n=7,…时,c n<c n﹣1.即有n=5或6时,c n取得最大值,且为,即为m≥,可得m的最小值为.19.如图,在三棱锥P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中点,M是CE 的中点,N点在PB上,且4PN=PB.(Ⅰ)证明:平面PCE⊥平面PAB;(Ⅱ)证明:MN∥平面PAC.【考点】平面与平面垂直的判定;直线与平面平行的判定;直线与平面垂直的性质.【分析】(I)由AB⊥平面PAC可得AB⊥PC,再结合AP⊥PC得出PC⊥平面PAB,故而平面PCE⊥平面PAB;(II)取AE中点Q,连结NQ,MQ,则可证明平面MNQ∥平面PAC,故而MN∥平面PAC.【解答】证明:(I)∵AB⊥平面PAC,PC⊂平面PAC,∴AB⊥PC,∵∠APC=90°,∴AP⊥PC,又∵AP⊂平面PAB,AB⊂平面PAB,AP∩AB=A,∴PC⊥平面PAB,∵PC⊂平面PCE,∴平面PCE⊥平面PAB.(II)取AE中点Q,连结NQ,MQ,∵M是CE中点,∴MQ∥AC,∵PB=4PN,AB=4AQ,∴QN∥AP,又∵AP∩PC=P,AP⊂平面APC,PC⊂平面APC,QN∩QM=Q,QN⊂平面MNQ,QM⊂平面MNQ,∴平面MNQ∥平面PAC,∵MN⊂平面MNQ,∴MN∥平面PAC.20.如图:A,B,C是椭圆的顶点,点F(c,0)为椭圆的右焦点,离心率为,且椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为k1,证明:.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.【分析】(I)由题意得=, +=1,a2=b2+c2.联立解得即可得出椭圆方程.(Ⅱ)由截距式可得直线BC的方程为:y=x+2.直线AP的方程为:y=k(x﹣4),与椭圆方程联立可得:(4k2+1)x2﹣32k2x+64k2﹣16=0,又点P在椭圆上,利用根与系数的关系可得P.利用斜率计算公式可得k CP,可得直线CP的方程,可得E.把直线BC与AP的方程联立可得D.可得直线DE 的斜率,化简整理即可证明.【解答】解:(I)由题意得=, +=1,a2=b2+c2.联立解得a2=16,b2=4,∴椭圆C: +=1.证明:(Ⅱ)A(4,0),B(﹣4,0),C(0,2),直线BC的方程为:=1,化为:y=x+2.直线AP的方程为:y=k(x﹣4),与椭圆方程联立可得:(4k2+1)x2﹣32k2x+64k2﹣16=0,又点P在椭圆上,∴4x P=,解得x P=,∴y P=k(x P﹣4)=,故P.k CP==,故直线CP的方程为:y=x+2,令y=0,解得x=,可得E.把直线BC与AP的方程联立可得:,解得,∴D.直线DE的斜率为k1===,∴.21.已知函数f(x)=lnx(Ⅰ)求函数的最大值.(Ⅱ)证明:;(Ⅲ)若不等式mf(x)≥a+x对所有的都成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值即可;(Ⅱ)令h(x)=x﹣f(x),求出h(x)的导数,得到函数的单调区间,求出h(x)的最小值,结合F(x)的最大值,从而证出结论即可;(Ⅲ)利用参数分离法,转化为以m为变量的函数关系进行求解即可.【解答】解:(Ⅰ)F(x)=+=+,F′(x)=,令F′(x)>0,解得:x<e,令F′(x)<0,解得:x>e,∴F(x)在(0,e)递增,在(e,+∞)递减,故F(x)max=+;证明:(Ⅱ)令h(x)=x﹣f(x),则h′(x)=,从而h(x)在(0,1)递减,在(1,+∞)递增,∴h(x)的最小值是h(1)=1,又F(x)的最大值是+<1,∴F(x)<h(x),即+<x﹣f(x);解:(Ⅲ)不等式mf(x)≥a+x对所有的m∈[0,],x∈[1,e2]都成立,则a≤mlnx﹣x对所有的m∈[0,],x∈[1,e2]都成立,令H(x)=mlnx﹣x,m∈[0,],x∈[1,e2]是关于m的一次函数,∵x∈[1,e2],∴lnx∈[0,2],∴当m=0时,H(m)取得最小值﹣x,即a≤﹣x,当x∈[1,e2]时,恒成立,故a≤﹣e2.2020年9月19日。