返回 上页 下页
a11 x1 + a12 x 2 + ⋯ + a1n x n = 0 , ⋯ ⋯ ⋯⋯⋯⋯⋯⋯ a s1 x1 + a s 2 x 2 + ⋯ + a sn x n = 0 , b11 x1 + b12 x 2 + ⋯ + b1n x n = 0 , ⋯⋯⋯⋯⋯⋯⋯⋯ bt 1 x1 + bt 2 x 2 + ⋯ + btn x n = 0
返回
证毕. 证毕
上页 下页
由集合的交的定义有,子空间的交 由集合的交的定义有,子空间的交适合下列 运算规律: 运算规律: V1∩V2=V2∩V1 (交换律 , 交换律), 交换律 (V1∩V2)∩V3=V1∩(V2∩V3)(结合律 结合律). 结合律 由结合律,可以定义多个子空间的交 由结合律,可以定义多个子空间的交: 多个子空间的 s
V1 + V2 + ⋯ + Vs = ∑ Vi
i =1 s
它是由所有表示成 它是由所有表示成
α 1 + α 2 + ⋯ + α s , α i ∈ Vi ( i = 1 , 2 , ⋯ , s )
的向量组成 的子空间. 的向量组成V的子空间 组成
返回 上页 下页
关于子空间的 有以下结论 结论: 关于子空间的交与和有以下结论: 子空间 1. 都是子空间 设V1, V2, W都是子空间,那么由 p V1与 都是子空间,那么由Wp Wp V2可推出 p V1∩V2 ;而由 V1p W与V2p W 可 p 可推出Wp 与 推出V 推出 1+V2p W 2. 对于子空间 1与V2 ,以下三个论断是等价的: 对于子空间 子空间V 以下三个论断是等价的: 1) V1 V2; 2) V1∩V2=V1; 3) V1+V2=V2 . (这些结论的证明较容易,留给大家作练习.) 这些结论的证明较容易,留给大家作练习 )