2.2.1向量的加减法运算及其几何意义
- 格式:pdf
- 大小:295.85 KB
- 文档页数:4
向量减法运算及其⼏何意义,向量的数乘运算及其⼏何意义教案§2.2.2向量减法运算及其⼏何意义⼀.知识点梳理1.⽤“相反向量”定义向量的减法:1?“相反向量”的定义:与a 长度相同、⽅向相反的向量记作 -a2?规定:零向量的相反向量仍是零向量,且-(-a ) = a 。
任⼀向量与它的相反向量的和是零向量即a + (-a ) = 0。
如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上b 的相反向量,叫做a 与b 的差即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法2.⽤加法的逆运算定义向量的减法:若b + x = a ,则x 叫做a 与b 的差,记作a - b3减法的三⾓形法则:在平⾯内取⼀点O ,作OA = a , OB = b , 那么连接两个向量的终点并指向被减向量⽅向的向量就是两个向量的差向量. 即a - b 可以表⽰为从向量b 的终点指向向量a 的终点的向量注意:1?AB 表⽰a - b 强调:差向量“箭头”指向被减数.4.向量减法运算的记忆⼝决:共起点,连终点,⽅向指向被减数(⽅向由后指前)5.向量减法与向量加法的⽐较:(1)加法:⾸尾相连,从头指尾(前向量的头指向后向量的尾)(2)减法:共起点,连终点,⽅向指向被减数 6.向量减法的字母公式:CB AC AB =-⼆.例题讲解例1.已知向量a 、b 、c 、d ,求作向量a -b 、c -d解:在平⾯上取⼀点O ,作OA = a , OB = b , OC = c , OD = d ,作BA, DC, 则BA= a-b, DC= c-d例2.已知,在平⾏四边形ABCD中,aAD=,⽤a,b表⽰向量AC、AB=,bDB解:由平⾏四边形法则得: D CAC= a + b,DB= ADAB- = a-b bA aB 例3.若|AB|=8,|AC|=5,则|BC|的取值范围是( )A.[3,8]B.(3,8)C.[3,13]D.(3,13)解析:BC=AC-AB.(1)当AB、AC同向时,|BC|=8-5=3;(2)当AB、AC反向时,|BC|=8+5=13;(3)当AB、AC不共线时,3<|BC|<13.综上,可知3≤|BC|≤13.答案:C点评:此题可直接应⽤重要性质||a|-|b||≤|a+b|≤|a|+|b|求解.三.课堂练习1. 如下图所⽰,已知⼀点O到ABCD的3个顶点A、B、C的向量分别是a、b、c,则向量OD等于( )A.a+b+cB.a-b+cC.a+b-cD.a-b-c解析:如图5,点O到平⾏四边形的三个顶点A、B、C的向量分别是a、b、c,结合图形有OD=OA+AD=OA+BC=OA+OC-OB=a-b+c.答案:B2 判断题:(1)若⾮零向量a与b的⽅向相同或相反,则a+b的⽅向必与a、b之⼀的⽅向相同.(2)△ABC中,必有AB+BC+CA=0.(3)若AB+BC+CA=0,则A、B、C三点是⼀个三⾓形的三顶点.(4)|a+b|≥|a-b|.解:(1)a与b⽅向相同,则a+b的⽅向与a和b⽅向都相同;若a与b⽅向相反,则有可能a与b互为相反向量,此时a+b=0的⽅向不确定,说与a、b之⼀⽅向相同不妥.(2)由向量加法法则AB+BC=AC,AC与CA是互为相反向量,所以有上述结论.(3)因为当A、B、C三点共线时也有AB+BC+AC=0,⽽此时构不成三⾓形.(4)当a与b不共线时,|a+b|与|a-b|分别表⽰以a和b为邻边的平⾏四边形的两条对⾓线的长,其⼤⼩不定.当a 、b 为⾮零向量共线时,同向则有|a +b |>|a -b |,异向则有|a +b |<|a -b |; 当a 、b 中有零向量时,|a +b |=|a -b |. 综上所述,只有(2)正确.四.内容⼩结本节我们学习的内容如下: 1.相反向量的概念 2.向量减法的定义 3.向量减法的运算法则§2.2.2向量的数乘运算及其⼏何意义教学⽬标:1.向量的数乘运算的概念 2.向量的数乘运算法则 3.向量的数乘运算的⼏何意义 4.平⾯向量基本定理教学重点:1.向量的数乘运算法则 2.向量的数乘运算的⼏何意义教学难点:平⾯向量基本定理的理解与运⽤⼀.知识点梳理1.向量的数乘运算定义:规定⼀个实数λ与向量a 的积是⼀个向量,这种运算叫做向量的数乘运算记作λa. 它的长度和⽅向规定如下:(1)|λa|=|λ||a|. (2)0λ>时,λa 的⽅向与a 的⽅向相同;当0λ<时,λa 的⽅向与a的⽅向相反;特别地,当0λ=或0a = 时,0λa =.2.运算律:设a 、b为任意向量,λ、µ为任意实数,则有:(1)()λµa λa µa +=+ ;(2)()()λµa λµa = ;(3)()λa b λa λb +=+.通常将(2)称为结合律,(1)(3)称为分配律。
2.2.1 向量加法运算及其几何意义●温故知新1.既有_______,又有_______的量叫做向量.向量可以用_____线段来表示,但起点字母必须放在终点字母的______,手写体上面的______ 不能漏写.2.____________或____________的非零向量叫做平行向量,零向量与任一向量______.3.___________且___________的向量叫做相等向量.4.平行向量也叫__________.表示两个非零平行向量的有向线段所在直线的位置关系是_______或_______.●教材新知1.求两个向量____的运算,叫做向量的加法.2.零向量与任一向量a,规定:0=0a++a=_____.3.当在数轴上表示两个共线向量时,它们的加法与数的加法有什么关系?两个数相加其结果是一个数,对应于数轴上的一个_____.两个向量相加,它们的和仍然是一个向量,对应于数轴上的一条_________.4.当向量a、b(1)三角形法则:两向量首尾相接,和向量为首向量的_______指向末向量的_______.(2)平行四边形法则:两向量共始点,以它们为邻边作平行四边形,和向量为平行四边形的_______________.向量加法的几何意义就是________和____________.任意两个向量相加,所得的和一定是一个_______.(3)任一向量都可以写成两个首尾相接向量的和,即AB=____+____.5.向量加法的运算律(1)交换律:=a+b____+____.(2)结合律:()=a+b+c a+_______.结论:(1)当a与b_______时,a+b与a、b同向,且=a+b a+b.(2)当a与b_______时,若a>b,则a+b与a同向,且-a+b a b;=若a<b,则a+b与b同向,且-a+b b a;=若a=b,则a+b=____.(3)当a、b不共线时,a+b____a+b.(4)任意两个向量的和,结果是_______.6.向量链:若干个向量首尾_________,且构成一个_________.组成向量链的所有向量的和为_______.●题组集训(1)若向量a表示向东走1km,向量b表示向南走1km,则向量a+b表示()A.2B.向东南走2kmC.2D.向东北走2km (2)下列式子不能化简为AD的是()A.()AD MB BC CM+++++ B.()()AB CD BCC.MB AD MB++++ D.OC AO CD(3)在四边形ABCD中,AC AB AD=+,则一定有()A.四边形ABCD是矩形B.四边形ABCD是菱形C.四边形ABCD是正方形D.四边形ABCD是平行四边形(4)已知下列各式:①AB BC CA ++;②()AB MB BO OM +++;③OA OC BO ++;④AB + CA BD DC ++.其中结果为0的个数为( )A.1B.2C.3D.4(5)在ABC ∆中,CB =a ,AC =b ,则AB =________.●课堂精讲【例1】(1)如图,已知a 、b ,用向量加法的三角形法则作出a +b .(2)如图,已知a 、b ,用向量加法的平行四边形法则作出a +b .【例2】四边形ABCD 是边长为1的正方形,设AB =a ,BC =b ,AC =c .求作向量++a b c ,并求++a b c .【例3】一条渔船距对岸4km ,以2km /h 的速度向垂直于对岸的方向划去,到达对岸时,船的 实际航程为8km ,求河水的流速.●课后反馈(1)下列结论中,正确的是( )A.0+=00B.对于任意向量a 、b ,a+b =b+aC.对于任意向量a 、b ,0a +b >D.若向量AB ‖BC ,且1AB =,2014BC =,则2015AB BC +=(2)在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( )A.AB CD =,BC AD =B.AD OD DA +=C.AO OD AC CD +=+D.AB BC CD DA ++=(3)设()()AB CD BC DA +++=a ,b 是一非零向量,则在下列结论中,正确的结论为( ) ①a ‖b ;②a+b =a ;③a+b =b ;④a +b <a +b .A.①②B.③④C.②④D.①③(4)如图,已知ABC ∆是直角三角形且90A ∠=︒.则在下列各结论中, 正确的结论个数为( )①AB AC BC +=; ②AB BC CA +=;③AB CA BC +=; ④222AB AC BC +=.A.4个B.3个C.2个D.1个(5)已知ABC ∆是正三角形,则下列各等式中不成立的为( )A.AB BC BC CA +=+B.AC CB BA BC +=+C.AB AC CA CB +=+D.AB BC AC CB BA CA ++=++(6)若O 是ABC ∆内一点,且OA OB OC ++=0,则O 是ABC ∆的( )A.内心B.外心C.垂心D.重心(7)如图,正六边形ABCDEF 中,BA CD EF ++=( )A.0B.BEC.ADD.CF(8)若O 是ABC ∆内一点,D 为BC 边上中点,2OA OB OC ++=0,则( )A.AO OD =B.2AO OD =C.3AO OD =D.2AO OD =(9)如图,已知梯形ABCD ,OA AB BC ++=______.(10)化简AB CD BC DB EF BF FA ++++++=______.(11)向量a 、b 满足6=a ,10=b ,则a +b 的最大值是______, 最小值是______.(12)如图,在平行四边形ABCD 中,O 是AC 与BD 的交点,P 、 Q 、M 、N 分别是线段OA 、OB 、OC 、OD 的中点.在A 、P 、 M 、C 中任取一点记为E ,在B 、Q 、N 、D 中任取一点记为 F .设G 为满足向量OG OE OF =+的点,则在上述的点G 组成的 集合中的点,落在平行四边形ABCD 外(不含边界)的概率是 ______.(13)如图,在重300N 的物体上栓两根绳子,这两根绳子在 铅垂线的两侧,与铅垂线的夹角分别为30︒、60︒,当整个系 统处于平衡状态时,求两根绳子的拉力.。
全国⾼中数学教师优秀教案-《向量加法运算及其⼏何意义》教案(河南省杜志国)
第五届全国⾼中青年数学教师优秀课观摩活动教案
《向量加法运算及其⼏何意义》
河南省商丘市实验中学
杜志国
《2.2.1向量加法运算及其⼏何意义》教案
授课教师:河南省商丘市实验中学杜志国
⼀、教学⽬标
知识⽬标:理解向量加法的含义,会⽤向量加法的三⾓形法则和平⾏四边形法则作出两个向量的和;掌握向量加法的交换律与结合律,并会
⽤它们进⾏向量运算.
能⼒⽬标:经历向量加法概念、法则的建构过程,感受和体会将实际问题抽象为数学概念的思想⽅法,培养学⽣发现问题、分析问题、解决
问题的能⼒.
情感⽬标:经历运⽤数学来描述和刻画现实世界的过程,体验探索的乐趣,激发学⽣的学习热情.培养学⽣勇于探索、敢于创新的个性品质.⼆、重点与难点
重点:向量加法的定义与三⾓形法则的概念建构;以及利⽤法则作两个向量的和向量.
难点:理解向量的加法法则及其⼏何意义.
三、教法学法
教法运⽤了“问题情境教学法”、“启发式教学法”和“多媒体辅助教学法”.学法采⽤以“⼩组合作、⾃主探究”为主要⽅式的⾃主学习模式.
四、教学过程
新课程理念下的教学过程是⼀个内容活化、创⽣的过程,是⼀个学⽣思考、体验的过程,更是⼀个师⽣互动、发展的过程.基于此,我设定了5个教学环节:
⼀、创设情境引⼊课题
师:在前⼀节课中我们学习了⼀个新的量——向量,今天就让我们共同来探究向量的加法运算,⾸先,请看课件.(出⽰)
师:他是谁?
⽣:丁俊晖.
师:对,著名的台球神童——
看他好像遇到了难题?(出⽰)。
专题2.2.1-2向量加法、减法运算及其几何意义重难点题型【举一反三系列】【知识点1 向量加法的三角形法则与平行四边形法则】1.向量加法的概念及三角形法则已知向量,a b ,在平面内任取一点A ,作,AB a BC b ==,再作向量AC ,则向量AC 叫做a 与b 的和,记作a b +,即a b AB BC AC +=+=.如图本定义给出的向量加法的几何作图方法叫做向量加法的三角形法则.2.向量加法的平行四边形法则已知两个不共线向量,a b ,作,AB a AD b ==,则,,A B D 三点不共线,以,AB AD 为邻边作平行四边形ABCD ,则对角线AC a b =+.这个法则叫做两个向量求和的平行四边形法则.求两个向量和的运算,叫做向量的加法.对于零向量与任一向量a ,我们规定00a a a +=+=.两个向量的和与差仍是一个向量,可用平行四边形或三角形法则进行运算,但要注意向量的起点与终点.【知识点2 向量求和的多边形法则及加法运算律】1.向量求和的多边形法则的概念已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的起点为起点,第n 个向量的终点为终点的向量叫做这n 个向量的和向量.这个法则叫做向量求和的多边形法则.112231n n n A A A A A A A A -=++⋅⋅⋅+特别地,当1A 与n A 重合,即一个图形为封闭图形时,有1223110n n n A A A A A A A A -++⋅⋅⋅++=2.向量加法的运算律(1)交换律:a b b a +=+;(2)结合律:()()a b c a b c ++=++【知识点3 向量的减法】1.向量的减法(1)如果b x a +=,则向量x 叫做a 与b 的差,记作a b -,求两个向量差的运算,叫做向量的减法.此定义是向量加法的逆运算给出的.相反向量:与向量a 方向相反且等长的向量叫做a 的相反向量.(2)向量a 加上b 的相反向量,叫做a 与b 的差,即()a b a b -=+-.求两个向量差的运算,叫做向量的减法,此定义是利用相反向量给出的,其实质就是把向量减法化为向量加法.2.向量减法的作图方法(1)已知向量a ,b ,作,OA a OB b ==,则BA a b =-=OA OB -,即向量BA 等于终点向量(OA )减去起点向量(OB ).利用此方法作图时,把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始点的,被减向量的终点为终点的向量.(2)利用相反向量作图,通过向量加法的平行四边形法则作出a b -.作,,OA a OB b AC b ===-,则()OC a b =+-,如图.由图可知,一个向量减去另一个向量等于加上这个向量的相反向量.【考点1 向量的加减法运算】【例1】化简:(1)AB AC BD CD -+-;(2)AB MB BO OM +++;(3)MB AC BM ++;(4)OA OC BO CO +++.【分析】根据向量加法、减法的几何意义,用有向线段的起点和终点表示向量,以及相反向量的概念进行向量的加法和减法的运算从而化简每个式子即可.【答案】解:(1)0AB AC BD CD CB BD DC -+-=++=;(2)AB MB BO OM AB MB BM AB +++=++=;(3)MB AC BM MB BM AC AC ++=++=;(4)0OA OC BO CO BO OA OC CO MA MA +++=+++=+=【点睛】考查向量、向量加法,以及向量减法的几何意义,相反向量和零向量的概念.【变式1-1】化简:(1)AB DC BD AC ++-;(2)OA OD AD -+;(3)MN MP NQ QP -++;(4)AB AD DC --.【分析】利用向量三角形法则及其交钱加法减法法则即可得出.【答案】解:(1)0AB DC BD AC AB BC AC AC AC ++-=+-=-=;(2)0OA OD AD DA AD -+=+=;(3)0MN MP NQ QP PN NP -++=+=;(4)AB AD DC DB DC CB --=-=.【点睛】本题考查了向量三角形法则及其交钱加法减法法则,考查了推理能力与计算能力,属于基础题.【变式1-2】化简下列各式:(1)OA OB OC CO -+--;(2)()()AB CD BC AD ++-.【分析】使用向量加减混合运算的法则进行计算.【答案】解:(1))()()OA OB OC CO OB OA CO CO AB -+--=-+-=.(2))()()0AB CD BC AD AB CD BC AD AB BC CD AD AD AD ++-=++-=++-=-=.【点睛】本题考查了平面向量的加减混合运算,属于基础题.【变式1-3】化简:(1)AB BC CA ++(2)()AB MB BO OM +++(3)OA OC BO CO +++(4)AB AC BD CD -+-(5)OA OD AD -+(6)AB AD DC --(7)NQ QP MN MP ++-.【分析】根据平面向量的加法与减法的运算法则,对每一个小题进行化简计算即可.【答案】解:(1)0AB BC CA AC CA AC AC ++=+=-=;(2)()()AB MB BO OM AB MB BO OM AB MO MO AB +++=+++=+-=;(3)()()0OA OC BO CO OA OB OC OC BA BA +++=-+-=+=;(4)()()0AB AC BD CD AB AC BD DC CB BC -+-=-++=+=;(5)()0OA OD AD OA OD AD DA AD DA DA -+=-+=+=-=;(6)()--=--=-=;AB AD DC AB AD DC DB DC CB(7)()()0 ++-=++-=+=.NQ QP MN MP NQ QP MN MP NP PN【点睛】本题考查了平面向量的加法与减法的运算问题,是基础题目.【考点2 利用向量的加减法法则作图】【例2】对下图中各组向量a、b,求作a b+.【分析】将两向量首尾相接,则a b+表示从起点到指向终点的向量.【答案】解:(1)(2)(3)【点睛】本题考查了平面向量加法的集合意义.属于基础题.【变式2-1】对图中各组向量a、b,求作a b-【分析】将两向量的起点平移到一起,则a b-表示由b的终点指向a的终点的向量.【答案】解:(1)(2)(3)【点睛】本题考查了利用平面向量的三角形法则作图,属于基础题.【变式2-2】根据已知向量a、b,求作a b-.+、a b(1(2(3【分析】利用向量加减运算的三角形法则作图.【答案】解:(1)作出a b+,如图所示:作出a b-如图所示:(2)作出a b+,如图所示:作出a b-如图所示:(3)作出a b+,如图所示:作出a b-如图所示:【点睛】本题考查了平面向量加减运算的几何意义,属于基础题.【变式2-3】已知(1)(2)(3)(1)求作:a十b;(2)求作:a十b;(3)求作:a十b十c.【分析】利用向量的平行四边形法则即可作出.【答案】解:如图所示,(1)先把向量a平移到OB,以OA,OB为邻边作平行四边形OACB,则OC a b=+.(2)同理可得:OB a b=+;(3)OA a b=,=+,BO c则BA a b c=++.【点睛】本题考查了向量的平行四边形法则,考查了推理能力与计算能力,属于基础题.【考点3 用已知向量表示相关向量】【例3】(2019春•东城区期末)如图,向量AB a=,AC b=,则向量BD可以表示为()=,CD cA.a b c-+D.b a c--+-B.a b c-+C.b a c【分析】通过向量的加法减法的运算法则,表示出结果即可.【答案】解:如图,向量AB a=+,=,则向量BD BA AD=,CD c=,AC b+=++=-++.BA AD BA AC CD a b c故选:C.【点睛】本题考查向量的基本运算,考查计算能力.【变式3-1】如图所示,在四边形ABCD 中,AC AB AD =+,对角线AC 与BD 交于点O ,设O A a =,OB b =,用a 和b 表示AB 和AD .【分析】由题意得AB AO OB OA OB b a =+=-+=-,由AC AB AD =+可得四边形ABCD 是平行四边形,从而求得()AD AO OD b a =+=-+. 【答案】解:OA a =,OB b =,∴AB AO OB OA OB b a =+=-+=-,AC AB AD =+,∴四边形ABCD 是平行四边形,∴OB OD b =-=,∴()AD AO OD b a =+=-+.【点睛】本题考查了平面向量的加法及其几何意义的应用.【变式3-2】如图所示,已知OA a =,OB b =,OC c =,OD d =,OF f =,试用a ,b ,c ,d ,f 表示下列向量.(1)AC ;(2)AD ;(3)AD AB -;(4)AB CF +;(5)BF BD -.【分析】利用平面向量线性运算的三角形法则进行表示.【答案】解:(1)AC OC OA c a=-=-;(2)AD OD OA d a=-=-;(3)AD AB BD OD OB d b-==-=-;(4)AB CF OB OA OF OC b a f c+=-+-=-+-;(5)BF BD DF OF OD f d-==-=-.【点睛】本题考查了平面向量线性运算的三角形法则,属于基础题.【变式3-3】向量a,b,c,d,e如图所示,解答下列各题:(1)用a,d,e表示DB;(2)用b,c表示DB;(3)用a,b,e表示EC;(4)用d,c表示EC.【分析】利用平面向量加法的三角形法则及相反向量求解即可.【答案】解:(1)DB DE EA AB d e a=++=++;(2)DB DC CB c b=+=--;(3)EC EA AB BC e a b=++=++;(4)EC ED DC d c =+=--.【点睛】本题考查了平面向量加法的三角形法则及相反向量,加法比减法更简单一些.【考点4 向量的加减法的几何意义】【例4】(2019春•水富县校级期中)已知O 是四边形ABCD 所在平面上任一点,//||||AB CD OA OB OC OD -=-且则四边形ABCD 一定为( )A .菱形B .任意四边形C .平行四边形D .矩形 【分析】根据OA OB OC OD -=-和//AB CD 可得//AB CD 且AB CD =即可判断该四边形.【答案】解:由OA OB OC OD -=-得||||AB CD =,又//AB CD 所以//AB CD 且AB CD =,∴四边形ABCD 为平行四边形.故选:C .【点睛】本题考查了平面向量的运算性质和向量的平行,属基础题.【变式4-1】(2019秋•沧州期末)O 为四边形ABCD 所在平面内任意一点,若OA OC OB OD +=+,则四边形ABCD 为( )A .平行四边形B .矩形C .菱形D .正方形【分析】根据OA OC OB OD +=+即可得出BA CD =,从而得出四边形ABCD 为平行四边形.【答案】解:OA OC OB OD +=+;∴OA OB OD OC -=-;∴BA CD =;//BA CD ∴,且BA CD =;∴四边形ABCD 为平行四边形.故选:A .【点睛】考查向量减法的几何意义,相等向量的概念,以及平行四边形的定义.【变式4-2】(2019•海淀区一模)在ABC ∆上,点D 满足2AD AB AC =-,则( )A .点D 不在直线BC 上B .点D 在BC 的延长线上C .点D 在线段BC 上 D .点D 在CB 的延长线上 【分析】据条件,容易得出AD AB CB =+,可作出图形,并作BD CB '=,并连接AD ',这样便可说明点D 和点D '重合,从而得出点D 在CB 的延长线上.【答案】解:2AD AB AC =-AB AB AC =+-AB CB =+;如图,作BD CB '=,连接AD ',则:AB CB AB BD AD AD +=+'='=;D ∴'和D 重合;∴点D 在CB 的延长线上.故选:D .【点睛】考查向量减法的几何意义,向量的几何意义,相等向量的概念,以及向量加法的三角形法则.【变式4-3】(2019秋•昌平区期末)在平行四边形ABCD 中,若||||AB AD AB AD -=+,则平行四边形ABCD 是( )A .矩形B .梯形C .正方形D .菱形【分析】根据向量的基本运算,利用平方法进行判断即可.【答案】解:由||||AB AD AB AD -=+,平方得222222AB AB AD AD AB AB AD AD -+=++,得得0AB AD =,即得AB AD ⊥,则平行四边形ABCD 是矩形,故选:A .【点睛】本题主要考查平行四边形的形状的判断,根据向量的基本运算,是解决本题的关键.【考点5 利用向量的加减法证明几何问题】【例5】P ,Q 是三角形ABC 边BC 上两点,且BP QC =,求证:AB AC AP AQ +=+.【分析】根据题意,画出图形,结合图形,利用平面向量的加法与减法的几何意义,即可得出结论.【答案】证明:P ,Q 是三角形ABC 边BC 上两点,且BP QC =,如图所示;=-,∴BP AP AB=-;QC AC AQ又BP QC=,-=-,∴AP AB AC AQ+=+;∴AP AQ AC AB即AB AC AP AQ+=+.【点睛】本题考查了平面向量的加法与减法的几何意义的应用问题,是基础题目.【变式5-1】(2019•广东模拟)如右图,已知点D、E、F分别是ABC∆三边AB、BC、CA的中点,求证:0++=.EA FB DC【分析】由题意先证明ADEF为平行四边形,再由向量加法的平行四边形法则得ED EF EA+=,同理求出FB,DC再把三个式子加起来,重新组合利用向量加法的首尾相连法则求解.【答案】证明:连接DE、EF、FD,如图,D、E、F分别是ABC∆三边的中点,DE AF,∴,////EF AD∴四边形ADEF为平行四边形,由向量加法的平行四边形法则,得ED EF EA+=①,同理在平行四边形BEFD中,FD FE FB+=②,在平行四边形CFDE在中,DF DE DC+=③,将①②③相加,得(EA FB DC ED EF FD FE DE DF++=+++++=+++++()()()EF FE ED DE FD DF=【点睛】本题的考点是向量的加法及其几何意义,根据图中的中点构成的中位线证明四边形是平行四边形,利用四边形法则,把所要证明的向量和转化为其他向量的和,由加法的首尾相连法则证出.【变式5-2】O是平行四边形ABCD外一点,求证:OA OC OB OD+=+.【分析】将OA OC和表达,找关系即可.和放在三角形中,由向量加法的三角形法则用OB OD【答案】解:OA OC OB BA OD DC+=+++因为ABCD是平行四边形,所以0+=BA DC所以OA OC OB OD+=+【点睛】本题考查向量加法的几何意义,向量的三角形法则.【变式5-3】点D,E,F分别是ABC∆三边AB,BC,CA的中点,求证:(1)AB BE AC CE+=+.(2)0++=.EA FB DC【分析】(1)利用图形和向量加法的三角形法则,证明左边等于右边;(2)利用图形和向量加法的三角形法则,分别求出EA、FB和DC,再把它们加在一起,由中点和向量相等证明出左边等于0.【答案】证明:(1)由向量加法的三角形法则得,AB BE AE +=,同理可得,AC CE AE +=,∴AB BE AC CE +=+,(2)由向量加法的三角形法则得,EA EB BA =+,同理可得,FB FC CB =+,DC DB BC =+,∴左边EA FB DC EB BA FC CB DB BC EB BA FC DB =++=+++++=+++①,点D ,E ,F 分别是ABC ∆三边AB ,BC ,CA 的中点,∴FC AF =,代入①得,左边EB BF DB EF DB =++=+, 又EF BD =,∴左边0==右边,故等式成立.【点睛】本题的考点是向量加法以及几何意义,主要考查了三角形法则以及向量相等的应用,注意利用图形进行化简和证明.【考点6 用向量解决实际问题】【例6】在水流速度为10/km h 的河中,如果要使船以/h 的速度与河岸成直角地横渡,求船行驶速度的大小与方向.【分析】由题意,画出示意图,然后利用向量的加法运算解答.【答案】解:如图,OA 表示水流方向,OB 表示垂直于对岸横渡的方向,OC 表示船航行的方向,有OB OC OA =+可知BC OA =,所以||||10BC OA ==,||OB =||20OC =,且120AOC ∠=︒. 所以船行驶速度的大小20/km h ,与水流方向成120︒角行驶.【点睛】本题考查了向量加法的实际应用,关键是明确水流方向与船的航行方向的合成为船实际航行方向.【变式6-1】已知桥是南北方向,受落潮影响,海水以12.5/km h 的速度向东流,现有一艘工作艇,在诲面上航行检查桥墩的状况,已知艇的速度是25/km h ,若艇要沿着与桥平行的方问由南向北航行,则艇的航向如何确定?【分析】根据题意分别用向量表示船速、水流速度,由向量加法的四边形法则画出图形,根据条件在直角三角形中求出船航行的角度.【答案】解:如图,设渡船速度为OB ,水流速度为OA ,则船实际垂直过江的速度为OD ,由题意知,||12.5OA =,||25OB =,四边形OADB 为平行四边形,||||BD OA ∴=,又OD BD ⊥,∴在Rt OBD ∆中,30BOD ∠=︒,则航向为北偏西30︒.【点睛】本题考查了向量的加法几何意义的实际应用,即用向量来表示题中的矢量,根据向量的知识进行求解.【变式6-2】一艘轮船从码头出发驶向河对岸,已知轮船的速度为6/km h ,河水的流速为2/km h ,轮船的实际航行路线与对岸的岸边垂直.(1)试用向量表示河水速度、轮渡速度以及轮渡实际航行的速度;(2)求轮船航行的实际速度的大小(精确到0.01 1.414)≈.【分析】(1)设河水速度为0v 、轮渡速度为1v ,轮渡实际航行的速度为v ,由题意能用向量表示河水速度、轮渡速度以及轮渡实际航行的速度.(2)由16/v km h =,0/v km h =,0v v ⊥,利用勾股定理能求出轮船航行的实际速度.【答案】解:(1)设河水速度为0v 、轮渡速度为1v ,轮渡实际航行的速度为v ,由题意用向量表示河水速度、轮渡速度以及轮渡实际航行的速度如下图:(2)16/v km h =,0/v km h =,0v v ⊥,∴轮船航行的实际速度262 5.656(/)v km h =-==.【点睛】本题考查向量表示河水速度、轮渡速度以及轮渡实际航行的速度,考查轮船航行的实际速度的大小的求法,是基础题,解题时要注意向量三角形法则的合理运用.【变式6-3】为了调运急需物资,如图所示,一艘船从长江南岸A 点出发,以/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东5/km h .(1)试用向量表示江水的速度、船速以及船实际航行的速度;(2)求船实际航行的速度的大小与方向(用与江水的速度方向间的夹角表示).【分析】(1)根据方向和速度大小作图;(2)利用向量加法的平行四边形法则求出矩形的对角线和DAC ∠. 【答案】解:(1)作出向量如图所示:其中AC 表示江水速度,AB 表示船速,AD 表示船实际航行速度.(2)AB AC ⊥,AD AB AC =+,∴四边形ABDC 是矩形,2||510AD ∴=.tan DAC ∠==60DAC ∴∠=︒. ∴船实际航行的速度为10/km h ,实际航行方向与江水速度方向夹角为60︒.【点睛】本题考查了平面向量线性运算的几何意义,属于基础题.。