高考数学二轮复习 专题三《三角函数》教案
- 格式:doc
- 大小:490.50 KB
- 文档页数:7
三角函数高考复习知识要点:一、角的概念与推广:任意角的概念;角限角、终边相同的角; 二、弧度制:把长度等于半径的弧所对的圆心角叫做1弧度;弧长公式:r l α= 扇形面积:S=α22121r r l =⋅三角函数线:如右图,有向线段AT 与MP OM 分别叫做α的的正切线、正弦线、余弦线。
三、同角三角函数关系:即:平方关系、商数关系、倒数关系。
四、诱导公式:()ααπf nf '±=⎪⎭⎫⎝⎛±2 记忆:单变双不变,符号看象限。
单双:即看πn 中的n 是2π的单倍还是双倍,单倍后面三角函数名变,双不变则三角函数名不变;符号看象限:即把α看成锐角,加上2πn 终边落在第几象限则是第几象限角的符号。
五、有关三角函数单调区间的确定、最小正周期、奇偶性、对称性以及比较三角函数值的大小问题,一般先化简成单角三角函数式。
然后再求解。
六、三角函数的求值、化简、证明问题常用的方法技巧有:1、 常数代换法:如:αααααα2222tan sec cot tan cos sin 1-=⋅=+= 2、 配角方法:ββαα-+=)(()βαβαα-++=)(222βαβαβ--+=3、 降次与升次:22cos 1sin 2αα-= 22cos 1cos 22αα+= 以及这些公式的变式应用。
4、 ()θααα++=+sin cos sin 22b a b a (其中ab=θtan )的应用,注意θ的符号与象限。
5、 常见三角不等式:(1)、若x x x x tan sin .2,0<<⎪⎭⎫⎝⎛∈则π (2)、若2cos sin 1.2,0≤+<⎪⎭⎫⎝⎛∈x x x 则π(3)、1cos sin ≥+x x 6、 常用的三角形面积公式:(1)、c b a ch bh ah S 212121===(2)、B ac A bcC ab S sin 21sin 21sin 21===(3)、()22221OB OA OB OA S ⋅-⋅=七、三角函图象和性质:正弦函数图象的变换:()()αωαωω+=−−−→−+=−−−→−=−−−→−=x A y x y x y x y sin sin sin sin 振幅变换平移变换横伸缩变换三角函数的图象和性质定义域RR值 域RR周期性奇偶性对称性 奇函数,图象关于坐标原点对称 偶函数,图象关于 轴对称奇函数,图象关于坐标原点对称 奇函数,图象关于原点对称 单调性在区间上单调递增;在区间上单调递减。
三角函数和解三角形【知识导读】【方法点拨】三角函数是一种重要的初等函数,它与数学的其它部分如解析几何、立体几何及向量等有着广泛的联系,同时它也提供了一种解决数学问题的重要方法——“三角法”.这一部分的内容,具有以下几个特点:1.公式繁杂.公式虽多,但公式间的联系非常密切,规律性强.弄清公式间的相互联系和推导体系,是记住这些公式的关键.2.思想丰富.化归、数形结合、分类讨论和函数与方程的思想贯穿于本单元的始终,类比的思维方法在本单元中也得到充分的应用.如将任意角的三角函数值的问题化归为锐角的三角函数的问题,将不同名的三角函数问题化成同名的三角函数的问题,将不同角的三角函数问题化成同角的三角函数问题等.3.变换灵活.有角的变换、公式的变换、三角函数名称的变换、三角函数次数的变换、三角函数表达形式的变换及一些常量的变换等,并且有的变换技巧性较强.4.应用广泛.三角函数与数学中的其它知识的结合点非常多,它是解决立体几何、解析几何及向量问题的重要工具,并且这部分知识在今后的学习和研究中起着十分重要的作用,比如在物理学、天文学、测量学及其它各门科学技术都有广泛的应用.第1课三角函数的概念【考点导读】1. 理解任意角和弧度的概念,能正确进行弧度与角度的换算.角的概念推广后,有正角、负角和零角;与α终边相同的角连同角α本身,可构成一个集合{}Z k k S ∈⋅+==,360 αββ;把长度等于半径的圆弧所对的圆心角定义为1弧度的角,熟练掌握角度与弧度的互换,能运用弧长公式r l α=及扇形的面积公式S =lr 21(l 为弧长)解决问题.2. 理解任意角的正弦、余弦、正切的定义.角的概念推广以后,以角的顶点为坐标原点,角的始边为x 轴的正半轴,建立直角坐标系,在角的终边上任取一点(,)P x y (不同于坐标原点),设OP r =(0r =>),则α的三个三角函数值定义为:sin ,cos ,tan y x yr r xααα===. 从定义中不难得出六个三角函数的定义域:正弦函数、余弦函数的定义域为R ;正切函数的定义域为{|,,}2R k k Z παααπ∈≠+∈.3. 掌握判断三角函数值的符号的规律,熟记特殊角的三角函数值.由三角函数的定义不难得出三个三角函数值的符号,可以简记为:一正(第一象限内全为正值),二正弦(第二象限内只有正弦值为正),三切(第三象限只有正切值为正),四余弦(第四象限内只有余弦值为正).另外,熟记0、6π、4π、3π、2π的三角函数值,对快速、准确地运算很有好处. 4. 掌握正弦线、余弦线、正切线的概念.在平面直角坐标系中,正确地画出一个角的正弦线、余弦线和正切线,并能运用正弦线、余弦线和正切线理解三角函数的性质、解决三角不等式等问题.基础自测1. 885-化成2(02,)k k Z πααπ+≤≤∈的形式是 . 2.已知α为第三象限角,则2α所在的象限是 . 3.已知角α的终边过点(5,12)P -,则cos α= , tan α= . 4.tan(3)sin 5cos8-的符号为 .5.已知角θ的终边上一点(,1)P a -(0≠a ),且a -=θtan ,求θsin ,θcos 的值.【范例解析】例1.(1)已知角α的终边经过一点(4,3)(0)P a a a -≠,求2sin cos αα+的值;(2)已知角α的终边在一条直线y =上,求sin α,tan α的值.例2.(1)若sin cos 0θθ⋅>,则θ在第_____________象限. (2)若角α是第二象限角,则sin 2α,cos2α,sin 2α,cos2α,tan2α中能确定是正值的有____个.例3. 一扇形的周长为20cm ,当扇形的圆心角α等于多少时,这个扇形的面积最大?最大面积是多少? 分析:选取变量,建立目标函数求最值.作业1.若sin cos θθ>且sin cos 0θθ⋅<则θ在第_______象限. 2.已知6α=,则点(sin ,tan )A αα在第________象限.3.已知角θ是第二象限,且(P m 为其终边上一点,若cos 4m θ=,则m 的值为_______. 4.将时钟的分针拨快30min ,则时针转过的弧度为 . 5.若46παπ<<,且α与23π-终边相同,则α= . 6.已知1弧度的圆心角所对的弦长2,则这个圆心角所对的弧长是_______,这个圆心角所在的扇形的面积是___________.7.(1)已知扇形AOB 的周长是6cm ,该扇形中心角是1弧度,求该扇形面积.(2)若扇形的面积为82cm ,当扇形的中心角α(0)α>为多少弧度时,该扇形周长最小.第2课 同角三角函数关系及诱导公式【考点导读】1.理解同角三角函数的基本关系式;同角的三角函数关系反映了同一个角的不同三角函数间的联系.2.掌握正弦,余弦的诱导公式;诱导公式则揭示了不同象限角的三角函数间的内在规律,起着变名,变号,变角等作用.【基础练习】 1. tan600°=______.2. 已知α是第四象限角,5tan 12α=-,则sin α=______.3.已知cos 22πϕ⎛⎫+=⎪⎝⎭,且2πϕ<,则tan ϕ=______. 4.sin15°cos75°+cos15°sin105°=_____.【范例解析】 例1.已知8cos()17πα-=,求sin(5)απ-,tan(3)πα+的值.例2.已知α是三角形的内角,若1sin cos 5αα+=,求tan α的值.作业1.已知sin 5α=,则44sin cos αα-的值为_____. 2.“21sin =A ”是“A =30º”的_____________条件.3.设02x π≤≤,sin cos x x =-,则x 的取值范围是__________ 4.已知1sin cos 5θθ+=,且324θππ≤≤,则cos2θ的值是 . 5.(1)已知1cos 3α=-,且02πα-<<,求2cos()3sin()4cos()sin(2)παπααπα--+-+-的值.(2)已知1sin()64x π+=,求25sin()sin ()63x x ππ-+-的值.6.已知4tan 3α=-,求 (I )6sin cos 3sin 2cos αααα+-的值;(II )212sin cos cos ααα+的值.第3课 两角和与差及倍角公式(一)【考点导读】1.掌握两角和与差,二倍角的正弦,余弦,正切公式,了解它们的内在联系;2.能运用上述公式进行简单的恒等变换;3.三角式变换的关键是条件和结论之间在角,函数名称及次数三方面的差异及联系,然后通过“角变换”,“名称变换”,“升降幂变换”找到已知式与所求式之间的联系;4.证明三角恒等式的基本思路:根据等式两端的特征,通过三角恒等变换,应用化繁为简,左右归一,变更命题等方法将等式两端的“异”化“同”. 【基础练习】1.sin163sin 223sin 253sin313+= ___________.2.x x -=_____________. 3. 若f (sin x )=3-cos2x ,则f (cos x )=___________ . 4.化简:sin sin 21cos cos 2αααα+=++___________ .【范例解析】例 .化简:(1)42212cos 2cos 22tan()sin ()44x x x x ππ-+-+;(2(1sin cos )(sincos ))θθθθθπ++-<<.作业1.化简22sin 2cos 1cos 2cos 2⋅=+αααα________________.2.若sin tan 0x x ⋅<=_________.3.若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则a 与b 的大小关系是_________. 4.若sin cos tan (0)2παααα+=<<,则α的取值范围是___________.5.已知α、β均为锐角,且cos()sin()αβαβ+=-,则tan α= .6.化简:222cos 12tan()sin ()44αππαα--⋅+.7.求证:222sin 22cos cos 22cos x x x x +=.8.化简:22sin sin 2sin sin cos()αβαβαβ+++.第4课 两角和与差及倍角公式(二)【考点导读】1.能熟练运用两角和与差公式,二倍角公式求三角函数值;2.三角函数求值类型:“给角求值”,“给值求值”,“给值求角” . 【基础练习】1.写出下列各式的值:(1)2sin15cos15︒︒=_________;(2)22cos 15sin 15︒-︒=_________;(3)22sin 151︒-=_________; (4)22sin 15cos 15︒+︒=_________.2.已知3(,),sin ,25παπα∈=则tan()4πα+=_________. 3.求值:(1)1tan151tan15-︒=+︒_______;(2)5cos cos 1212ππ=_________.4.求值:tan10tan 20tan 20)︒⋅︒+︒+︒=________.5.已知tan32α=,则cos α=________.6.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+=_________. 【范例解析】例1.求值:(1)sin 40(tan10︒︒;(2.例 2.设4cos()5αβ-=-,12cos()13αβ+=,且(,)2παβπ-∈,3(,2)2παβπ+∈,求cos2α,cos 2β.例3.若3cos()45x π+=,177124x ππ<<,求2sin 22sin 1tan x x x +-的值.12作业1.设)2,0(πα∈,若3sin 5α=,则)4cos(2πα+=__________.2.已知tan 2α=2,则tanα的值为_______,tan ()4πα+的值为___________ . 3.若316sin =⎪⎭⎫⎝⎛-απ,则⎪⎭⎫⎝⎛+απ232cos =___________. 4.若13cos(),cos()55αβαβ+=-=,则tan tan αβ= . 5.求值:11sin 20tan 40-=︒︒_________.6.已知232,534cos παππα<≤=⎪⎭⎫⎝⎛+.求⎪⎭⎫ ⎝⎛+42cos πα的值第5课 三角函数的图像和性质(一)【考点导读】1.能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦函数在[0,2]π,正切函数在(,)22ππ-上的性质;2.了解函数sin()y A x ωϕ=+的实际意义,能画出sin()y A x ωϕ=+的图像;3.了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】1. 已知简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T =_________;初相ϕ=__________.2. 三角方程2sin(2π-x )=1的解集为_______________________. 3. 函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为______________________.43- 第3题4. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向右平移__________个单位. 【范例解析】例1.已知函数()2sin (sin cos )f x x x x =+.(Ⅰ)用五点法画出函数在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象,长度为一个周期;(Ⅱ)说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到.例2.已知正弦函数sin()y A x ωϕ=+(0,0)A ω>>的图像如图所示. (1)求此函数的解析式1()f x ;(2)求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ; (3)作出函数12()()y f x f x =+的图像的简图.作业1.为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数2sin y x =,x R ∈的图像上所有的点①向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);②向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);③向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变); ④向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变).其中,正确的序号有___________. 2.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象向右平移____个单位长度.3.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)3f =,则ω=______;ϕ=__________.4.在()π2,0内,使x x cos sin >成立的x 取值范围为____________________.5.下列函数: ①sin 6y x π⎛⎫=+⎪⎝⎭; ②sin 26y x π⎛⎫=-⎪⎝⎭; ③cos 43y x π⎛⎫=-⎪⎝⎭; ④cos 26y x π⎛⎫=-⎪⎝⎭. 其中函数图象的一部分如右图所示的序号有__________.6.如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω (1)求这段时间的最大温差; (2)写出这段时间的函数解析式.7.如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(03),,且该函数的最小正周期为π. (1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点, 当032y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值.第6题第5题yx 3O PA第7题第6课 三角函数的图像和性质(二)【考点导读】1.理解三角函数sin y x =,cos y x =,tan y x =的性质,进一步学会研究形如函数sin()y A x ωϕ=+的性质;2.在解题中体现化归的数学思想方法,利用三角恒等变形转化为一个角的三角函数来研究. 【基础练习】1.写出下列函数的定义域: (1)y =的定义域是______________________________; (2)sin 2cos xy x=的定义域是____________________. 2.函数f (x ) = | sin x +cos x |的最小正周期是____________. 3.函数 22sin sin 44f x x x ππ=+--()()()的最小正周期是_______. 4. 函数y =sin(2x +3π)的图象关于点_______________对称. 5. 已知函数tan y x ω= 在(-2π,2π)内是减函数,则ω的取值范围是______________.【范例解析】例1.求下列函数的定义域: (1)sin tan xy x =+(2)y =例2.求下列函数的单调减区间: (1)sin(2)3y x π=-; (2)2cos sin()42xy x π=-;例3.求下列函数的最小正周期: (1)5tan(21)y x =+;(2)sin sin 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭.作业1.函数x x y 24cos sin +=的最小正周期为 _____________. 2.设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x 在[0,2]π上的单调递减区间为___________________.3.函数()sin ([,0])f x x x x π=∈-的单调递增区间是________________. 4.设函数()sin3|sin3|f x x x =+,则()f x 的最小正周期为_______________. 5.函数22()cos 2cos2xf x x =-在[0,]π上的单调递增区间是_______________. 6.已知函数π124()πsin 2x f x x ⎛⎫+- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭. (Ⅰ)求()f x 的定义域; (Ⅱ)若角α在第一象限且3cos 5α=,求()f α.7. 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x .(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像第7课 三角函数的值域与最值【考点导读】1.掌握三角函数的值域与最值的求法,能运用三角函数最值解决实际问题;2.求三角函数值域与最值的常用方法:(1)化为一个角的同名三角函数形式,利用函数的有界性或单调性求解;(2)化为一个角的同名三角函数形式的一元二次式,利用配方法或图像法求解;(3)借助直线的斜率的关系用数形结合求解;(4)换元法. 【基础练习】 1.函数x x y cos 3sin +=在区间[0,]2π上的最小值为 .2.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 .3.函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是___________________.4.当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为 .【范例解析】例1.(1)已知1sin sin 3x y +=,求2sin cos y x -的最大值与最小值. (2)求函数sin cos sin cos y x x x x =⋅++的最大值.例2.已知函数2π()2sin 24f x x x ⎛⎫=+-⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.【反馈演练】 1.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于___________. 2.当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是______ _______. 3.函数sin cos 2xy x =+的最大值为_______,最小值为________.4.函数cos tan y x x =⋅的值域为 .5.已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于_________. 6.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.第8课 解三角形【考点导读】1.掌握正弦定理,余弦定理,并能运用正弦定理,余弦定理解斜三角形;2.解三角形的基本途径:根据所给条件灵活运用正弦定理或余弦定理,然后通过化边为角或化角为边,实施边和角互化. 【基础练习】1.在△ABC 中,已知BC =12,A =60°,B =45°,则AC = .2.在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是______________.3.在ABC △中,若1tan 3A =,150C =,1BC =,则AB = .【范例解析】例1. 在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,已知20a c +=,2C A =,3cos 4A =. (1)求ca的值;(2)求b 的值.例2.在三角形ABC 中,已知2222()sin()()sin()a b A B a b A B +-=-+,试判断该三角形的形状.例3.如图,D 是直角△ABC 斜边BC 上一点,AB =AD ,记∠CAD =α,∠ABC =β. (1)证明:sin cos 20αβ+=; (2)若ACDC ,求β.BDCαβA例4作业1.在ABC ∆中,,75,45,300===C A AB 则BC =_____________.2.ABC ∆的内角∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a ,b ,c 成等比数列,且2c a =,则cos B =_____. 3.在ABC ∆中,若2a b c =+,2sin sin sin A B C =,则ABC ∆的形状是_______三角形.4.若ABC ∆的内角A 满足2sin 23A =,则sin cos A A += . 5.在ABC ∆中,已知2AC =,3BC =,4cos 5A =-.(Ⅰ)求sin B 的值; (Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.6.在ABC ∆中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.7.在ABC ∆中,1tan 4A =,3tan 5B =.(Ⅰ)求角C 的大小;(Ⅱ)若ABC ∆1A2A120105 乙例1(1)第9课 解三角形的应用【考点导读】1.运用正余弦定理等知识与方法解决一些与测量和几何计算有关的实际问题.2.综合运用三角函数各种知识和方法解决有关问题,深化对三角公式和基础知识的理解,进一步提高三角变换的能力. 【基础练习】1.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别为30°,60°,则塔高为_________m . 2.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好3km ,那么x 的值为_______________ km .3.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km .4.如图,我炮兵阵地位于A 处,两观察所分别设于B ,D ,已知ABD ∆为边长等于a 的正三角形,当目标出现于C 时,测得45BDC ∠=,75CBD ∠=,求炮击目标的距离AC【范例解析】例 .如图,甲船以每小时乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距分析:读懂题意,正确构造三角形,结合正弦定理或余弦定理求解. A BCD第4题作业1.江岸边有一炮台高30m ,江中有两条船,由炮台顶部测得俯角分别为45︒和30︒,而且两条船与炮台底部连线成30︒角,则两条船相距____________m .2.有一长为1km 的斜坡,它的倾斜角为20︒,现要将倾斜角改为10︒,则坡底要伸长_______km . 3.某船上的人开始看见灯塔在南偏东30︒方向,后来船沿南偏东60︒方向航行45海里后,看见灯塔在正西方向,则此时船与灯塔的距离是__________海里.4.把一根长为30cm 的木条锯成两段,分别作钝角三角形ABC 的两边AB 和BC ,且120ABC ∠=︒,则第三条边AC 的最小值是____________cm .5.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中, 最能近似表示表中数据间对应关系的函数是( )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312t t y ππ++=。
【高三】高考数学复习三角函数的性质及其变换教案三角函数的性质及其变换多年,三角函数试题在全国高考中的题量及其分数都没有较大的变动,每年的分数一般在二十分左右。
试题难度都为中低档题。
主要考察的内容有:三角函数的定义和基本关系式.关于今后几年全国高考对三角函数的命题趋向,我们认为:1.试题数量及其分数在试卷中所占比例将基本保持稳定。
2.所有试题都是中低档难度试题,而解答题的难度还将略有下降,原因有三个:一是需用时将列出有关公式,这实际上是对解题的关键步骤给出了提示;二是“简单的三角方程”已经改为不作高考要求的选学内容,因而需用解简单的三角不等式的试题将会更加简单;三是新的大纲中规定删去了“三角函数中较复杂得恒等变形”,因此,即使在新大纲实施之前,高考命题也会受到它的影响。
3.涉及积化和差与和差化积公式的试题在三角试题中的比例将会明显下降,而同时涉及这两组公式的试题已几乎不可能再出现,因此这两组公式已不再是高考的热点。
4.倍角公式的变形――半角公式、升幂公式与降幂公式考查的可能性较大,掌握这几个公式对解决一些相对复杂的三角变换有好处.即:sin2α=,……5.由于解斜三角形需要较多的应用平面几何知识,因而今后几年涉及这一类中的高考题,仍将会像1998年的三角解答题那样,仅限于简单的应用正弦定理和余弦定理。
另外,这两个定理也很可能在解答几何或结合实际的应用题中使用。
由于2000年的三角解答题的难度已经“略有下降”,因此,今后几年此类试题的难度也将“基本保持稳定”。
在本讲的复习中,我们将注意以下几点:1.以小题为主,中低档题为主,并注重三角函数与其他知识的交汇点处的习题2.适当增大复习题中的求值与求范围的题目的比例3.对正、余弦定理的应用力求熟练,并避免繁杂的近似计算本讲分三个部分:第一部分是三角函数的变换,第二部分是三角函数的图像和性质,第三部分是三角形中的三角函数问题,主要是正弦定理和余弦定理的应用第一部分例1.已知sinθcosθ=,且,那么cosθ-sinθ的值为A. B. C.- D.-分析:由于,所以cosθ<sinθ,于是cosθ-sinθ=- ,选D例2.若tanθ=-2,则=______________提示:将分子中的2θ化为单角,分母中的1用sin2θ+cos2θ替换,然后分子分母同除以cos2θ即可。
高三数学二轮复习教学案(解三角形)班级_____________ 学号_____________ 姓名_____________1.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a=4bsinA ,则cosB=_________.2.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若bc b a 322=-,B C sin 32sin =,则A=______________.3.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a=c=26+, 且∠A=75°,则b=__________4.据新华社报道,强台风“康森”在海南三亚登陆,台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少椰子树被大风折断.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20 m ,则折断点与树干底部的距离是______m .5.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且acosB —bcosA=53c , 则tan(A -B)的最大值是__________________.6.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2 min ,从D 沿着DC 走到C 用了3min .若此人步行的速度为每分钟50 m ,则该扇形的半径为_____________m .7.在锐角三角形ABC 中,A 、B 、C 的对边分别为a 、b 、c ,若C b a a b cos 6=+, 求BC A C tan tan tan tan +的值.8.已知在斜三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且AA C A ac c a b cos sin )cos(222+=--(1)求角A(2)若2cos sin >C B,求角C 的取值范围.9.如图,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°、30°,在水面C 处测得B 点和D 点的仰角均为60°,AC=0.1 km ,试探究图中B 、D 间距离与另外哪两点间距离相等,并求出B 、D 的距离.高三数学二轮复习教学案(平面向量)班级_____________ 学号_____________ 姓名_____________1.在四边形ABCD 中,“DC AB 2=”是“四边形ABCD 为梯形’’的______________条件.2.设点M 是线段BC 的中点,点A 在直线BC 外,2BC =16,||||AC AB AC AB -=+ ,则|AM |=_____________3.已知平面向量),0(,βααβα≠≠满足1||=β,且α与αβ-的夹角为120°,则||α的取值范围是_________________4.设向量)cos 3,2(),3,sin 4(αα==b a ,且b a //,则锐角α为____________5.在△ABC 中,已知2π=C ,AC=1,BC=2,则|)1(2|)(CB CA f λλλ-+=的最小值是___________6.如图,在△ABC 中,已知AB=2,BC=3,∠ABC=60°,AH ⊥BC 于H ,M 为AH 的中点,若BC AB AM μλ+=,则μλ+=____________7.已知A )0,22(,B )22,0(,M )sin ,(cos αα,点N 满足)1(=++=μλμλON OB OA ,则||MN 的最小值是_______________8.已知)2sin ,2(cos ),23sin ,23(cos θθθθ-==b a ,且]3,0[πθ∈ (1||b a b a +(2)是否存在实数k ,使||3||b k a b a k -=+?若存在,求出实数k 的值,若不存在,请说明理由。
高三数学 三角函数及正余弦定理一、构建知识体系,考点热点一网打尽1.正弦函数、余弦函数、正切函数的图象和性质:函数y =sin xy =cos xy =tan x图象定义域 R R { xx ∈R 且x ≠π2+k π,k ∈Z值域[-1,1][-1,1]R单调性)22,22[ππππk k ++-(k ∈Z )上递增;)223,22[ππππk k ++(k ∈Z )上递减[2k π-π,2k π](k ∈Z )上递增;[2k π,2k π+π](k ∈Z )上递减)2,2[ππππk k ++-(k ∈Z )上递增最值x =π2+2k π(k ∈Z )时,y max =1;x =-π2+2k π(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max =1;x =π+2k π(k ∈Z )时,y min =-1奇偶性 奇函数偶函数奇函数对称 中心 (k π,0)(k ∈Z )⎝⎛⎭⎫π2+k π,0 (k ∈Z )⎝⎛⎭⎫k π2,0(k ∈Z )对称轴 方程 x =π2+k π(k ∈Z ) x =k π(k ∈Z )周期2π2ππ注:(1).求三角函数的单调区间时,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式,再根据三角函数的单调区间,求出x 所在的区间.应特别注意,考虑问题应在函数的定义域内. 注意区分下列两种形式的函数单调性的不同:(1)y =sin ⎝⎛⎭⎫ωx -π4;(2)y =sin ⎝⎛⎭⎫π4-ωx . (2).周期性是函数的整体性质,要求对于函数整个定义域内的每一个x 值都满足f (x +T )=f (x ),其中T 是不为零的常数.如果只有个别的x 值满足f (x +T )=f (x ),或找到哪怕只有一个x 值不满足f (x +T )=f (x ),都不能说T 是函数f (x )的周期. 2.周期函数 (1)周期函数的定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数.T 叫做这个函数的周期。
2021年高三数学二轮复习 专题三第一讲 三角函数的图象与性质教案 理类型一 三角函数的概念、诱导公式1.角α终边上任一点P (x ,y ),则P 到原点O 的距离为r =x 2+y 2,故sin α=yr ,cos α=x r,tan α=y x.2.诱导公式:“奇变偶不变、符号看象限”. 3.同角三角函数基本关系式:sin 2α+cos 2α=1,tan α=sin αcos α.[例1] (xx 年高考山东卷)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为________.[解析] 利用平面向量的坐标定义、解三角形的知识以及数形结合思想求解. 设A (2,0),B (2,1),由题意知劣弧PA 长为2,∠ABP =21=2.设P (x ,y ),则x =2-1×cos (2-π2)=2-sin 2,y =1+1×sin (2-π2)=1-cos 2,∴OP →的坐标为(2-sin 2,1-cos 2).[答案] (2-sin 2,1-cos 2)跟踪训练1.(xx 年绵阳摸底)sin (-225°)=( )A.22 B .-22 C.12 D.32解析:sin (-225°)=sin (-360°+135°)=sin 135° =sin 45°=22. 答案:A2.(xx 年合肥模拟)已知tan x =2,则sin 2x +1=( )A .0 B.95 C.43 D.53解析:sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95,故选B 答案:B类型二 三角函数性质1.函数y =A sin (ωx +φ),当φ=k π(k ∈Z)时为奇函数,当φ=k π+π2(k ∈Z)时为偶函数.2.函数y =A sin (ωx +φ),令ωx +φ=k π+π2,可求得对称轴方程.令ωx +φ=k π(k ∈Z),可求得对称中心的横坐标.3.将ωx +φ看作整体,可求得y =A sin (ωx +φ)的单调区间,注意ω的符号.[例2] (xx 年高考课标全国卷)已知ω>0,函数f (x )=sin (ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12] D .(0,2][解析] 结合特殊值,求解三角函数的减区间,并验证结果.取ω=54,f (x )=sin (54x +π4),其减区间为[85k π+π5,85k π+π],k ∈Z ,显然(π2,π)[85k π+π5,85k π+π],k ∈Z ,排除B ,C.取ω=2,f (x )=sin (2x +π4),其减区间为[k π+π8,k π+58π],k ∈Z ,显然(π2,π)[k π+π8,k π+58π],k ∈Z ,排除D.[答案] A跟踪训练(xx 年唐山模拟)若x =π6是函数f (x )=3sin ωx +cos ωx 图象的一条对称轴,当ω取最小正数时( )A .f (x )在(0,π6)上单调递增B .f (x )在(π6,π3)上单调递增C .f (x )在(-π6,0)上单调递减D .f (x )在(-π3,π6)上单调递减解析:f (x )=3sin ωx +cos ωx =2(32sin ωx +12cos ωx )=2sin (ωx +π6),依题意可知f (π6)=2sin (ω·π6+π6)=±2,∴ω·π6+π6=k π+π2(k ∈Z),∴ω=6(k +13),当k =0时,ω取得最小正数2,故函数f (x )=2sin (2x +π6),由2k π-π2≤2x +π6≤2k π+π2(k ∈Z),可知函数f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z),当k =0时,函数f (x )的一个单调递增区间为[-π3,π6],∵(0,π6)[-π3,π6],故选A. 答案:A类型三 函数的图象及变换函数y =A sin (ωx +φ)的图象(1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应y 的值,描点、连线可得.(2)图象变换:[例3] (xx 年高考湖南卷)已知函数f (x )=A sin (ωx +φ)(x ∈R,ω>0,0<φ<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.[解析] (1)由图象知,周期T =2(11π12-5π12)=π,所以ω=2πT=2.因为点(5π12,0)在函数图象上,所以A sin (2×5π12+φ)=0,即sin (5π6+φ)=0.又因为0<φ<π2,所以5π6<5π6+φ<4π3.从而5π6+φ=π,即φ=π6.(2)g (x )=2sin [2(x -π12)+π6]-2sin [2(x +π12)+π6]=2sin 2x -2sin (2x +π3)=2sin 2x -2(12sin 2x +32cos 2x )=sin 2x -3cos 2x =2sin (2x -π3).由2k π-π2≤2x -π3≤2k π+π2,得k π-π12≤x ≤k π+5π12,k ∈Z.所以函数g (x )的单调递增区间是[k π-π12,k π+5π12],k ∈Z.跟踪训练(原创题)为了使得变换后的函数的图象关于点(-π12,0)成中心对称,只需将原函数y =sin (2x +π3)的图象( )A .向左平移π12个单位长度B .向左平移π6个单位长度C .向右平移π12个单位长度D .向右平移π6个单位长度解析:函数y =sin (2x +π3)的图象的对称中心为(k π2-π6,0)(k ∈Z),其中离点(-π12,0)最近的对称中心为(-π6,0),故只需将原函数的图象向右平移π12个单位长度即可.答案:C析典题(预测高考)高考真题【真题】 (xx 年高考天津卷)已知函数f (x )=sin(2x +π3)+sin (2x -π3)+2cos 2x -1,x ∈R.(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间[-π4,π4]上的最大值和最小值.【解析】 (1)f (x )=sin 2x ·cos π3+cos 2x ·sin π3+sin 2x ·cos π3-cos 2x ·sin π3+cos 2x=sin 2x +cos 2x =2sin (2x +π4),所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间[-π4,π8]上是增函数,在区间[π8,π4]上是减函数,又f (-π4)=-1,f (π8)=2,f (π4)=1,故函数f (x )在区间[-π4,π4]上的最大值为2,最小值为-1.【名师点睛】 本题主要考查三角变换、三角函数性质及三角函数最值求法,是高考命题的热点内容与题型,难度不大.考情展望高考对三角函数的图象与性质的考查,各种题型都有,着重体现在选择填空中考查图象变换及性质,在解答题中融三角变换与图象性质于一体,有时涉及平面向量知识.名师押题【押题】已知向量a =(cos x ,2cos x ),向量b =(2cos x ,sin(π-x )),函数f (x )=a ·b +1.(1)求函数f (x )的解析式和最小正周期;(2)若x ∈[0,π2],求函数f (x )的最大值和最小值.【解析】 (1)∵a =(cos x ,2cos x ),b =(2cos x ,sin (π-x )), ∴f (x )=a ·b +1=2cos 2x +2cos x sin (π-x )+1 =1+cos 2x +2sin x cos x +1 =cos 2x +sin 2x +2=2sin (2x +π4)+2.∴函数f (x )的最小正周期T =2π2=π.(2)∵x ∈[0,π2],∴2x +π4∈[π4,5π4].∴当2x +π4=π2,即x =π8时,函数f (x )有最大值2+2;当2x +π4=5π4,即x =π2时,函数f (x )有最小值1.。
高三数学教案《三角函数》高三数学教案《三角函数》1一、教材分析(一)内容说明函数是中学数学的重要内容,中学数学对函数的讨论大致分成了三个阶段。
三角函数是最具代表性的一种基本初等函数。
4.8节是其次章《函数》学习的延长,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其学问和方法将为后续内容的学习打下基础,有承上启下的作用。
本节课是数形结合思想方法的良好素材。
数形结合是数学讨论中的重要思想方法和解题方法。
有名数学家华罗庚先生的诗句:......数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。
本节通过对数形结合的进一步熟悉,可以改良学习方法,增添学习数学的自信念和爱好。
另外,三角函数的曲线性质也表达了数学的对称之美、和谐之美。
因此,本节课在教材中的学问作用和思想地位是相当重要的。
(二)课时支配4.8节教材支配为4课时,我打算用5课时(三)目标和重、难点1.教学目标教学目标确实定,考虑了以下几点:(1)高一同学有肯定的抽象思维力量,而形象思维在学习中占有不行替代的地位,所以本节要紧紧抓住数形结合方法进行探究;(2)本班同学对数学科特殊是函数内容的学习有畏难心情,所以在内容上要降低深难度。
(3)学会方法比获得学问更重要,本节课着眼于新学问的探究过程与方法,稳固应用主要放在后面的三节课进行。
由此,我确定了以下三个层面的教学目标:(1)学问层面:结合正弦曲线、余弦曲线,师生共同探究发觉正(余)弦函数的性质,让同学学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的讨论过程和数形结合的讨论方法;(2)力量层面:通过在老师引导下探究新知的过程,培育同学观看、分析、归纳的自学力量,为同学学习的可持续进展打下基础;(3)情感层面:通过运用数形结合思想方法,让同学体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信念和爱好。
高三数学三角函数复习教案函数的知识是高中里面比较重要的知识,教师需要好的教案来教导学生,今天小编在这里整理了一些高三数学三角函数复习教案,我们一起来看看吧!高三数学三角函数复习教案1“函数的单调性”教案【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念、判断及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下(1)函数的单调性起着承前启后的作用。
一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。
(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。
三角函数 [诱导公式]1. Sin(-1050°)=_______;cos(-780°)=________2. ______)330cos(480-sin 315sin 的值为)(︒-+︒+︒3. _______-23sin 35)-2cos(=⎪⎭⎫ ⎝⎛=ααπ,则π4. _______-45sin 234-sin )的值为π(,则)π(已知αα=5.已知角α终边上有一点P(1,2),则_________-cos 23cos -2sin -)-2sin(=++)(π)π()π(παααα6.若_______-sin 0,2-35-2cos(=∈=)(π),则π(,且)πααα7.已知_______tan 23253)2cos(=∈=+ααα),则π,π(,且π8.已知α是第二象限的角,________sin 125)-tan(==αα,则π9._______tan 51)45tan(==-αα,则π[正弦函数]1.利用正弦线可以作出y =s in x ,x ∈[0,2π]的图象,要想得到y =sin x (x ∈R )的图象,只需将y =sin x ,x ∈[0,2π]的图象沿x 轴平移±2π,±4π…即可,此时的图象叫做正弦曲线.2.“五点法”作y =sin x ,x ∈[0,2π]的图象时,所取的五点分别是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1和(2π,0).3.函数的周期性(1)周期函数:对于函数f (x),如果存在一个非零常数T ,使得定义域内的每一个x 值,都满足f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)最小正周期:对于一个周期函数f (x ),如果在它的所有周期中存在一个最小的正数,那么这个最小正数就叫做它的最小正周期. 4.正弦函数的性质习题1.函数y =sin|x |的图象是( )2.求下列函数的单调区间、对称轴、对称中心和周期: (1)y =sin ⎝ ⎛⎭⎪⎫2x +π3; (2)y =|sin x |.3.已知函数f (x )=sin x -1. (1)写出f (x )的单调区间;(2)求f (x )的最大值和最小值及取得最值时x 的集合; (3)比较f ⎝ ⎛⎭⎪⎫-π18与f ⎝ ⎛⎭⎪⎫-π12的大小.4.求函数y =3+2sin ⎝ ⎛⎭⎪⎫2x -π3 的值域5.比较大小:(1)sin 250°与sin 260°; (2)sin ⎝ ⎛⎭⎪⎫-235π与sin ⎝ ⎛⎭⎪⎫-174π.[正弦型函数]1.形如y =A sin(ωx +φ)(其中A ,ω,φ都是常数)的函数,通常叫做正弦型函数. 2.函数y =A sin(ωx +φ)(其中A ≠0,ω>0,x ∈R )的周期T =2πω,频率f =ω2π,初相为φ,值域为[-|A |,|A |],|A |也称为振幅,|A |的大小反映了y =A sin(ωx +φ)的波动幅度的大小.3.A ,ω,φ对函数y =A sin(ωx +φ)图象的影响 (1)φ对函数y =sin(x +φ)图象的影响:(2)ω对函数y =sin(ωx +φ)图象的影响:(3)A 对函数y =A sin(ωx +φ)图象的影响:(4)用“变换法”作图:y =sin x 的图象――→向左φ>0或向右φ<0平移|φ|个单位长度y =sin(x +φ)的图象横坐标变为原来的1ω倍,纵坐标不变y =sin(ωx +φ)的图象――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)的图象.7.要得到y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图象,只需将y =3sin 2x 的图象( )A.向左平移π4个单位B.向右平移π4个单位C.向左平移π8个单位D.向右平移π8个单位8.sin x 的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图象向左平移π4个单位,则所得图象的解析式为( )A.y =sin ⎝ ⎛⎭⎪⎫2x -π4 B.y =-sin 2xC.y =cos 2xD.y =sin ⎝ ⎛⎭⎪⎫2x +π410.为了得到函数y =sin ⎝ ⎛⎭⎪⎫x 3+π6,x ∈R 的图象,只需把函数y =sin x ,x ∈R 的图象上所有的点:∈向左平移π6个单位,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变); ∈向右平移π6个单位,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变); ∈向左平移π6个单位,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变); ∈向右平移π6个单位,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变), 其中正确的是________.11.函数2sin(4)3y x π=-的最小正周期是( ).A .πB .2πC .2πD .4π12.函数)32sin(3π-=x y 的图象为C ,:∈图象C 关于直线π1211=x 对称;∈函数)(x f 在区间)12π5,12π(-内是增函数;∈由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中正确论断的个数为A .0B .1C .2D .313.如图是y =A sin(ωx +φ)(A >0,ω>0)的图象的一部分,则它的一个解析式为( )A .y =23sin ⎝ ⎛⎭⎪⎫2x +π3B .y =23sin ⎝ ⎛⎭⎪⎫x 2+π4C .y =23sin ⎝ ⎛⎭⎪⎫x -π3D .y =23sin ⎝ ⎛⎭⎪⎫2x +2π314.已知函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2在一个周期内的部分函数图象如图所示,求此函数的解析式.15.以下对于正弦函数y =sin x 的图象描述不正确的是( )A.在x ∈[2k π,2k π+2π],k ∈Z 上的图象形状相同,只是位置不同B.关于x 轴对称C.介于直线y =1和y =-1之间D.与y 轴仅有一个交点16.下列图象中,是y =-sin x 在[0,2π]上的图象的是( )17.点M ⎝ ⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( )A.0B.1C.-1D.218.将函数y =sin⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移π3个单位,则所得函数图象对应的解析式为( )A.y =sin ⎝ ⎛⎭⎪⎫12x -π3B.y =sin ⎝ ⎛⎭⎪⎫2x -π6 C.y =sin 12x D.y =sin ⎝ ⎛⎭⎪⎫12x -π619.已知函数y =A sin(ωx +φ)(A >0,ω>0)的最大值是3,最小正周期是2π7,初相是π6,则这个函数的表达式是( )A.y =3sin ⎝ ⎛⎭⎪⎫7x -π6B.y =3sin ⎝ ⎛⎭⎪⎫7x +π6C.y =3sin ⎝ ⎛⎭⎪⎫7x +π42D.y =3sin ⎝ ⎛⎭⎪⎫7x -π4220.已知函数15()sin(2)264f x x π=++(1)求()f x 的最小正周期及单调区间;(2)求()f x 的图像的对称轴和对称中心.21.已知函数f(x)= Asin(ωx+φ)(x∈R, ω>0,0<φ<π2)的部分图像如图所示.(1)求函数f(x)的解析式;(2)求f(x)在区间[-π2,0]上的值域.[余弦函数]1.余弦函数的图象把正弦函数y=sin x的图象向左平移π2个单位长度就得到余弦函数y=cos x的图象,该图象叫做余弦曲线.2.余弦函数的性质:3>0)的周期T =2πω.1.求函数y =cos ⎝ ⎛⎭⎪⎫π6-x 的单调递减区间.2.已知函数y 1=a -b cos x 的最大值是32,最小值是-12,求函数y =-4a sin 3bx 的最大值和对称中心.[正切函数]1.正切函数的图象:y =tan x ⎝ ⎛⎭⎪⎫x ∈R 且x ≠π2+k π,k ∈Z 的图象,2.正切函数的图象叫做正切曲线.3.正切函数的图象特征:正切曲线是由通过点⎝ ⎛⎭⎪⎫π2+k π,0(k ∈Z )且与y 轴平行的直线隔开的无穷多支曲线所组成.4.函数y =tan x ⎝ ⎛⎭⎪⎫x ∈R 且x ≠k π+π2,k ∈Z 的图象与性质表:⎧⎫ π5.函数y =tan ωx (ω≠0)的最小正周期是π|ω|. 习题1.求函数y =tan ⎝ ⎛⎭⎪⎫-12x +π4的单调区间2.比较tan 1,tan 2,tan 3的大小.。
三角函数模块专题复习——任意角的三角函数及诱导公式 陈云峰一.课标要求:1.任意角、弧度了解任意角的概念和弧度制,能进行弧度与角度的互化; 2.三角函数(1)借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;(2)借助单位圆中的三角函数线推导出诱导公式(2π±α, π±α的正弦、余弦、正切)。
二.要点精讲1.任意角的概念旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。
规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。
如果一条射线没有做任何旋转,我们称它形成了一个零角。
2.终边相同的角、象限角、轴线角 3.弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。
角有正负零角之分,它的弧度数也应该有正负零之分.角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径。
角度制与弧度制的换算主要抓住180rad π︒=。
弧度与角度互换公式:1rad =π180° 1°=180π(rad )。
弧长公式:r l ||α=(α是圆心角的弧度数), 扇形面积公式:2||2121r r l S α==。
【注意】:①无论用“弧度”还是“角度”作单位,角的大小是一个与半径的大小无关的定值;②在解题过程中“弧度”与“角度”不能混用,如0=230,k k Z απ+∈或0=90,4k k Z πβ⋅+∈都不规范。
4.三角函数定义利用单位圆定义任意角的三角函数,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:(1)y 叫做α的正弦,记做sin α,即sin y α=; (2)x 叫做α的余弦,记做cos α,即cos x α=; (3)y x 叫做α的正切,记做tan α,即tan (0)yx xα=≠。
【注意】:三角函数值的符号满足:“一全正、二正弦、三正切、四余弦”的规律。
2013东北师大附中高考第二轮复习:专题三《三角函数(上)》【考点梳理】一、考试内容1.角的概念的推广,弧度制,0°~360°间的角和任意角的三角函数。
同角三角函数的基本关系。
诱导公式。
已知三角函数的值求角。
2.用单位圆中的线段表示三角函数值。
正弦函数的图像和性质。
余弦函数的图像和性质。
函数y=Asin(ωx+ϕ)的图像。
正切函数、余切函数的图像和性质。
3.两角和与差的三角函数。
二倍角的正弦、余弦、正切。
半角的正弦、余弦、正切。
三角函数的积化和差与和差化积。
4.余弦定理、正弦定理。
利用余弦定理、正弦定理解斜三角形。
5.反正弦函数、反余弦函数、反正切函数与反余切函数。
6.最简单的三角方程的解法。
二、考试要求1.理解弧度制的意义,并能正确地进行弧度和角度的换算。
2.掌握任意角的三角函数的定义,三角函数的符号,三角函数的性质,同角三角函数的关系式与诱导公式,了解周期函数和最小正周期的意义。
会求函数y= Asin(ωx+ϕ)的周期,或者经过简单的恒等变形可化为上述函数的三角代数式的周期。
能运用上述三角公式化简三角函数,求任意角的三角函数值与证明较简单的三角恒等式。
3.了解正弦函数、余弦函数、正切函数、余切函数的图像的画法,会用“五点法”画正弦函数、余弦函数和函数y= Asin(ωx+ϕ)的简图,并能解决与正弦曲线有关的实际问题。
4.能推导并掌握两角和、两角差、二倍角与半角的正弦、余弦、正切公式。
5.了解三角函数的积化和差与和差化积公式,不要求记忆。
6.能正确地运用上述公式化简三角函数,求某些角的三角函数值,证明较简单的三角恒等式以及解决一些简单的实际问题。
7.掌握余弦定理、正弦定理及其推导过程,并能运用它们解斜三角形。
8.理解反三角函数的概念,能由反三角函数的图像得出反三角函数的性质,能运用反三角函数的定义、性质解决一些简单问题。
9.掌握最简单的三角方程的解法。
三、考点简析1.三角函数相关知识关系表2.终边相同的角、区间角与象限角(1)终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2k π(k ∈Z),即β∈{β|β=2k π+α,k ∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。
(2)区间角是介于两个角之间的所有角,如α∈{α|6π≤α≤65π}=[6π,65π]。
(3)象限角,α的终边落在第几象限,就称α是第几象限角。
(4)α、2α、2α之间的关系。
若α终边在第一象限则2α终边在第一或第三象限;2α终边在第一或第二象限或y 轴正半轴。
若α终边在第二象限则2α终边在第一或第三象限;2α终边在第三或第四象限或y 轴负半轴。
若α终边在第三象限则2α终边在第二或第四象限;2α终边在第一或第二象限或y 轴正半轴。
若α终边在第四象限则2α终边在第二或第四象限;2α终边在第三或第四象限或y 轴负半轴。
3.三角函数线三角函数线是通过有向线段直观地表示出角的各种三角函数值的一种图示方法。
利用三角函数线在解决比较三角函数值大小、解三角方程及三角不等式等问题时,十分方便。
4.函数y= Asin(ωx+ϕ)(A ,ω>0)的性质 (1)定义域是R ; (2)值域[-A ,A];(3)单调区间:在区间[ωϕππ--22k ,ωϕππ-+22k ](k ∈Z )上是增函数;在区间[ωϕππ-+22k ,ωϕππ-+232k ](k ∈Z )上是减函数;(4)奇偶性:当ϕ=k π+2π时是偶函数,当ϕ=k π时是奇函数,当ϕ≠2πk 时是非奇非偶函数(k ∈Z );(5)周期性:是周期函数且最小正周期为T=ωπ2; (6)对称性:关于点(ωϕπ-k ,0)中心对称,关于直线x=ωϕππ-+2k 轴对称。
5.函数图像变换理论(1)函数y=f(-x)的图像与函数y=f(x)的图像关于y 轴对称;(2)函数y=-f(x)的图像与函数y=f(x)的图像关于x 轴对称; (3)函数x=f(y)的图像与函数y=f(x)的图像关于直线y=x 对称; (4)函数x=-f(-y)的图像与函数y=f(x)的图像关于直线y=-x 对称; (5)函数y=-f(-x)的图像与函数y=f(x)的图像关于原点(0,0)对称; (6)函数y=f(x+p)(p>0)的图像是将函数y=f(x)的图像向左平移p 个单位而得; (7)函数y=f(x -p)(p>0)的图像是将函数y=f(x)的图像向右平移p 个单位而得; (8)函数y=f(x)+q 的图像是将函数y=f(x)的图像向上或向下平移|q|个单位而得,当q>0时,向上,q<0时向下;(9)函数y=f(px)(p>0)的图像是将函数y=f(x)的图像上各点的横坐标变为原来的p1(纵坐标不变); (10)函数qy=f(x)(q>0)即y=q1f(x)的图像是将函数y=f(x)的图像上各点的纵坐标变为原来的q1(横坐标不变)。
6.三角函数公式内在联系7.常用的三角恒等式(1)sin 2α-sin 2β=sin(α+β)sin(α-β) (2)cos 2α-cos 2β=sin(β-α)sin(β+α)(3)cos7π+cos 73π+cos 75π=21(4)sin3α=3sin α-4sin 3α (5)cos3α=4cos 3α-3cos α(6)sin 2(α+β)=cos 2α+cos 2β-2cos αcos β·cos(α+β)(7)sin α+sin(α+32π)+sin(α+34π)=0 (8)sin 2α+sin 2 (α+32π)+sin 2(α+34π)=23(9)sin 3α+sin 3 (α+32π)+sin 3(α+34π)= -43sin3α(10)cos 3α+cos 3 (α+32π)+cos 3(α+34π)=43cos3α(11)sin 6α+cos 6α=85+83cos4α(12)sin(α-β)·sin(δ-γ)+sin(β-γ)·sin(δ-θ)+sin(γ-α) ·sin(δ-β)=0(13)sin α+sin β+sin γ-sin(α+β+γ) =4sin2βα+·sin2γβ+·sin2αγ+(14)cos α+cos β+cos γ+cos(α+β+γ) =4cos2βα+·cos2γβ+·cos2αγ+(15)tan α·tan2α+tan2α·tan3α+…+tan(n -1)αtann α=ααtan tan n -n 8.在△ABC 中常用的恒等式(1)tanA+tanB+tanC=tanA ·tanB ·tanC (2)cotA ·cotB+cotB ·cotC+cotC ·cotA=1(3)tan2A tan 2B +tan 2B tan 2C +tan 2C tan 2A =1 (4)B A B A tan tan cot cot +++C B C B tan tan cot cot +++AC A C tan tan cot cot ++=1(5)sinA+sinB+sinC=4cos 2A cos 2B cos 2C(6)cosA+cosB+cosC=1+4sin 2A sin 2B sin 2C 9.三角形中的公式 (1)正弦定理:A a sin =B b sin =Cc sin =2R (2)余弦定理:a 2+b 2-c 2=2abcosC b 2+c 2-a 2=2bccosA c 2+a 2-b 2=2cacosB正弦定理、余弦定理沟通了角与边的关系,可使边转化为角,也可使角化为边。
(3)三角形的面积公式,设△ABC 的面积为△,则△=21ab ·sinC=21bc ·sinA=21ac ·sinB =2R 2sinA ·sinB ·sinC=Rabc 4=))()((c p b p a p p ---=p ·r其中p 为△ABC 周长的一半,即p=21(a+b+c),R 与r 分别为△ABC 的外接圆与内切圆的半径。
(4)若在△ABC 中,三边a 、b 、c 成等差数列,则有下列结论: ①a+c=2b②sinA+sinC=2sinB③cos 2C A -=2cos 2CA + ④tan 2A ·tan 2C =31⑤0<B ≤3π⑥cot2A ,cot 2B ,cot 2C成等差数列。
四、思想方法1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次与升次。
即倍角公式降次与半角公式升次。
(4)化弦(切)法。
将三角函数利用同角三角函数基本关系化成弦(切)。
(5)引入辅助角。
asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。
(6)万能代换法。
巧用万能公式可将三角函数化成tan 2θ的有理式。
2.证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。