平面直角坐标系(基础)知识讲解
- 格式:pdf
- 大小:364.46 KB
- 文档页数:8
「平面直角坐标系(一)」知识点总结及教案制作技巧知识点总结及教案制作技巧平面直角坐标系是我们学习数学时经常接触的基础知识之一。
在这个二维的坐标系中,我们可以描述点的位置、直线的斜率、图形的几何特征等等。
本文将为大家总结平面直角坐标系的基本知识点,并提供一些制作教案的技巧以便于教师教学使用。
一、基本概念平面直角坐标系由两个互相垂直的坐标轴组成,分别称为 x 轴和y 轴。
坐标轴的交点为原点,x 轴和 y 轴的单位长度相同,可任意设定为1。
在平面直角坐标系中,每个点都有唯一的坐标表示,即 (x,y)。
二、点的坐标在平面直角坐标系中,我们可以通过横坐标 x 和纵坐标 y 来确定一个点的位置。
例如,坐标为 (3,2) 的点表示它横坐标为 3,纵坐标为 2,因此我们可以在坐标系中标出该点的位置:三、直线的斜率在平面直角坐标系中,我们可以通过斜率的概念来描述直线的特征。
给定一条直线上两个不同的点,我们可以通过这两个点的坐标计算出这条直线的斜率。
具体来说,直线的斜率为这条直线上任意两个点的纵坐标之差 y2-y1 与横坐标之差 x2-x1 的比值,即m = (y2-y1)/(x2-x1)四、图形的方程在平面直角坐标系中,我们还可以用一些方程来描述特定的几何图形。
例如,对于轨迹是一条直线的情况,我们可以使用斜率截距式(y=mx+b)来描述这条直线。
对于轨迹是一个圆的情况,我们可以使用标准式((x-a)2+(y-b)2=r2)来描述这个圆,其中 (a,b) 为圆心坐标,r 为圆的半径。
五、教案制作技巧下面我们来介绍一些教案制作技巧,以便于教师在教学过程中更好地运用平面直角坐标系的知识。
1.动手操作平面直角坐标系是一个比较抽象的概念,如果让学生直接看着图示来学习,可能会让他们感到困难。
因此建议在教学时让学生动手画出坐标系和点,这样可以让学生更加直观地理解概念。
2.实际应用在应用方面,建议使用生活中的实例来帮助学生理解平面直角坐标系的意义。
中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(基础)责编:常春芳【考纲要求】⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想;⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题.【知识网络】【考点梳理】考点一、平面直角坐标系1.平面直角坐标系平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.2.各象限内点的坐标的特点、坐标轴上点的坐标的特点点P(x,y)在第一象限0,0>>⇔y x ;点P(x,y)在第二象限0,0><⇔y x ; 点P(x,y)在第三象限0,0<<⇔y x ; 点P(x,y)在第四象限0,0<>⇔y x ;点P(x,y)在x 轴上0=⇔y ,x 为任意实数;点P(x,y)在y 轴上0=⇔x ,y 为任意实数;点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0). 3.两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等;点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数. 4.和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同; 位于平行于y 轴的直线上的各点的横坐标相同. 5.关于x 轴、y 轴或原点对称的点的坐标的特征点P 与点p ′关于x 轴对称⇔横坐标相等,纵坐标互为相反数; 点P 与点p ′关于y 轴对称⇔纵坐标相等,横坐标互为相反数; 点P 与点p ′关于原点对称⇔横、纵坐标均互为相反数. 6.点P(x,y)到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x +.要点诠释:(1)注意:x 轴和y 轴上的点,不属于任何象限; (2)平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标. 考点二、函数 1.函数的概念设在某个变化过程中有两个变量x 、y,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它相对应,那么就说y 是x 的函数,x 叫做自变量.2.自变量的取值范围对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.3.表示方法⑴解析法;⑵列表法;⑶图象法. 4.画函数图象(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来. 要点诠释:(1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量; (2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.考点三、几种基本函数(定义→图象→性质)1.正比例函数及其图象性质(1)正比例函数:如果y=kx(k 是常数,k ≠0),那么y 叫做x 的正比例函数. (2)正比例函数y=kx ( k ≠0)的图象: 过(0,0),(1,K )两点的一条直线.(3)正比例函数y=kx (k ≠0)的性质①当k >0时,图象经过第一、三象限,y 随x 的增大而增大; ②当k <0时,图象经过第二、四象限,y 随x 的增大而减小 . 2.一次函数及其图象性质(1)一次函数:如果y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数. (2)一次函数y=kx+b (k ≠0)的图象(3)一次函数y=kx+b (k ≠0)的图象的性质一次函数y =kx +b 的图象是经过(0,b )点和)0,(kb点的一条直线.①当k>0时,y 随x 的增大而增大; ②当k<0时,y 随x 的增大而减小.要点诠释:(1)当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例;(2)确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k.确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b. 解这类问题的一般方法是待定系数法.3.反比例函数及其图象性质 (1)定义:一般地,形如xky =(k 为常数,o k ≠)的函数称为反比例函数. 三种形式:ky x=(k ≠0)或kx y =1-(k ≠0)或xy=k(k ≠0). (2)反比例函数解析式的特征:①等号左边是函数y ,等号右边是一个分式.分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1; ②比例系数0≠k ;③自变量x 的取值为一切非零实数; ④函数y 的取值是一切非零实数.(3)反比例函数的图象①图象的画法:描点法列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数); 描点(由小到大的顺序); 连线(从左到右光滑的曲线).②反比例函数的图象是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交.③反比例函数的图象是轴对称图形(对称轴是x y =和x y -=)和中心对称图形(对称中心是坐标原点). ④反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意点引x 轴、y 轴的垂线,所得矩形面积为k .(4)反比例函数性质:反比例函数 )0(≠=k xky k 的符号k>0k<0图像性质①x的取值范围是x≠0,y的取值范围是y≠0;②当k>0时,函数图像的两个分支分别在第一、三象限.在每个象限内,y 随x 的增大而减小.①x的取值范围是x≠0,y的取值范围是y≠0;②当k<0时,函数图像的两个分支分别在第二、四象限.在每个象限内,y随x 的增大而增大.(5)反比例函数解析式的确定:利用待定系数法(只需一对对应值或图象上一个点的坐标即可求出k)(6)“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky=中的两个变量必成反比例关系. 要点诠释:(1)用待定系数法求解析式(列方程[组]求解);(2)利用一次(正比例)函数、反比例函数的图象求不等式的解集.【典型例题】类型一、坐标平面有关的计算1.已知点A(a,-5),B(8,b),根据下列要求确定a,b的值.(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点都在一、三象限的角平分线上.【思路点拨】(1)关于y轴对称,y不变,x变为相反数;(2)关于原点对称,x变为相反数,y变为相反数;(3)AB∥x轴,即两点的纵坐标不变即可;(4)在一、三象限两坐标轴夹角的平分线上的点的横纵坐标相等,即可得出a,b.【答案与解析】(1)点A(a,-5),B(8,b)两点关于y轴对称,则a=-8且b=-5.(2)点A(a,-5),B(8,b)两点关于原点对称,则a=-8且b=5.(3)AB∥x轴,则a≠8且b=-5.(4)A,B两点都在一、三象限的角平分线上,则a=-5且b=8.【总结升华】运用对称点的坐标之间的关系是解答本题的关键.在一、三象限角平分线上的点的横纵坐标相等,在二、四象限角平分线上的点的横纵坐标互为相反数.举一反三:【变式】已知点A 的坐标为(-2,-1).(1)如果B 为x 轴上一点,且10AB =,求B 点的坐标;(2)如果C 为y 轴上的一点,并且C 到原点的距离为3,求线段AC 的长; (3)如果D 为函数y =2x -1图象上一点,5AD =,求D 点的坐标. 【答案】(1)设B (x ,0),由勾股定理得22(2)(01)10AB x =+++=.解得x 1=-5,x 2=1. 经检验x 1=-5,x 2=1均为原方程的解.∴ B 点的坐标为(-5,0)或(1,0).(2)设C (0,y ),∵ OC =3,∴ C 点的坐标为(0,3)或(0,-3).∴ 由勾股定理得22(2)(31)25AC =-++=;或22AC =.(3)设D (x ,2x -1),AD =5,由勾股定理得22(2)(211)5x x ++-+=.解得115x =,21x =-. 经检验,115x =,21x =-均为原方程的解. ∴ D 点的坐标为(15,35-)或(-1,-3).2.已知某一函数图象如图所示.(1)求自变量x 的取值范围和函数y 的取值范围;(2)求当x =0时,y 的对应值; (3)求当y =0时,x 的对应值; (4)当x 为何值时,函数值最大; (5)当x 为何值时,函数值最小;(6)当y 随x 的增大而增大时,求x 的取值范围; (7)当y 随x 的增大而减小时,求x 的取值范围. 【思路点拨】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 【答案与解析】(1)x 的取值范围是-4≤x ≤4,y 的取值范围是-2≤y ≤4; (2)当x =0时,y =3;(3)当y =0时,x =-3或-1或4;(4)当x=1时,y的最大值为4;(5)当x=-2时,y的最小值为-2;(6)当-2≤x≤1时,y随x的增大而增大;(7)当-4≤x≤-2或1≤x≤4时,y随x的增大而减小.【总结升华】本题主要是培养学生的识图能力.举一反三:【变式1】下图是韩老师早晨出门散步时,离家的距离y与时间x的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是( )【答案】理解题意,读图获取信息是关键,由图可知某段时间内韩老师离家距离是常数,联想到韩老师是在家为圆心的弧上散步,分析四个选项知D项符合题意.答案:D【高清课程名称:平面直角坐标系与一次函数高清ID号:406069关联的位置名称(播放点名称):例1】【变式2】下列图形中的曲线不表示y是x的函数的是( ).【答案】C.类型二、一次函数3.(2015•盘锦)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a= ,b= ;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?【思路点拨】(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值;(2)利用待定系数法求正比例函数解析式求出y1,分x≤10与x>10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解即可.【答案与解析】解:(1)由y1图象上点(10,480),得到10人的费用为480元,∴a=×10=6;由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,480),∴10k1=480,∴k1=48,∴y1=48x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,800),∴10k2=800,∴k2=80,∴y2=80x,x>10时,设y2=kx+b,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴y2=64x+160;∴y2=;(3)设B团有n人,则A团的人数为(50﹣n),当0≤n≤10时,80n+48×(50﹣n)=3040,解得n=20(不符合题意舍去),当n>10时,800+64×(n﹣10)+48×(50﹣n)=3040,解得n=30,则50﹣n=50﹣30=20.答:A团有20人,B团有30人.【总结升华】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论.举一反三:【高清课程名称:平面直角坐标系与一次函数高清ID号:406069关联的位置名称(播放点名称):例6】【变式1】(1)直线y=2x+1向下平移2个单位,再向右平移2个单位后的直线的解析式是_____ ___.(2)直线y=2x+1关于x轴对称的直线的解析式是___ _____;直线y=2x+l关于y轴对称的直线的解析式是___ ______;直线y=2x+1关于原点对称的直线的解析式是____ _____.(3)如图所示,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB平移后经过(3,4)点,则平移后的直线的解析式是__ ______.【答案】(1)y=2x-5;(2)y=-2x-1,y=-2x+1,y=2x-1;(3)y=2x-2.【变式2】某地夏天旱情严重.该地10号、15号的人日均用水量的变化情况如图所示.若该地10号、15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为( )A.23 B.24 C.25 D.26【答案】解析:设图中直线解析式为y =kx+b , 将(10,18),(15,15)代入解析式得1018,1515,k b k b +=⎧⎨+=⎩解得 3,524,k b ⎧=-⎪⎨⎪=⎩∴3245y x =-+.由题意知,324105x -+<,解得1233x >,∴送水号数应为24. 答案:B类型三、反比例函数4.(2015•安顺)如图,在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与反比例函数m y x=的图象交于A (2,3)、B (﹣3,n )两点.(1)求一次函数和反比例函数的解析式;(2)若P 是y 轴上一点,且满足△PAB 的面积是5,直接写出OP 的长.【思路点拨】(1)用待定系数法即可确定出反比例函数解析式;再将B 坐标代入反比例解析式中求出n 的值,确定出B 坐标,根据A 与B 坐标即可确定出一次函数解析式;(2)如图所示,对于一次函数解析式,令x=0求出y 的值,确定出C 坐标,得到OC 的长,三角形ABP 面积由三角形ACP 面积与三角形BCP 面积之和求出,由已知的面积求出PC 的长,即可求出OP 的长. 【答案与解析】解:(1)∵反比例函数my x=的图象经过点A (2,3), ∴m=6.∴反比例函数的解析式是y=,∵B 点(﹣3,n )在反比例函数y=的图象上,∴n=﹣2,∴B (﹣3,﹣2),∵一次函数y=kx+b 的图象经过A (2,3)、B (﹣3,﹣2)两点, ∴,解得:,∴一次函数的解析式是y=x+1;(2)对于一次函数y=x+1,令x=0求出y=1,即C (0,1),OC=1, 根据题意得:S △ABP =PC ×2+PC ×3=5, 解得:PC=2,则OP=OC+CP=1+2=3或OP=CP ﹣OC=2﹣1=1.【总结升华】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键. 举一反三:【变式】已知正比例函数y kx =(k 为常数,0k ≠)的图象与反比例函数5ky x-=(k 为常数,0k ≠)的图象有一个交点的横坐标是2. (1)求两个函数图象的交点坐标;(2)若点11()A x y ,,22()B x y ,是反比例函数5ky x-=图象上的两点,且12x x <,试比较12y y ,的大小. 【答案】(1)由题意,得522kk -=, 解得1k =.所以正比例函数的表达式为y x =,反比例函数的表达式为4y x=. 解4x x=,得2x =±.由y x =,得2y =±.所以两函数图象交点的坐标为(2,2),(22)--,.(2)因为反比例函数4y x=的图象分别在第一、三象限内, y 的值随x 值的增大而减小,所以当120x x <<时,12y y >. 当120x x <<时,12y y >.当120x x <<时,因为1140y x =<,2240y x =>,所以12y y <.类型四、函数综合应用5.如图,直线b x y +-=(b >0)与双曲线xky =(k >0)在第一象限的一支相交于A 、B 两点,与坐标轴交于C 、D 两点,P 是双曲线上一点,且PD PO =.(1)试用k 、b 表示C 、P 两点的坐标;(2)若△POD 的面积等于1,试求双曲线在第一象限的一支的函数解析式; (3)若△OAB 的面积等于34,试求△COA 与△BOD 的面积之和.【思路点拨】(1)根据直线的解析式求得点D 的坐标,再根据等腰三角形的性质即可求得点P 的横坐标,进而根据双曲线的解析式求得点P 的纵坐标;(2)①要求双曲线的解析式,只需求得xy 值,显然根据△POD 的面积等于1,即可求解;②由①中的解析式可以进一步求得点B 的纵坐标,从而求得直线的解析式,然后求得点B 的坐标,即可计算△COA 与△BOD 的面积之和. 【答案与解析】(1)C (0,b ),D (b ,0)∵PO =PD∴22b OD x P ==,b ky P 2=∴P (2b ,bk2)(2)∵1=∆POD S ,有1221=⋅⋅bkb ,化简得:k =1∴xy 1=(x >0)(3)设A (1x ,1y ),B (2x ,2y ),由AOB COD BOD COA S S S S ∆∆∆∆-=+得:34212121221-=+b by bx ,又b x y +-=22得38)(221-=+-+b b x b bx , 即38)(12=-x x b 得,再由⎪⎩⎪⎨⎧=+-=x y bx y 1得012=+-bx x , 从而b x x =+21,121=x x ,从而推出0)12)(4)(4(2=++-b b b ,所以4=b . 故348-=+∆∆BOD COA S S【总结升华】利用面积建立方程求解析式中的字母参数是常用方法.求两函数图像的交点坐标,即解由它们的解析式组成的方程组. 举一反三:【变式1】如图所示是一次函数y 1=kx+b 和反比例函数2my x=的图象,观察图象写出y 1>y 2时x 的取值范围________.【答案】利用图象比较函数值大小时,要看对于同一个自变量的取值,哪个函数图象在上面,哪个函数的函数值就大,当y 1>y 2时,-2<x <0或x >3. 答案:-2<x <0或x >3 【变式2】已知函数232(21)my m x -=-,m 为何值时,(1)y 是x 的正比例函数,且y 随x 的增大而增大? (2)函数的图象是位于第二、四象限的双曲线? 【答案】(1)要符合题意,m 需满足2210,32 1.m m ->⎧⎨-=⎩ 解得1,21.m m ⎧>⎪⎨⎪=±⎩ ∴ m =1.(2)欲符合题意,m 需满足2210,32 1.m m -<⎧⎨-=-⎩ 解得1,23.3m m ⎧<⎪⎪⎨⎪=±⎪⎩∴ 33m =-.6.已知直线11:n n l y x n n+=-+(n 是不为零的自然数).当n =1时,直线1:21l y x =-+与x 轴和y 轴分别交于点A 1和B 1,设△A 1OB 1(其中O 是平面直角坐标系的原点)的面积为S 1;当n =2时,直线231:22l y x =-+与x 轴和y 轴分别交于点A 2和B 2,设△A 2OB 2的面积为S 2,…,依此类推,直线n l 与x轴和y 轴分别交于点A n 和B n ,设△A n OB n 的面积为S n .(1)求11A OB △的面积S 1;(2)求S 1+S 2+S 3+…+S 6的面积.【思路点拨】此题是一道规律探索性题目,先根据函数解析式的通项公式得出每一个函数解析式,画出图象,总结出规律,便可解答. 【答案与解析】解:直线1:21l y x =-+,∴ 11OB =,112OA =.(1)111111112224S OB OA =⨯⨯=⨯⨯=. (2)由11n y x n n+=-+得,A 12123611A (0),(0,).n+1n11,,n+1n 1111,2n n+12(1)11,,212223111121222323426711111()21223346711(1)273.7n n n n n n OB B OA OB S n n S S S S S S ===⨯⨯=+==⨯⨯⨯⨯++++=++++⨯⨯⨯⨯⨯⨯⨯⨯=++++⨯⨯⨯⨯=-=△,【总结升华】借助直觉思维或对问题的整体把握运用归纳、概括、推理等思想获得合理的猜测.。
平面直角坐标系的基本知识平面直角坐标系是数学中常用的一种坐标系,用于描述平面上点的位置。
它由两条相互垂直的直线(通常称为x轴和y轴)组成,它们的交点被定义为原点O。
平面直角坐标系的基本知识包括坐标表示、坐标轴、象限以及点的位置和距离等。
1. 坐标表示在平面直角坐标系中,每个点都有一个唯一的坐标表示,用有序数对(x, y)来表示。
其中,x表示该点在x轴上的水平距离,y表示该点在y轴上的垂直距离。
例如,点A的坐标表示为A(x1, y1)。
2. 坐标轴平面直角坐标系由x轴和y轴构成,它们相互垂直并交于原点O。
x轴是水平的,并且向右延伸为正方向,向左延伸为负方向。
y轴是垂直的,并且向上延伸为正方向,向下延伸为负方向。
3. 象限根据坐标轴的分布,平面直角坐标系将平面划分为四个象限,分别为第一象限、第二象限、第三象限和第四象限。
第一象限位于x轴和y 轴的正半平面,坐标表示为(x>0, y>0);第二象限位于x轴的负半平面和y轴的正半平面,坐标表示为(x<0, y>0);第三象限位于x轴和y轴的负半平面,坐标表示为(x<0, y<0);第四象限位于x轴的正半平面和y轴的负半平面,坐标表示为(x>0, y<0)。
4. 点的位置和距离在平面直角坐标系中,两点之间的距离可以通过勾股定理进行计算。
例如,设点A(x1, y1)和点B(x2, y2),则AB的距离为√((x2-x1)^2 + (y2-y1)^2)。
在平面直角坐标系中,点的位置可以通过其坐标的关系进行判断。
例如,如果点的坐标表示为A(x, y),则可以通过观察x和y的正负关系来判断该点所在的象限。
如果x>0且y>0,该点位于第一象限;如果x<0且y>0,该点位于第二象限;如果x<0且y<0,该点位于第三象限;如果x>0且y<0,该点位于第四象限。
除此之外,平面直角坐标系还可以用于描述直线、曲线和图形等。
专题03 平面直角坐标系专题03 平面直角坐标系 (1)7.1 平面直角坐标系 (2)知识框架 (2)一、基础知识点 (2)知识点1 有序数对 (2)知识点2 平面直角坐标系 (2)知识点3 点的坐标特点 (3)二、典型题型 (6)题型1 有序数对 (6)题型2 平面直角坐标系的概念 (6)题型3 点的坐标的特征 (6)一、点的位置与坐标 (7)二、点的坐标与距离 (8)三、点的坐标与平行于坐标轴的直线(数形结合思想) (8)四、点的坐标与图形的面积 (9)(1)知坐标,求面积 (9)(2)知面积,求坐标(方程思想) (10)(3)分类讨论 (12)三、难点题型 (14)题型1 确定点所在的象限 (14)题型2 点到坐标轴的距离 (14)题型3 探究平面直角坐标系坐标的变化规律 (15)7.2 坐标系的简单运用 (17)知识框架 (17)一、基础知识点 (17)知识点1 用坐标表示地理位置 (17)知识点2 用坐标表示平移 (18)二、典型题型 (20)题型1 用坐标表示地理位置 (20)题型2 用坐标表示平移 (21)一、点的平移 (21)(1)已知点和平移方式,求对应点 (21)(2)已知点和对应点,求平移方式 (21)二、图形的平移 (22)三、难点题型 (23)题型1 动点问题 (23)7.1 平面直角坐标系知识框架{基础知识点{有序数对平面直角坐标系点的坐标的特点典型题型{ 有序数对平面直角坐标系的概念点的坐标的特征{ 点的位置与坐标点的坐标与距离点的坐标与平行于坐标轴的直线(数形结合思想)点的坐标与图形的面积{知坐标,求面积知面积,求坐标(方程思想)分类讨论难点题型{确定点所在的象限点到坐标轴的距离探究平面直角坐标系坐标的变化规律 一、基础知识点知识点1 有序数对1)我们把有顺序的两个数a 与b 组成的数对,用于表示平面中某一确定位置的,叫作有序数对,记作(a ,b )注:①(a ,b )与(b ,a )表达的含义不同,注意有序数对的顺序②在表达有序数对时,一般行在前,列在后。
《平面直角坐标系》知识点一、点的坐标⑴在坐标系中已知点标出它的坐标:过点分别作x 轴与y 轴的垂线,在x 轴上的垂足所表示的数即是点的横坐标,在y 轴上的垂足所表示的数即是纵坐标,坐标需写成(x,y),(横坐标在前,纵坐标在后。
⑵已知点的坐标在坐标系中描出点。
分别在x 轴与y 轴上找到表示横坐标与纵坐标的点,过这两点分别作x 轴y 轴的垂线,两线的交点即是所求的点。
二、不同位置下点的坐标特征(如图2)a 、象限点:第一象限点(+,+),第二象限点(-,+)第三象限点(-,-)第四象限点(+,-)b 、坐标轴上的点:x 轴上点(x, 0),y 轴上点(0,y) 注:坐标轴上的点不属于任何象限例1、若A (a,b)为第二象限点,则M (-a,b+1)在第 象限。
分析:方法一:推理法,点A 为第二象限的点,所以a 为负数,b 为正数,所以可推知M(-a,b+1)中,-a 为正数,b+1为正数,即M (+,+)所以M 在第一象限。
方法二:取特殊值法:若A (a,b)为第二象限点则a 为负数,b 为正数,不妨设a=-1。
,b=1,代入横、纵坐标得-a=-(-1)=1,b+1=1+1=2,即此时M 坐标为(1,2)在第一象限,故可判定M (-a.b+1)在第一象限。
类似的,点P (-a 2-1,|b|+2)一定在第 象限。
例2、若A(x,y),x+y<0,xy>0,则点A 在第 象限。
分析:xy>0说明x 与y 同号,(两数相乘,同号得正,异号得负),又x+y<0,所以x 与y 应同为负,(同号两数相加,取相同的符号)即A (-,-)在第三象限。
类似的,若A (x,y),xy=0,那么A 在 ,分析:xy=0,说明x 与y 至少有一个是0,分为三种情况:1、x=0,y ≠0(y 轴上),2、x ≠0,y=0(x 轴上),3、x,y 均为0(原点)。
所以答案为:点A 在坐标轴上。
三、点到坐标轴的距离:点到x 轴的距离=纵坐标的绝对值,点到y 轴的距离=横坐标的绝对值。
第七章《平面直角坐标系》基础知识专题一.知识点1、有序数对:有顺序的两个数a与b组成的数队,叫做。
2、平面直角坐标系:在平面内画两条、的数轴,组成平面直角坐标系。
水平的数轴称为x轴或,取为正方向。
竖直的数轴称为y轴或 ,取为正方向。
两坐标轴的交点为平面直角坐标系的。
3、已知点求出其坐标的方法:由该点分别向x轴y轴作垂线,垂足在x轴上的坐标是该点的,垂足在y轴上的坐标是该点的。
4、点的坐标特征:(坐标轴上的点不属于任何象限)第一象限:( +,+)第二象限:( )第三象限:( )第四象限:( )横轴上的点:(x,0) 纵轴上的点:(0,y)5、距离问题:点(x,y)距x轴的距离为距y轴的距离为6、角平分线问题若点(x,y)在第一、三象限角平分线上,则若点(x,y)在第二、四象限角平分线上,则7、对称问题:两点关于x轴对称,则相同相反关于y轴对称,则相同相反8、中点坐标:点A(x1,y1)点B(x2,y2),则AB中点坐标为9、平行于x轴的直线上的点的相等平行于y轴的直线上的点的相等10、平移:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点( )向左平移a个单位长度,可以得到对应点( )向上平移b个单位长度,可以得到对应点()向下平移b个单位长度,可以得到对应点( )二、练习1. 下列各点中,在第二象限的点是( )A.(2,3)B. (2,-3) C.(-2,-3)D. (-2,3)2. 将点A(-4,2)向上平移3个单位长度得到的点B的坐标是( )A.(-1,2) B. (-1,5) C. (-4,-1) D.(-4,5) 3.如果点M(a-1,a+1)在x轴上,则a的值为()A. a=1 B. a=-1 C. a>0 D.a的值不能确定4. 点P的横坐标是-3,且到x轴的距离为5,则P点的坐标是()A. (5,-3)或(-5,-3)B. (-3,5)或(-3,-5)C. (-3,5) D. (-3,-5)5. 若点P(a,b)在第四象限,则点M(b-a,a-b)在( )A.第一象限B.第二象限C. 第三象限D.第四象限6.线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(-4,–1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(–9,– 4)7.一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)8.若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(2,-2)或(-2,2) 9. 点M(a,a-1)不可能在()A.第一象限B. 第二象限 C. 第三象限D.第四象限-)所在象限为( )10.点A(4,3A. 第一象限B. 第二象限C.第三象限 D. 第四象限-)在( )11.点B(0,3A.在x轴的正半轴上 B.在x轴的负半轴上C.在y轴的正半轴上 D.在y轴的负半轴上12.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为( )A.(3,2) B . (3,2--) C. (2,3-) D.(2,3-)13.某同学的座位号为(4,2),那么该同学的所座位置是( )A. 第2排第4列B. 第4排第2列 C . 第2列第4排 D. 不好确定14. 一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,–1),则第四个顶点的坐标为( )A.(2,2) B.(3,2) C.(3,3) D.(2,3)15.在平面直角坐标系中,点(1,2m +1 )一定在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 16.过点A (-2,5)作x 轴的垂线L,则直线L 上的点的坐标特点是_________.17. 若P(x,y)是第四象限内的点,且2,3x y ==,则点P 的坐标是18.已知点P (0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.19.已知点M(2m +1,3m-5)到x 轴的距离是它到y 轴距离的2倍,则m =20、已知点P(a +1,2a -1)关于x 轴的对称点在第一象限,则a 的取值范围是。
初中数学平面直角坐标系知识点平面直角坐标系是数学中的一个重要概念,通过它可以方便地描述和研究平面内点的位置关系和运动规律。
了解平面直角坐标系的知识点对于初中数学的学习非常重要,下面将介绍一些平面直角坐标系的基本知识点。
一、平面直角坐标系的概念及建立平面直角坐标系是由两个相互垂直的数轴组成的,这两个数轴分别叫做x轴和y轴。
x轴和y轴的交点称为坐标原点O,x轴的正方向称为正半轴,负方向称为负半轴;y轴的正方向也是正半轴,负方向是负半轴。
所有的点在平面中都可以用坐标表示,一个点的坐标就是它到x轴和y轴的距离表示的有序数对。
二、坐标的表示方法对于一个点P,我们可以用(x,y)来表示它的坐标,x是点P在x轴上的坐标值,y是点P在y轴上的坐标值。
例如,点A的坐标为(3,4),表示它到x轴的距离为3,到y轴的距离为4三、坐标的表示及性质1.坐标的图示表示:在平面直角坐标系中,一般使用平行于坐标轴的线段来表示坐标,例如,点A的坐标为(3,4),我们可以在x轴上向右边移动3个单位,然后在y轴上向上移动4个单位,将这两个点连接起来,就得到了点A的位置。
2.坐标的唯一性:对于平面上的每个点,它的坐标值是唯一确定的,即不同的点不可能有相同的坐标。
3.单位长度和比例关系:在平面直角坐标系中,单位长度是可以任意确定的,通常我们用等长的单位长度来表示x轴和y轴。
这样,两个单位长度的线段的数量关系就可以表示为1:1的比例关系。
四、点的位置关系在平面直角坐标系中,可以通过坐标的大小和正负来判断点的位置关系。
1.同一点的位置:在平面直角坐标系中,原点O的坐标是(0,0),即到x轴和y轴的距离都是0,因此原点是唯一的。
2.直线与坐标轴的交点:一个点的y坐标为0,表示它在x轴上,这样的点叫做x轴的交点;一个点的x坐标为0,表示它在y轴上,这样的点叫做y轴的交点。
3.点的位置比较:对于两个不同的点,可以通过比较它们的x坐标和y坐标的大小来判断它们的位置关系。
平面直角坐标系平面直角坐标系的有关概念夯实基础一.有序数对在日常生活中,可以用有序数对来描述物体的位置,这样可以用含有两个数的组合来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a 与b 组成的数对,叫做有序数对,记作()b a ,。
温馨提示()b a ,与()a b ,顺序不同,含义就不同。
例如:用()5,3表示第3列的第5位同学,那么()3,5就表示第5列的第3位同学。
例1:(1)在一层的电影院内如何找到电影票上所指的位置?(2)在电影票上,如果把“5排8号”简记为(5,8),那么“4排9号”如何表示?(8,3)表示什么含义?二.平面直角坐标系 三.象限x 轴和y 轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如图。
第一象限 第二象限 第三象限第四象限yOx温馨提示如果所表示的平面直角坐标系具有实际意义,一般在表示横轴、纵轴的字母后附上单位。
例2:设()b aM ,为平面直角坐标系中的点。
(1)当0,0<>b a 时,点M 位于第几象限? (2)当0>ab 时,点M 位于第几象限?四.点的坐标对于坐标平面内的任意一点A ,过点A 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a 、b 分别叫做点A 的横坐标和纵坐标,有序数对()b a ,叫做点A 的坐标,记作()b a A ,,如图。
1.已知坐标平面内的点,确定点的坐标先由已知点P 分别向x 轴、y 轴作垂线,设垂足分别为A 、B ,再求出垂足A 在x 轴上的坐标a 与垂足B 在y 轴上的坐标b ,最后按顺序写成()b a ,即可。
2.已知点的坐标确定点的位置若点P 的坐标是()b a ,,先在x 轴上找到坐标为a 的点A ,在y 轴上找到坐标为b 的点B ;再分别过点A 、点B 作x 轴、y 轴的垂线,两垂线的交点就是所要确定的点P 。
初中数学平面直角坐标系一、主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。
1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。
(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;3、各种特殊点的坐标特点.(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。
二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。
四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:坐标轴上点P(x,y) 连线平行于坐标轴的点点P(x,y)在各象限的坐标特点象限角平分线上的点X轴Y轴原点平行X轴平行Y轴第一象限第二象限第三象限第四象限第一、三象限第二、四象限六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; 七、用坐标表示平移:见下图二、经典例题知识一、坐标系的理解例1、平面内点的坐标是( )A 一个点B 一个图形C 一个数对D 一个有序数对学生自测1.在平面内要确定一个点的位置,一般需要________个数据;在空间内要确定一个点的位置,一般需要________个数据. 2、在平面直角坐标系内,下列说法错误的是( )A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标点在x 轴上,坐标为(x,0)在x 轴的负半轴上时,x 〈0, 在x 轴的正半轴上时,x>0 点在y 轴上,坐标为(0,y )在y 轴的负半轴上时,y 〈0, 在y 轴的正半轴上时,y>0(x ,0) (0,y) (0,0) 纵坐标相同,横坐标不同横坐标相同,纵坐标不同x >0y >x <0 y >0x <0 y <0x >0 y <0(m,m) (m,—m )P (x ,y )P (x ,yP (x -a ,P (x +a ,P (x ,y向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位第一、三象限角平分线上的点的横纵坐标相同(即在y=x 直线上);坐标点(x,y)xy>0 第二、 四象限角平分线上的点的横纵坐标相反(即在y= -x 直线上);坐标点(x ,y )xy〈0 平行于x 轴(或横轴)的直线上的点的纵坐标相同;平行于y 轴(或纵轴)的直线上的点的横坐标相同。
平面直角坐标系(基础)知识讲解【学习目标】
1.理解平面直角坐标系概念,能正确画出平面直角坐标系.
2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征.
3.由数轴到平面直角坐标系,渗透类比的数学思想.
【要点梳理】
要点一、有序数对
定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).
要点诠释:
有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.
要点二、平面直角坐标系与点的坐标的概念
1. 平面直角坐标系
在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).
要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.
2. 点的坐标
平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.
要点诠释:
(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间
用“,”隔开.
(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.
(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.
要点三、坐标平面
1. 象限
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.
要点诠释:
(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.
(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.
2. 坐标平面的结构
坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.
要点四、点坐标的特征
1.各个象限内和坐标轴上点的坐标符号规律
要点诠释:
(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.
(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征
第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);
第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).
3.关于坐标轴对称的点的坐标特征
P(a,b)关于x轴对称的点的坐标为 (a,-b);
P(a,b)关于y轴对称的点的坐标为 (-a,b);
P(a,b)关于原点对称的点的坐标为 (-a,-b).
4.平行于坐标轴的直线上的点
平行于x轴的直线上的点的纵坐标相同;
平行于y轴的直线上的点的横坐标相同.
【典型例题】
类型一、有序数对
1.如果将一张“13排10号”的电影票简记为(13,10),那么
(10,13)表示的电影票是 排 号.
【思路点拨】在平面上,一个数据不能确定平面上点的位置.须用有序数对来表示平面内点的位置.
【答案】10,13.
【解析】由条件可知:前面的数表示排数,后面的数表示号数.
【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.举一反三:
【变式】某地10:00时气温是6℃,表示为(10,6),那么(3,-7)表示________.
【答案】3:00时该地气温是零下7℃.
类型二、平面直角坐标系与点的坐标的概念
2.如图,写出点A、B、C、D各点的坐标.
【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.
【答案与解析】
解:由点A向x轴作垂线,得A点的横坐标是2,再由点A向y轴作垂线,得A点的纵坐标是3,则点A的坐标是(2,3),同理可得点B、C、D的坐标.
所以,各点的坐标:A(2,3),B(3,2),C(-2,1),D(-1,-2).
【总结升华】平面直角坐标系内任意一点到x轴的距离是这点纵坐标的绝对值,到y轴的距离是这点横坐标的绝对值.
举一反三:
【变式】在平面直角坐标系中,如果点A既在x轴的上方,又在y轴的左边,且距离x轴,y轴分别为5个单位长度和4个单位长度,那么点A的坐标为( ).
A.(5,-4) B.(4,-5) C.(-5,4) D.(-4,5)
【答案】D.
3.在平面直角坐标系中,描出下列各点A(4,3),B(-2,3),C(-4,1),D(2,-2).
【答案与解析】
解:因为点A的坐标是(4,3),所以先在x轴上找到坐标是4的点M,再在y轴上找到坐标是3的点N.然后由点M作x轴的垂线,由点N作y轴的垂线,过两条垂线的交点就是点A,同理可描出点B、C、D.
所以,点A、B、C、D在直角坐标系的位置如图所示.
【总结升华】对于坐标平面内任意一点,都有唯一的一对有序数对和它对应;对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.
举一反三:
【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),
B(5,0),则△AOB的面积为 . 【答案】5.
类型三、坐标平面及点的特征
4.指出下列各点所在的象限或坐标轴.
A(4,5)、B(-2,3)、C(-4,-1)、D(2.5,-2)、E(0,-4) 、F(3,
0)、G(0,0).
【思路点拨】先判断所求点的横纵坐标的符号,进而判断所在象限.
【答案与解析】
解:点A在第一象限,点B在第二象限,点C在第三象限,点D在第四象
限,点E在y轴上,点F在x轴上,点G在原点上.
【总结升华】本题主要考查点的坐标的性质,解决本题的关键是记住平
面直角坐标系中各个象限内点的符号,但注意坐标轴上的点不属于任
何象限,原点既在x轴上,又在y轴上.
举一反三:
【变式1】点A(3,n)在第四象限,到x轴的距离为4.则点A的坐标为
________.
【答案】 (3,-4).
【高清课堂:第一讲 平面直角坐标系1 369934 练习3 】
【变式2】若点P (a ,b)在第二象限,则:
(1)点P1(a ,-b)在第 象限;
(2)点P2(-a ,b)在第 象限;
(3)点P3(-a ,-b)在第 象限;
(4)点P4( b ,a )在第 象限.
【答案】(1)三;(2)一;(3)四;(4)四.
5.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x
轴的距离等于3,求点B的坐标.
【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.
【答案与解析】
解:如图,
∵ 点B与点A在同一条平行于y轴的直线上,
∴ 点B与点A的横坐标相同,
∴ x=-3.
∵ 点B到x轴的距离为3,
∴ y=3或y=-3.
∴ 点B的坐标是(-3,3)或(-3,-3).
【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.
举一反三:
【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为( ).
A.(3,0) B.(3,0)或(–3,0)
C.(0,3) D.(0,3)或(0,–3)
【答案】B.
【高清课堂:第一讲 平面直角坐标系1 369934 练习4(5)】
【变式2】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.
【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).。