王后雄教育顶级名师刘振诚高三数学专题-解析几何中的定点问题
- 格式:docx
- 大小:222.35 KB
- 文档页数:8
备战2020年高考数学大题精做之解答题题型全覆盖高端精品第五篇解析几何专题06 解析几何中的定点、定值问题【典例1】【四川省内江市2019届高三第三次模拟】已知椭圆C :22221(0)x y a b a b +=>>,直线0x y +=与圆222x y b +=相切. (1)求椭圆C 的方程;(2)设5(,0)4P ,过点(1,0)的直线l 交椭圆C 于A ,B 两点,证明:PA PB ⋅u u u v u u u v为定值. 【思路引导】(1)根据题意布列关于a ,b 的方程组,即可得到椭圆C 的方程;(2)设l 的方程:1x my =+.联立方程可得()222210m y my ++-=,利用韦达定理表示PA PB ⋅u u u v u u u v,即可得到结果. 【详解】解:(1)∵椭圆C 的离心率为2,∴a =,∵直线0x y +=与圆222x y b +=相切,∴1b ==,∴a ==∴椭圆C 的方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,当直线l 与x 轴不重合时,设l 的方程:1x my =+.由22112x my x y =+⎧⎪⎨+=⎪⎩得()222210m y my ++-=,1221222212m y y m y y m -⎧+=⎪⎪+⎨-⎪=⎪+⎩, ∴12242x x m +=+,2122312m x x m -=++,112255,,44PA PB x y x y ⎛⎫⎛⎫⋅=-⋅- ⎪ ⎪⎝⎭⎝⎭u u u v u u u v ()121212525416x x x x y y =-+++223641721616m m --=+=-+. 当直线l 与x轴重合时,55,0,044PA PB ⎫⎛⎫⋅=⋅⎪⎪⎭⎝⎭u u u v u u u v 25721616=-=-. ∴故PA PB ⋅u u u v u u u v为定值716-. 【典例2】【北京市人大附中2019届高三高考信息卷】已知椭圆()222210x y C a b a b+=>>:离心率等于12,()23P ,、()Q 2,3-是椭圆上的两点.(1)求椭圆C 的方程;(2),A B 是椭圆上位于直线PQ 两侧的动点.当,A B 运动时,满足APQ BPQ ∠=∠,试问直线AB 的斜率是否为定值?如果为定值,请求出此定值;如果不是定值,请说明理由. 【思路引导】(1)由题意列式关于a ,b ,c 的方程组,求解可得a ,b 的值,则椭圆C 的方程可求;(2)设直线P A 的斜率为k ,则PB 的斜率为﹣k ,P A 的直线方程为y ﹣3=k (x ﹣2)将直线的方程代入椭圆的方程,消去y 得到关于x 的一元二次方程,再结合根系数的关系利用弦长公式即可求得x 1+2,同理PB 的直线方程为y ﹣3=﹣k (x ﹣2),可得x 2+2,从而得出AB 的斜率为定值. 【详解】解:(1)由题意可得2222212491c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得a =4,b =,c =2.∴椭圆C 的方程为2211612x y +=;(2)设A (x 1,y 1),B (x 2,y 2),当∠APQ =∠BPQ ,则P A 、PB 的斜率之和为0,设直线P A 的斜率为k , 则PB 的斜率为﹣k ,直线P A 的直线方程为y ﹣3=k (x ﹣2),联立()222311612y k x x y ⎧=-+⎪⎨+=⎪⎩,得(3+4k 2)x 2+8k (3﹣2k )x +4(3﹣2k )2﹣48=0.∴()12823234k k x k-+=+.同理直线PB 的直线方程为y ﹣3=﹣k (x ﹣2), 可得()()22282382323434k k k k x kk---++==++.∴2122161234k x x k-+=+,1224834k x x k --=+, ()()()12121212121223234AB k x k x k x x ky y k x x x x x x -++--+--===---2221612413448234k k k k k k -⋅-+==-+,∴AB 的斜率为定值12.【典例3】【陕西省咸阳市2020届高三模拟检测】已知点Q 是圆22(y 36:M x ++=上的动点,点N ,若线段QN 的垂直平分线MQ 于点P .(I)求动点P 的轨迹E 的方程(II)若A 是轨迹E 的左顶点,过点D (-3,8)的直线l 与轨迹E 交于B ,C 两点,求证:直线AB 、AC 的斜率之和为定值. 【思路引导】(Ⅰ)线段QN 的垂直平分线交MQ 于点P ,所以PN PQ =,则PM PN PM PQ +=+为定值,所以P 的轨迹是以M N 、为焦点的椭圆,结合题中数据求出椭圆方程即可;(Ⅱ)设出直线方程,联立椭圆方程得到韦达定理,写出AB AC k k +化简可得定值. 【详解】解:(Ⅰ)由题可知,线段QN 的垂直平分线交MQ 于点P ,所以PN PQ =,则6PM PN PM PQ +=+=> 所以P 的轨迹是以M N 、为焦点的椭圆,设该椭圆方程为22221(0)x y a b a b+=>>,则26,a c ==24b =,可得动点P 的轨迹E 的方程为22194x y +=.(Ⅱ)由(Ⅰ)可得,过点D 的直线l 斜率存在且不为0, 故可设l 的方程为()0y kx m k =+≠,()()1122,,,B x y C x y ,由22194y kx m x y =+⎧⎪⎨+=⎪⎩得()22249189360k x kmx m +++-=,()()()()2222218449936144940km k m k m ∆=-+-=-+>2121222189364949km m x x x x k k-+=-=++ 而()()()()()()()()()()2211221121212123333333333AB ACy x y x kx m x kx m x y y k k x x x x x x +++++++++=+==++++++ ()()()1212121223639kx x k m x x mx x x x ++++=+++()22222293618236494993618394949m km k k m m k k m km k k -⎛⎫⨯++-+ ⎪++⎝⎭=-⎛⎫+⨯-+ ⎪++⎝⎭()833m k =-由于直线l 过点()3,8D -,所以38k m -+=, 所以13AB AC k k +=(即为定值)【典例4】【河北省保定市2019届高三4月第一次模拟】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 2与抛物线y 2=4x 的焦点重合,且其离心率为12。
解析几何中的定值与定点问题一.方法综述解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下;(1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性;一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。
(2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
二.解题策略类型一定值问题【例1】(2020•青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为()A .B .C.2p D .【答案】D【解析】抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x ﹣),所以,整理得,设点A(x1,y1),B(x2,y2),所以,所以,同理设经过焦点直线CD的方程为y=﹣(x﹣),所以,整理得,所以:|CD|=p+(p+2k2p),所以,则则+=.故选:D.【点评】求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【举一反三】1.(2020•华阴市模拟)已知F是抛物线y2=4x的焦点,过点F的直线与抛物线交于不同的两点A,D,与圆(x﹣1)2+y2=1交于不同的两点B,C(如图),则|AB|•|CD|的值是()A.2B.2C.1D.【答案】C【解析】设A(x1,y1),D(x2,y2),抛物线方程为y2=4x的焦点为F(1,0),准线方程为x=﹣1,圆(x﹣1)2+y2=1的圆心为F(1,0),圆心与焦点重合,半径为1,又由直线过抛物线的焦点F,则|AB|=x1+1﹣1=x1,|CD|=x2+1﹣1=x2,即有|AB|•|CD|=x1x2,设直线方程为x=my+1,代入抛物线方程y2=4x,可得y2﹣4my﹣4=0,则y1y2=﹣4,x1x2==1,故选:C.2.(2020温州高三月考)如图,P为椭圆上的一动点,过点P作椭圆的两条切线P A,PB,斜率分别为k1,k2.若k1•k2为定值,则λ=()A.B.C.D.【答案】C【解析】取P(a,0),设切线方程为:y=k(x﹣a),代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2a3k2x+a4k2﹣a2b2λ=0,令△=4a6k4﹣4(b2+a2k2)(a4k2﹣a2b2λ)=0,化为:(a2﹣a2λ)k2=b2λ,∴k1•k2=,取P(0,b),设切线方程为:y=kx+b,代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2kba2x+a2b2(1﹣λ)=0,令△=4k2b2a4﹣4(b2+a2k2)a2b2(1﹣λ)=0,化为:λa2k2=b2(1﹣λ),∴k1•k2=,又k1•k2为定值,∴=,解得λ=.故选:C.3.(2020•公安县高三模拟)已知椭圆的离心率为,三角形ABC的三个顶点都在椭圆上,设它的三条边AB、BC、AC的中点分别为D、E、F,且三条边所在直线的斜率分别为k1,k2,k3(k1k2k3≠0).若直线OD、OE、OF的斜率之和为﹣1(O为坐标原点),则=.【答案】2【解析】∵椭圆的离心率为,∴,则,得.又三角形ABC的三个顶点都在椭圆上,三条边AB、BC、AC的中点分别为D、E、F,三条边所在直线的斜率分别为k1、k2,k3,且k1、k2,k3均不为0.O为坐标原点,直线OD、OE、OF的斜率之和为﹣1,设A(x1,y1),B(x2,y2),C(x3,y3),则,,两式作差得,,则,即,同理可得,.∴==﹣2×(﹣1)=2.类型二定点问题【例2】(2020•渝中区高三模拟)已知抛物线C:x2=4y的焦点为F,A是抛物线C上异于坐标原点的任意一点,过点A的直线l交y轴的正半轴于点B,且A,B同在一个以F为圆心的圆上,另有直线l′∥l,且l′与抛物线C相切于点D,则直线AD经过的定点的坐标是()A.(0,1)B.(0,2)C.(1,0)D.(2,0)【答案】A【解析】设A(m,m2),B(0,n),∵抛物线C:x2=4y的焦点为F(0,1)又A,B同在一个以F为圆心的圆上,∴|BF|=|AF|∴n﹣1==m2+1∴n=m2+2∴直线l的斜率k==﹣∵直线l′∥l,∴直线l′的斜率为k,设点D(a,a2),∵y=x2,∴y′=x,∴k=a,∴a=﹣,∴a=﹣∴直线AD的斜率为===,∴直线AD的方程为y﹣m2=(x﹣m),整理可得y=x+1,故直线AD经过的定点的坐标是(0,1),故选:A.【点评】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 【举一反三】1.(2020·全国高考模拟(理))已知抛物线28x y =,过点(),4P b 作该抛物线的切线PA ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( )A .()4,0B .()3,2C .()0,4-D .()4,1【答案】C【解析】设A B ,的坐标为()11x y ,,()22x y ,28x y =,4x y '=, PA PB ,的方程为()1114x y y x x -=-,()2224xy y x x -=- 由22118x y =,22228x y =,可得114x y x y =-,224x y x y =-切线PA PB ,都过点()4P b ,1144x b y ∴=⨯-,2244xb y =⨯-, 故可知过A ,B 两点的直线方程为44bx y =-, 当0x =时,4y =∴直线AB 恒过定点()04-,,故选C2.(2020·重庆高考模拟(理))已知圆22:1C x y +=,点P 为直线142x y+=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点.( )A .11,24⎛⎫ ⎪⎝⎭B .11,42⎛⎫⎪⎝⎭ C.4⎛⎫ ⎪ ⎪⎝⎭D.0,4⎛⎫ ⎪ ⎪⎝⎭ 【答案】B【解析】设()42,,,P m m PA PB -是圆C 的切线,,,CA PA CB PB AB ∴⊥⊥∴是圆C 与以PC 为直径的两圆的公共弦,可得以PC 为直径的圆的方程为()()22222224m m x m y m ⎛⎫⎡⎤--+-=-+ ⎪⎣⎦⎝⎭, ① 又221x y += , ②①-②得():221AB m x my -+=, 可得11,42⎛⎫⎪⎝⎭满足上式,即AB 过定点11,42⎛⎫⎪⎝⎭,故选B. 3.(2020大理一模)已知椭圆221164x y +=的左顶点为A ,过A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,满足122k k ⋅=-,则直线MN 经过的定点为___________. 【答案】28,09T ⎛⎫-⎪⎝⎭【解析】 由()2221211141616414=+4M x y k x k y k x ⎧+=-⎪⇒=⎨+⎪⎩, 同理222122214164641416N k k x k k --==++. 121814M k y k =+,1211616Nk y k -=+,取11k =,由对称性可知,直线MN 经过x 轴上的定点28,09T ⎛⎫-⎪⎝⎭. 【归纳总结】在平面直角坐标系xOy 中,过椭圆()222210x y a b a b+=>>上一定点A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,当12k k ⋅为非零常数时,直线MN 经过定点.三.强化训练1.(2020·黑龙江高三模拟)直线l 与抛物线x y C 2:2=交于B A ,两点,O 为坐标原点,若直线OB OA ,的斜率1k ,2k 满足3221=k k ,则l 的横截距( ) A .为定值3- B .为定值3 C .为定值1- D .不是定值 【答案】A【解析】设直线l 的方程为y kx b =+,由题意得22y kx b y x=+⎧⎨=⎩,则得()222220k x kb x b +-+=; 设A ,B 两点的坐标为()11,A x y ,()22,B x y ,则得12222kb x x k -+=,2122b x x k =;又因为3221=k k ,即121223y y x x =,所以()2222222121222221222222222223k x x kb x x b kb k b k k b k b k k b k k k k x x b b b b +++--+-=++=+=== , 则得3b k =,直线l 的方程为()33y kx b kx k k x =+=+=+; 当0y =时,3x =-,所以直线l 的横截距为定值3-.故选A.2.(2020·辽宁省朝阳市第二高级中学高二期中(文))如果直线7ax by +=(0a >,0b >) 和函数()1log m f x x =+(0m >,1m ≠)的图象恒过同一个定点,且该定点始终落在圆22(1)(1)25x b y a +-++-=的内部或圆上,那么ba的取值范围是( )A .3443⎡⎤⋅⎢⎥⎣⎦B .30,4⎛⎤ ⎥⎝⎦C .4,3⎡⎫+∞⎪⎢⎣⎭D .340,,43⎛⎤⎡⎫⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】A【解析】根据指数函数的性质,可得函数()1log ,(0,1)m f x x m m >≠=+,恒过定点(1,1). 将点(1,1)代入7ax by +=,可得7a b +=.由于(1,1)始终落在所给圆的内部或圆上,所以2225a b +.又由227,25,a b a b +=⎧⎨+=⎩解得34a b =⎧⎨=⎩或43a b =⎧⎨=⎩,所以点(,)a b 在以(3,4)和(4,3)为端点的线段上运动, 当取点(3,4)时,43b a =,取点(4,3)时,34b a,所以b a 的取值范围是34,43⎡⎤⎢⎥⎣⎦.3.(2020·全国高三模拟)过x 轴上的点(),0P a 的直线与抛物线28y x =交于,A B 两点,若2211||||AP BP +为定值,则实数a 的值为( )A.1B.2 C .3 D .4 【答案】D【解析】设直线AB 的方程为x my a =+,代入28y x =,得2880y my a --=, 设()()1122,,,A x y B x y ,则12128,8y y m y y a +=⋅=-.()()()2222222111111AP x a y my y m y =-+=+=+,同理,()22221BP m y =+,∴()21212222222221212211111111y y y y m y y m y y AP BP+-⎛⎫+=+= ⋅⎪++⎝⎭ ()()22222264284164114m a m am a a m -⨯-+=+⋅=+,∵2211||||AP BP +为定值, 是与m 无关的常数,∴4a =.故选D .4.(2020•越城区高三期末)已知A 、B 是抛物线y 2=4x 上异于原点O 的两点,则“•=0”是“直线AB 恒过定点(4,0)”的( )A .充分非必要条件B .充要条件C .必要非充分条件D .非充分非必要条件【答案】B【解析】根据题意,A 、B 是抛物线y 2=4x 上异于原点O 的两点,设A (x 1,y 1),B (x 2,y 2), 若“•=0”,则设直线AB 方程为x =my +b ,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣4b =0,则y 1+y 2=4m ,y 1y 2=﹣4b , 若•=0,则•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=b 2﹣4b =0,解可得:b =4或b =0,又由b ≠0,则b =4,则直线AB 的方程为x =my +4,即my =x ﹣4,则直线AB 恒过定点(4,0), “•=0”是“直线AB 恒过定点(4,0)”的充分条件;反之:若直线AB 恒过定点(4,0),设直线AB 的方程为x =my +4,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣16=0,则有y 1y 2=﹣16, 此时•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=0,故“•=0”是“直线AB 恒过定点(4,0)”的必要条件;综合可得:“•=0”是“直线AB 恒过定点(4,0)”的充要条件;故选:B .5.(2020·湖北高考模拟)设12(,0),(,0)F c F c -是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值bC .定值cD .不确定,随P 点位置变化而变化【答案】A【解析】依题意如图,延长F 1Q ,交PF 2于点T , ∵PQ 是∠F 1PF 2的角分线.TF 1是PQ 的垂线, ∴PQ 是TF 1的中垂线,∴|PF 1|=|PT |,∵P 为双曲线2222x y a b-=1上一点,∴|PF 1|﹣|PF 2|=2a , ∴|TF 2|=2a ,在三角形F 1F 2T 中,QO 是中位线, ∴|OQ |=a . 故选:A .6.(2020·浙江省杭州第二中学高三)设点(),P x y 是圆22:2210C x y x y ++-+=上任意一点,若212x y x y a -+++--为定值,则a 的值可能为( )A .3-B .4-C .5-D .6-【答案】D【解析】圆C 标准方程为22(1)(1)1x y ++-=,圆心为(1,1)C -,半径为1r =, 直线:20l x y a --=2115a---=,35a =-当35a =-+C 在直线l 上方,20x y a --≤,当=--35a C 在直线l 下方,20x y a --≥,若212x y x y a -+++--为定值,则20x y a --≥,因此35a ≤-D 满足. 故选:D.7.(2020·湖北高考模拟(理))已知圆C : 224x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则直线AB 经过定点( )A .48,99⎛⎫⎪⎝⎭ B .24,99⎛⎫⎪⎝⎭C .()2,0D .()9,0 【答案】A【解析】设()()()112200,,,,,,A x y B x y P x y 则1122:4;:4;PA x x y y PB x x y y +=+= 即101020204;4;x x y y x x y y +=+=因此A 、B 在直线004x x y y +=上,直线AB 方程为004x x y y +=, 又00290x y +-=,所以()()0009242940y x y y y y x x -+=⇒-+-= 即8420,940,99y x x y x -=-=⇒==,直线AB 经过定点48,99⎛⎫⎪⎝⎭,选A. 8.(2020·全国高三期末(理))已知圆O :2214x y +=,直线l :y =kx +b (k ≠0),l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α,β,给出如下3个命题: ①当k 为常数,b 为变数时,sin (α+β)是定值; ②当k 为变数,b 为变数时,sin (α+β)是定值; ③当k 为变数,b 为常数时,sin (α+β)是定值. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3【答案】B【解析】设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,, 将直线EF 的方程与的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得2221(1)204k x kbx b +++-=, 由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以2112sin()sin cos cos sin 44x y x y αβαβαβ+=+=+=222112121222188244()4()84()11k b kb k x kx b x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭+++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B (特值法可秒杀)9.(2020·浙江高三期末)斜率为k 的直线l 过抛物线22(0)y px p =>焦点F ,交抛物线于,A B 两点,点00(,)P x y 为AB 中点,作OQ AB ⊥,垂足为Q ,则下列结论中不正确的是( )A .0ky 为定值B .OA OB ⋅为定值C .点P 的轨迹为圆的一部分D .点Q 的轨迹是圆的一部分【答案】C【解析】设抛物线22(0)y px p =>上,A B 两点坐标分别为()()1122,,,A x y B x y ,则2211222,2,y px y px ==两式做差得,121212()()2()y y y y p x x +-=-,整理得1201212022,,2.y y p pk ky p x x y y y -=∴=∴=-+为定值,所以A 正确.因为焦点(,0)2p F ,所以直线AB 方程为()2p y k x =-.由2()22p y k x y px⎧=-⎪⎨⎪=⎩得2222244(2)0k x p k x p k -++=,则22121222(2),,4p k p x x x x k ++== 222212121212()()[()]2224p p p p y y k x x k x x x x p =--=-++=-.2121234OA OB x x y y p ∴⋅=+=-为定值.故B 正确. ,OQ AB ⊥∴点Q 的轨迹是以OF 为直径的圆的一部分,故D 正确.本题选择C 选项.10.(2020·安徽高三月考(理))已知抛物线2:8C y x =,圆22:(2)4F x y -+=,直线:(2)(0)l y k x k =-≠自上而下顺次与上述两曲线交于1234,,,M M M M 四点,则下列各式结果为定值的是( ) A .1324M M M M ⋅ B .14FM FM ⋅ C .1234M M M M ⋅ D .112FM M M ⋅【答案】C 【解析】由()228y k x y x⎧=-⎨=⎩消去y 整理得2222(48)40(0)k x k x k k -++=≠,设111422(,),(,)M x y M x y ,则21212248,4k x x x x k++==. 过点14,M M 分别作直线:2l x '=-的垂线,垂足分别为,A B , 则11422,2M F x M F x =+=+.对于A ,13241412(2)(2)(4)(4)M M M M M F M F x x ⋅=++=++12124()16x x x x =+++,不为定值,故A 不正确.对于B ,14121212(2)(2)2()4FM FM x x x x x x ⋅=++=+++,不为定值,故B 不正确. 对于C ,12341412(2)(2)4M M M M M F M F x x ⋅=--==,为定值,故C 正确.对于D ,1121111(2)(2)FM M M M F M F x x ⋅=⋅-=+,不为定值,故D 不正确.选C .11.(2020·南昌县莲塘第一中学高三月考(理))在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L -距离”定义为121212|||||.PP x x y y =-+-‖则平面内与x 轴上两个不同的定点12,F F 的“L -距离”之和等于定值(大于12|F F )的点的轨迹可以是( )A .B .C .D .【答案】A【解析】设12(,0),(,0)F c F c -,再设动点(,)M x y ,动点到定点12,F F 的“L距离”之和等于(20)m m c >>,由题意可得:x c y x c y m ++-++=,即2x c x c y m -+++=, 当,0x c y <-≥时,方程化为220x y m -+=; 当,0x c y <-<时,方程化为220x y m ++=;当,0c x c y -≤<≥时,方程化为2my c =-; 当,0c x c y -≤<<时,方程化为2my c =-;当,0x c y ≥≥时,方程化为220x y m +-=; 当,0x c y ≥<时,方程化为220x y m --=;结合题目中给出四个选项可知,选项A 中的图象符合要求,故选A . 12.(2020·东北育才学校高三月考(理))有如下3个命题;①双曲线22221(0,0)x y a b a b-=>>上任意一点P 到两条渐近线的距离乘积是定值;②双曲线2222222211(0,0)x y x y a b a b b a-=-=>>与的离心率分别是12e e 、,则22122212e e e e +是定值;③过抛物线22(0)x py p =>的顶点任作两条互相垂直的直线与抛物线的交点分别是A B 、,则直线AB 过定点;其中正确的命题有( ) A .3个 B .2个C .1个D .0个【答案】A【解析】①双曲线22221x y a b-=(a >0,b >0)上任意一点P ,设为(m ,n ),两条渐近线方程为y=±ba x=222222b m a n a b -+, 由b 2m 2﹣a 2n 2=a 2b 2,可得两个距离乘积是定值2222a b a b+; ②双曲线2222x y a b -=1与22221x y b a -=(a >0,b >0)的离心率分别是e 1,e 2,即有e 12=222a b a +,e 22=222a b b +,可得22122212e e e e +为定值1;③过抛物线x 2=2py (p >0)的顶点任作两条互相垂直的直线与抛物线的交点分别是A ,B ,可设A (s ,22s p),B (t ,22t p ),由OA ⊥OB 可得st+2224s t p=0,即有st=﹣4p 2, k AB =()222t s p t s --=2t s p +,可得直线AB 的方程为y ﹣22s p=2t s p +(x ﹣s ),即为y=2t s p +x+2p , 则直线AB 过定点(0,2p ).三个命题都正确.故选A .13.已知O 为坐标原点,点M 在双曲线22:C x y λ-=(λ为正常数)上,过点M 作双曲线C 的某一条渐近线的垂线,垂足为N ,则ON MN ⋅的值为( ) A .2λB .λC .2λD .无法确定【来源】四川省南充市2021届高三第三次模拟考试数学(文)试题 【答案】A【解析】设(,)M m n ,即有22m n λ-=,双曲线的渐近线为y x =±,可得MN =,由勾股定理可得ON ===,可得2222m n ON MN λ-⋅=== .故选:A .14.已知1F 、2F 是双曲线C :2214y x -=的左、右两个焦点,若双曲线在第一象限上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||||PF PF λ=,则λ的值为( ).A .13B .12C .2D .3【来源】河南省豫南九校2020-2021学年高三上学期期末联考理数试题 【答案】C 【解析】1a =,2b =,∴c =1(F,2F, 设点)P m ,∴2222()(1))1504m OP OFF P m m m +⋅=⋅=+-+=, ∴2165m =,m =,则P ±,14PF ===, ∴2122PF PF a =-=,∴12422PF PF λ===, 故选:C.15.已知1F ,2F 是双曲线221169x y -=的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为60︒,那么22||+-PF QF PQ 的值为A .16B .12C .8D .随α变化而变化【答案】A【解析】由双曲线方程221169x y -=知,28a =,双曲线的渐近线方程为34y x 直线PQ 的倾斜角为60︒,所以334PQ k =>,又直线PQ 过焦点1F ,如图 所以直线PQ 与双曲线的交点都在左支上.由双曲线的定义得,2128PF PF a -==…………(1),2128QF QF a -== (2)由(1)+(2)得2211()16PF QF QF PF +-+=,2216PF QF PQ ∴+-=. 故选:A16.已知椭圆()2221024x y b b+=<<,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,()2,1M ,1MF 平分角12PF F ∠,则1MPF 与2MPF 的面积之和为( ) A .1B .32C .2D .3【来源】中学生标准学术能力诊断性测试2020-2021学年高三上学期1月测试理文数学(一卷)试题 【答案】C【解析】如图,椭圆()222210x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,作一圆与线段F 1P ,F 1F 2的延长线都相切,并且与线段PF 2也相切,切点分别为D ,A ,B ,1111221122||||||||||||||||||||F D F A PF PD F F F A PF PB F F F A =⇔+=+⇔+=+, 12122212122||||||||||||||||||2||PF PB F B F F F A F B PF PF F F F A ⇔++=++⇔+=+,所以2||F A a c =-(c 为椭圆半焦距),从而点A 为椭圆长轴端点,即圆心M 的轨迹是直线x =a (除点A 外). 因点M (2,1)在12PF F ∠的平分线上,且椭圆右端点A (2,0),所以点M 是上述圆心轨迹上的点,即点M 到直线F 1P ,PF 2,F 1F 2的距离都相等,且均为1,1MPF 与2MPF 的面积之和为1212111||1||1(||||)2222PF PF PF PF ⋅⋅+⋅⋅=+=.故选:C17.已知椭圆2214x y +=的上顶点为,A B C 、为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点( ) A .(1,0) B .(3,0)C .10,2⎛⎫ ⎪⎝⎭D .30,5⎛⎫- ⎪⎝⎭【答案】D【解析】设直线BC 的方程为x ky m =+,()()1122,,B x y C x y 、,则由2214x ky m x y =+⎧⎪⎨+=⎪⎩整理得()2224240k y mky m +++-=, 所以212122224,44mk m y y y y k k --+==++, ()22222121212224244m mkx x k y y mk y y m k mk m k k --=+++=++++,因为()0,1A ,()()1122,1,1A x y B C x y A --==,,AB AC ⊥, 所以()()()1212121212111x x y y x x y y y y AB AC +-=-=++⋅-+22222222224242125304444m mk m mk k mk m km m k k k k k ---=+++++=+-=++++解得m k =-或35m k =, 当m k =-时,直线BC 的方程为()1x ky k k y =-=-,直线过()0,1点而()0,1A ,而,A B C 、不在同一直线上,不合题意; 当35m k =时,直线BC 的方程为3355x ky k k y ⎛⎫=+=+ ⎪⎝⎭,直线过30,5⎛⎫- ⎪⎝⎭,符合题意.故选:D.18.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54B .45C .43D .34【来源】安徽省宣城市第二中学2020-2021学年高三下学期第一次月考理科数学试题 【答案】D【解析】设112233(,),(,),(,)P x y Q x y G x y ,则切线GP 的方程为114x x y y +=,切线GQ 的方程为224x x y y +=, 因为点G 在切线,GP GQ 上,所以13134x x y y +=,23234x x y y +=,所以直线PQ 的方程为334x x y y +=, 所以3344(,0),(0,)M N x y , 因为点33(,)G x y 在椭圆221124y x +=上,所以2233312x y +=,所以22223333223311123(3)161616164x y x y OM ON+=+=+==, 故选:D19.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .2【来源】湖北省“大课改、大数据、大测评”2020-2021学年高三上学期联合测评数学试题 【答案】A【解析】设(),N x y ,()11,P x y ,()22,Q x y ,设直线PQ 的方程:4x my =-由,,P N A 和,,Q N B 三点共线可知11222222y y x x y y x x ⎧=⎪++⎪⎨⎪=⎪--⎩ , 解得:()()()()()()()()1221122112211221222226222262y x y x y my y my x y x y x y my y my -++-+-==--++--+-1212122623my y y y x y y --∴=-,12121226643my y y y x y y +-+=-,(*)联立224142x my x y =-⎧⎪⎨+=⎪⎩ ,得()2228120m y my +-+=,22226448(2)16(6)0,6m m m m ∆=-+=->>,12121212228123,,()222m y y y y my y y y m m +==∴=+++, 代入(*)得121293433y y x y y -+==-,14y k x =+,22y k x =+ ,122211443k x k x x +∴==-=++.故选:A20.(2020·北京市第二中学分校高三(理))抛物线24y x =上两个不同的点A ,B ,满足OA OB ⊥,则直线AB 一定过定点,此定点坐标为__________. 【答案】(4,0).【解析】设直线l 的方程为x ty b =+代入抛物线24y x =,消去x 得2440y ty b --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()221212121212OA OB ty b ty b y y t y y bt y y b y y ⋅=+++=++++222444bt bt b b =-++- 24b b =-=0,∴0b =(舍去)或4b =, 故直线l 过定点()4,0.21.(2020·江苏扬州中学高三月考)已知点(2,0),(4,0)A B -,圆,16)()4(:22=+++b y x C 点P 是圆C 上任意一点,若PAPB为定值,则b =________.【答案】0【解析】设(,)P x y ,PAk PB =k =, 整理得222222(1)(1)(48)4160k x k y k x k -+-+++-=, 又P 是圆C 上的任意一点,故1k ≠,圆C 的一般方程为222820x y x by b ++++=,因此20b =,22222484168,11k k b k k+-==--,解得0b =. 22.(2020·江苏海安高级中学高三)在平面直角坐标系xOy 中,A ,B 为x 轴正半轴上的两个动点,P (异于原点O )为y 轴上的一个定点.若以AB 为直径的圆与圆x 2+(y -2)2=1相外切,且∠APB 的大小恒为定值,则线段OP 的长为_____.【解析】设O 2(a ,0),圆O 2的半径为r (变量),OP=t (常数),则222222221)222tan ,tan ,2tan 141,(4,22tan 3232r a r a rOPA OPB t t a r a rrtt t APB a r t a r t a r a rt tAPB t t r r +-+∠=∠=+--∴∠==-+-++=+∴=-∴∠==-+-+∵∠APB 的大小恒为定值,∴t23.在平面直角坐标系xOy 中,椭圆22184x y +=上一点A ,点B 是椭圆上任意一点(异于点A ),过点B 作与直线OA 平行的直线l 交椭圆于点C ,当直线AB 、AC 斜率都存在时,AB AC k k +=___________. 【答案】0【解析】取特殊点B ()0,2-,则BC的方程为22y x +=,由22242y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩得C ()所以202AB AC k k +==. 24.(2020·河北定州一中高三月考)P 为圆()22:15C x y -+=上任意一点,异于点()2,3A 的定点B 满足PBPA为常数,则点B 的坐标为______. 【答案】33,22⎛⎫⎪⎝⎭【解析】设()()00,,,,PA P x y B x y PBλ=,则()2215x y -+=,可得2242x y x +=+,① ()()()()222220023x x y y x y y λ⎡⎤-+-=-+-⎣⎦,②由①②得()2200002224x x y y x y --+++2222617x y λλλ=--+,可得202002220022226417x y x y λλλ⎧-=-⎪-=-⎨⎪++=⎩,解得002323212x y λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,B ∴点坐标为33,22⎛⎫ ⎪⎝⎭,故答案为33,22⎛⎫ ⎪⎝⎭. 25.(2020·上海长岛中学高三)在平面直角坐标系中,O 为坐标原点,M 、N 是双曲线22124x y -=上的两个动点,动点P 满足2OP OM ON =-,直线OM 与直线ON 斜率之积为2,已知平面内存在两定点1F 、2F ,使得12PF PF -为定值,则该定值为________【答案】【解析】设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由2OP OM ON =-,得(x ,y )=2(x 1,y 1)-(x 2,y 2), 即x=2x 1-x 2,y=2y 1-y 2,∵点M ,N 在双曲线22124x y -=上,所以2211124x y -=,2222124x y -=,故2x 2-y 2=(8x 12+2x 22-8x 1x 2)-(4y 12+y 22-4y 1y 2)=20-4(2x 1x 2-y 1y 2), 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =2, ∴y 1y 2-2 x 1x 2=0, ∴2x 2-y 2=20,所以P 在双曲线2x 2-y 2=20上; 设该双曲线的左,右焦点为F 1,F 2,由双曲线的定义可推断出12PF PF -为定值,该定值为26.(2020·江苏高三月考)椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k-+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k+-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为:(1,0).27.已知双曲线22:13y C x -=的右焦点为F ,过点F 的直线l 与双曲线相交于P 、Q 两点,若以线段PQ为直径的圆过定点M ,则MF =______.【来源】金科大联考2020届高三5月质量检测数学(理科)试题 【答案】3【解析】点F 的坐标为()2,0,双曲线的方程可化为2233x y -=,①当直线l 的斜率不存在时,点P 、Q 的坐标分别为()2,3、()2,3-, 此时以线段PQ 为直径的圆的方程为()2229x y -+=;②当直线l 的斜率存在时,设点P 、Q 的坐标分别为()11,x y ,()22,x y , 记双曲线C 的左顶点的坐标为()1,0A -,直线l 的方程为()2y k x =-,联立方程()22332x y y k x ⎧-=⎪⎨=-⎪⎩,消去y 后整理为()()222234340kxk x k -+-+=,2422230164(3)(34)36(1)0k k k k k ⎧-≠⎨∆=+-+=+>⎩,即k ≠ 有2122212243343k x x k k x x k ⎧+=⎪⎪-⎨+⎪=⎪-⎩,()()()22121212122224y y k x x k x x x x =--=-++⎡⎤⎣⎦,222222234894333k k k k k k k ⎛⎫+=-+- ⎪---⎝⎭,()111,AP x y =+,()221,AQ x y =+,()()()1212121212111AP AQ x x y y x x x x y y ⋅=+++=+++⎡⎤⎣⎦ 22222222344931103333k k k k k k k k +-=+-+=+=----. 故以线段PQ 为直径的圆过定点()1,0M -,3MF =.28.双曲线22:143x y C -=的左右顶点为,A B ,以AB 为直径作圆O ,P 为双曲线右支上不同于顶点B 的任一点,连接PA 交圆O 于点Q ,设直线,PB QB 的斜率分别为12,k k ,若12k k λ=,则λ=_____. 【答案】34-【解析】设()()()00,,2,02,0P x y A B - 2200143x y -=,()222000331444x y x ⎛⎫=-=- ⎪⎝⎭2000200032424PA PBy y y x x k k x =⋅=+--= PA 交圆O 于点Q ,所以PA QB ⊥ 易知:33441PA PB PB QBPA QB k k k k k k λ⎧=⎪⇒==-⎨⎪⋅=-⎩即1234k k λ==-. 故答案为:34-29.过双曲线22221x y a b-=的右焦点(,0)F c 的直线交双曲线于M 、N 两点,交y 轴于P 点,若1PM MF λ=,2PN NF λ=,规定12λλ+=PM PN MF NF +,则PM PNMF NF +的定值为222a b .类比双曲线这一结论,在椭圆22221(0)x y a b a b +=>>中,PM PN MF NF+的定值为________. 【来源】贵州省铜仁市思南中学2020-2021学年高三上学期期末考试数学(理)试题【答案】222a b-【解析】如图,设椭圆()222210x y a b a b+=>>的右焦点为(),0F c ,过点(),0F c 的直线为()y k x c =-,代入椭圆的方程得:()2222222222220b a kxa k cx a k c ab +-+-=,设()11,M x y ,()22,N x y ,则22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k-⋅=+, 过点,M N 分别作x 轴的垂线,垂足为,D E ,则111x PM x c MF λ==--,222=x PNx c NFλ=--,所以()()()()()1221121212122212121212122x x c x x c x x c x x x x x c x c x x c x x c x x c x x c λλ-+--+⎛⎫+=-+=-=-⎪---++-++⎝⎭将22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k -⋅=+代入化简得:21222a b λλ+=-. 故答案为:222a b-.30.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.【来源】四川省资阳市2020-2021学年高三上学期期末数学文科试题 【答案】4 【解析】设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()2222414a c a c -==- 31.椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k -+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k +-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为(1,0).。
解析几何中的定点、定值与最值问题解法揭秘作者:黄伟军来源:《广东教育·高中》2012年第01期在平面解析几何这个知识版块里,定点、定值与最值问题历来都是中学数学中的重点问题,同时又是高考的热点问题,常考常新.据统计2011年高考各省市(区)解析几何大题中涉及考查定点、定值与最值问题的就有10个省份左右.为帮助2012届的高三考生在复习中能更好地把握这三个问题,探索这三种类型问题的解题规律,本文特地详细介绍了这三种类型问题的基本概念、分类,并结合典型的高考试题、各地最新模拟试题给予剖析、小结归纳,并且给出相应的变式题目,让同学们小试牛刀,相信对同学们的复习有一定的帮助.一、解析几何中的定点、定值问题解析几何中的定点、定值问题一般是指在一定的情境下,不随其它因素的改变而改变的量.从近几年的新课标高考题来看,定点、点值问题多数以选择、填空题的形式出现,考查特殊与一般的转化思想,也有以证明等解答题面目出现,着重考查逻辑推理能力.处理定点、点值的基本方法是:先将变动元素用参数表示,然后计算出所需结果与该参数无关;也可将变动元素置于特殊状态下,探求出定点、定值,然后给以证明.值得注意的是,解析几何中的定点、定值问题与一般几何证明不同,它的结论中没有确定的定点、定值对象,所以探求定点、定值成为首要任务.其一,要有一定量的基本图形、基本结论作基础,先设一般问题成为一个特殊问题,动中取静,使图形极端化(考虑图形的特殊位置和临界位置等),从而求得定点、定值,然后,从图形或数据的直观观察中,获得合乎情理的猜想,再进行逻辑证明;其二,要注意前面解答结论中的暗示功能和桥梁作用.由于解析几何中的定点、定值问题在解题之前不知道定点、定值的结果,因而更增添了题目的神秘色彩,因而是颇有难度的问题,解决这类问题时,要运用辩证的观点去思考分析,在“变”中寻求“不变”,用特殊探索法(即用特殊值、特殊位置、特殊图形等)先确定出定点、定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口.另外,有许多定点、定值问题,通过特殊探索法不但能够确定出定点、定值,还可以为我们提供解题的线索.例1.已知抛物线y2=2px(p>0),问:在轴的正半轴上是否存在一点M,使得过M点的抛物线的任意一条弦P1P2都有∠P1OP2=■(O为坐标原点)?请说明理由.分析:这是一道与探索性相结合的定点问题,通过阅读题意我们发现几个关键词:“正半轴”,“任意一条弦”,抛物线y2=2px(p>0)的开口向右,先假设满足题设条件的点M存在,并求出M的坐标,然后证明过M点的任意一条直弦P1P2都有∠P1OP2=■,也就是先证明存在性,后证明任意性.假设满足条件的点M存在,设M(x0 ,0),P1(x1 ,y2),P2(x2 ,y2),则当P1P2⊥OM时,应有∠P1OP2=■,∠P1OM=■,此时P1(2p ,2p),从而有M(2p ,0),这表明若满足题设条件的点M存在,其坐标只能是(2p ,0),设P1P2是过点(2p ,0)的任意一条弦,其斜率为k,则P1P2的方程为y=k(x-2p),代入y2=2px得k2x2-2(2k2+1)px+4k2p2=0.由韦达定理可得x1x2=4p2,又y1y2<0,y2=2px1,y22=2px2,故y1y2=-■·■=-4p 2,因为x1x2+y1y2=4p 2-4p2=0,故∠P1OP2=■,这表明过点(2p ,0)的任意一条弦P1P2都满足∠P1OP2=■,综上所述,在x轴的正轴上存在唯一的一点M(2p ,0)满足题设条件.点评:本题从特殊情形入手,探求了解题的目标,再对一般情况给以证明,过程自然流畅.牛刀小试1:已知椭圆C的方程为■+y2=1,A,B为椭圆C的左右顶点,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l∶x=2■于E,F两点.证明:以线段EF为直径的圆恒过x轴上的定点.解析:由题可得A(-2 ,0),B(2 ,0).设P(x0 ,y0),直线AP的方程为y=■(x+2),令x=2■,则y=■,即E(2■,■);直线BP的方程为y=■(x-2),令x=2■,则y=■,即F(2■,■);设点M(m,0)在以线段EF为直径的圆上,则■·■=0,(m-2■)2+■=0,∴(m-2■)2=■,而■+y20=1,即4y20=4-x20,∴(m-2■)2=1,∴m=2■+1或m=2■-1.所以以线段EF为直径的圆必过x轴上的定点(2■+1,0)或(2■-1,0).例2.已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且■=?姿■(?姿>0),过A,B两点分别作抛物线的切线,设其交点为M.证明■=■为定值.分析:我们知道当题目给出定值时,这就是单纯的证明问题,这类问题容易下手解答;当题目未给出具体定值时,还需要找出这个定值,或用特殊化法猜测出这个定值后,再予以证明,因此本题应属于后一种情形,我们不妨令?姿=1,当?姿=1时,弦AB为抛物线x2=4y的通径,从对称性看,S的最小值必在特殊点(位置)取到,所以FM⊥AB,即得到■=■为定值0,即我们要证的定值为零.证明:由已知条件,得F(0,1),?姿>0.设A(x1,y1),B(x2,y2),由■=?姿■,得(-x1,1-y1)=?姿(x2,y2-1),∴-x1=?姿x2, ?譹?訛1-y1=?姿(y2-1). ?譺?訛将①式两边平方,并把y1=■x21,y2=■x22代入,得y1=?姿2y2,③解②③式得y1=?姿,y2=■,且有x1x2=-?姿x22=-4?姿y2=-4.∵抛物线方程为y=■x2,求导得y′=■x,∴过抛物线上A,B两点的切线方程分别是y=■x1(x-x1)+y1,y=■x2(x-x2)+y2,即y=■x1x-■x21,y=■x2x-■x22.∴两条切线的交点M的坐标为(■,■)=(■,-1).∴■·■=(■,-2)·(x2-x1,y2-y1)=■(x22-x21)-2(■x22-■x21)=0.即■·■为定值0.点评:解答本题的关键是令?姿=1,再探讨出■·■为定值0,这为我们解题指明了前进的方向.牛刀小试2:已知动直线l与椭圆C: ■+■=1交于P(x1 ,y1)、Q(x2 ,y2)两不同点,且△OPQ的面积S△OPQ=■,其中O为坐标原点.证明x21+x22和y21+y22均为定值.证明:(1)当直线l的斜率不存在时,P,Q两点关于x轴对称,所以x1=x2,y2=-y1因为P(x1 ,y1)在椭圆上,因此■+■=1. ①又因为S△OPQ=■,所以|x1||y1|=■.②由①②得|x1|=■,|y1|=1此时x21+x22=3,y21+y22=2.(2)当直线l的斜率存在时,设直线l的方程为y=kx+m,由题意知m≠0,将其代入■+■=1,得(2+3k2)x2+6kmx+3(m2-2)=0,其中△=36k2m2-12(2+3k2)(m2-2)>0,即3k2+2>m2…………………………(?鄢)又x1+x2=-■,x1x2=■.所以|PQ|=■·■=■·■.因为点O到直线l的距离为d=■,所以S△OPQ=■|PQ|·d=■■·■·■=■.又S△OPQ=■,整理得3k2+2=m2,且符合(?鄢)式,此时x21+x22=(x1+x2)2-2x1x2=(-■)2-2×■=3,y21+y22=■(3-x21)+■(3-x22)=4-■(x21+x21)=2.综上所述,x21+x21=3,y21+y22=2,结论成立.二、解析几何中的最值问题解析几何中的最值问题,是历年新课标高考重点考查的知识点之一,其题型比较灵活,可以有一些基础题,也有一些小综合的中档题,更有一些以难题形式出现.它经常与三角函数、二次函数、向量、数列、一元二次方程、不等式及某些几何知识紧密联系.所以其解法灵活,综合性强,能力要求高.解决这类问题,要掌握各数学各分支知识,能综合运用各种数学技能,灵活选择合理的解题方法.最值问题的解答能充分检验考生的运算能力,分析问题和解决问题能力.求最值问题可以分为两类:一是距离、面积的最值问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之相关的一些问题,在探求最值问题时,常结合几何图形的直观性,充分利用平面几何结论,借助于函数的单调性、基本不等式等使问题获解,同时,要注意未知数的取值范围、最值存在的条件等.例 3.已知椭圆G∶■+y2=1.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B两点.(I)求椭圆G的焦点坐标和离心率;(II)将|AB|表示为m的函数,并求|AB|的最大值.分析: 本题是求距离的最值问题,解答的关键是充分利用直线与椭圆的位置关系得到|AB|的表达式,再根据m的取值利用均值不等式则可求出|AB|的最大值.解析:(Ⅰ)由已知得a=2,b=1所以c=■-■,所以椭圆G的焦点坐标为(-■,0)(■,0)离心率为e=■=■.(Ⅱ)由题意知,|m|≥1.当m=1时,切线l的方程x=1,点A、B的坐标分别为(1,■),(1,-■),此时|AB|=■.当m=-1时,同理可得|AB|=■.当|m|>1时,设切线l的方程为y=k(x-m),由y=k(x-m),■+y2=1. 得(1+4k2)x2-8k2mx+4k2m2-4=0.设A,B两点的坐标分别为(x1 ,y1),(x2 ,y2),则有x1 +x2=■,x1x2=■.又由l与圆x2+y2=1相切,得■=1,即m2k2=k2+1.所以|AB|=■=■=■.由于当m=±3时,|AB|=■,所以|AB|=■,m∈(-∞,-1]∪[1,+∞).因为|AB|=■=■≤2,且当m=±■时,|AB|=2,所以|AB|的最大值为2.点评:解答第(II)问时应注意使用均值不等式求最值的条件,即一定、二正、三相等. 解析几何的最值问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值.牛刀小试3: 已知M为椭圆■+■=1上的一点,F为椭圆的右焦点,以M为圆心,MF长为半径作圆M,若过点E(-1,0)可作圆M的两条切线EA,EB(A,B为切点),求四边形EAMB面积的最大值.解析:设M (x0 ,y0),圆M:(x -x0)2+(y-y0)2=r2,其中r=|MF|=■.由两切线存在可知,点E在圆M外,所以,■>■,即x0>0,又M (x0 ,y0)为椭圆C上的点,所以0<x0≤2.而|MF|=■=■|x0-4|,所以1≤|MF|<2,即1≤r<2.E(-1,0)为椭圆的左焦点.根据椭圆定义知,|ME|+|MF|=4,所以|ME|=4-r,而|MB|=|MF|= r,所以在直角三角形MEB中,| EB|=■=2■,S△MEB=■|EB|·|MB|=r■,由圆的性质知,四边形EAMB面积S=2S△MEB=2r■,其中1≤r<2.即S=2■(1≤r<2).令y=-2r3+4r2(1≤r<2),则y′=-6r2+8r=-2r(3r-4),当1<r<■时,y′>0,y=-2r3+4r2单调递增;当■<r<2时,y′<0,y=-2r3+4r2单调递减.所以,当r=■时,y取极大值,也是最大值,此时Smax=2■=■■.(作者单位:广东省五华县五华中学)责任编校徐国坚。
解析几何中的定点定值问题之迟辟智美创作考纲解读:定点定值问题是解析几何解答题的考查重点.此类问题定中有动,动中有定,而且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识.考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法.一、定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决.例1、已知A 、B 是抛物线y 2=2p x (p >0)上异于原点点,直线OA 和OB 的倾斜角分别为α和β,当α=4π时,证明直线AB 恒过定点,并求出该定点的坐标.例2.已知椭圆C :22221(0)xya b a b +=>>椭圆的短半轴长为半径的圆与直线0x y -=相切.⑴程; ⑵设(4,0)P ,M 、N是椭圆C 上关于x 轴对称的任意两个分歧的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.【针对性练习1】 在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不外点A 的直线:l y kx b =+与轨迹C 交于分歧的两点P 和Q .⑴求轨迹C 的方程;⑵那时0AP AQ ⋅=,求k 与b 的关系,并证明直线l 过定点.【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右极点为A 、B ,右焦点为F.设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y .(1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标;(3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【针对性练习3】已知椭圆C 中心在原点,焦点在x 轴上,焦距为2,短轴长为23.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于分歧的两点M N 、(M N 、不是椭圆的左、右极点),且以MN 为直径的圆经过椭圆的右极点A .求证:直线l 过定点,并求出定点的坐标.例3、已知椭圆的焦点在x 轴上,它的一个极点恰好是抛物线24x y =的焦点,离心率25e =,过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点.(I )求椭圆的标准方程;(Ⅱ)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥,求m 的取值范围;(Ⅲ)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.二、 定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量暗示题中所涉及的界说,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果,;另一种思路是通过考查极端位置,探索出“定值”是几多,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时有许多定值问题,通过特殊探索法不单能够确定出定值,还可以为我们提供解题的线索.如果试题是客观题形式呈现,特珠化方法往往比力奏效. 例4、已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A 、B 两点,)1,3(-=+a OB OA 与共线.(1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R OB OA OM ∈+=μλμλ,证明22μλ+为定值.例5、已知,椭圆C 过点A 3(1,)2,两个焦点为(-1,0),(1,0).(1)求椭圆C 的方程;(2)E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值. 将第二问的结论进行如下推广:结论1.过椭圆22221(0,0)x y a ba b 上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两点,则直线EF 的斜率为定值202b x a y (常数). 结论2.过双曲线22221(0,0)x y abab 上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两点,则直线EF 的斜率为定值2020b x a y (常数).结论 3.过抛物线22(0)y px p上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两点,则直线EF 的斜率为定值0p y (常数).例6、已知椭圆的中心在原点,焦点F 在y 轴的非负半轴上,点F 到短轴端点的距离是4,椭圆上的点到焦点F 距离的最年夜值是6.(Ⅰ)求椭圆的标准方程和离心率e ;(Ⅱ)若F '为焦点F 关于直线32y =的对称点,动点M 满足MF e MF ||='||,问是否存在一个定点A ,使M 到点A 的距离为定值?若存在,求出点A 的坐标及此定值;若不存在,请说明理由.例7、已知抛物线C 的极点在坐标原点,焦点在x 轴上,P(2,0)为定点.(Ⅰ)若点P 为抛物线的焦点,求抛物线C 的方程;(Ⅱ)若动圆M 过点P ,且圆心M 在抛物线C 上运动,点A 、B 是圆M 与y 轴的两交点,试推断是否存在一条抛物线C ,使|AB|为定值?若存在,求这个定值;若不存在,说明理由.例8、已知椭圆E 的中心在原点,焦点在x 轴上,椭圆上的点到焦点的距离的最小值为1,离心率为e =﹒(Ⅰ)求椭圆E 的方程;(Ⅱ)过点()1,0作直线交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,MP MQ ⋅为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由﹒三、定直线问题例9、设椭圆2222:1(0)x y C a b a b+=>>过点M ,且焦点为1(F (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两分歧点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB=,证明:点Q 总在某定直线上例10、已知椭圆C 的离心率e =()1A 2,0-,()2A 2,0.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x my 1=+与椭圆C 交于P 、Q 两点,直线1A P 与2A Q 交于点S.试问:当m 变动时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由.四、其它定值问题例11、已知双曲线2222:1(0,0)x y C a b a b-=>>x =C 的方程;(Ⅱ)设直线l 是圆22:2O x y +=上动点0000(,)(0)P x y x y ≠处的切线,l 与双曲线C 交于分歧的两点,A B ,证明AOB∠的年夜小为定值. 例12、己知椭圆12222=+by a x (a >b >0),过其中心O 的任意两条互相垂直的直径是P 1P 2、Q 1Q 2,求证:以两条直径的四个端点所成的四边形P 1Q 1P 2Q 2与一定圆相切.探索定圆1=+bya x ,原点O 到直线22B A 的距离为r =则与菱形2211B A B A 内切的圆方程为222222ba b a y x +=+.例13、已知P ),(00y x 是双曲线)0(2≠=a a xy 上的一个定点,过点P 作两条互相垂直的直线分别交双曲线于P 1、P 2两点(异于P 点),求证:直线P 1P 2的方向不变.探索定值:取P ),(020x a x ,过P 点且互相垂直的直线中有一条过原点,则这一条直线与曲线的另一个交点),(0201x a x P --,其斜率1k PP ∴2202axk PP -= PP 2的方程为)(02200x x ax y y --=-把xa y 2=代入解得),(2303042ax x a P 22021a x k P P =∴ 证明:设PP 1的斜率为k ,则PP 2的斜率为-k1,∴PP 1的方程为)(00x x k y y -=-PP 2的方程为)(100x x ky y --=-,与抛物2a xy =联立解得),(0201y k a k y P --、 ),(0202ky a ky P ,从而2220221ax y a k P P ==(定值)EX :过抛物线y 2=2px (P>0)上一定点(x 0,y 0)作两条直线分别交抛物线于A ,B 两点,满足直线PA 、PB 斜率存在且倾斜角互补,则AB 的斜率为定值.推广:抛物线推广到椭圆或双双曲线均可. 五、练习1、椭圆中心在原点,焦点在x 轴上,离心率为2,三角形ABM 的三个极点都在椭圆上,其中M 点为(1,1),且直线MA 、MB 的斜率之和为0.(1)求椭圆的方程.(2)求证:直线AB 的斜率是定值.分析:(1)x 2+2y 2=3 (2)122、已知定点)01(,-C 及椭圆5322=+y x ,过点C 的动直线与椭圆相交于A B ,两点.(Ⅰ)若线段AB中点的横坐标是12-,求直线AB 的方程;(Ⅱ)在x 轴上是否存在点M ,使MB MA ⋅为常数?若存在,求出点M 的坐标;若不存在,请说明理由. 分析:M (73-,0) 493、已知不垂直于x 轴的动直线l 交抛物线y2=2mx (m>0)于A 、B 两点,若A 、B 两点满足∠AQP=∠BQP ,若其中Q 点坐标为(-4,0),原点O 为PQ 中点.(1)证明:A 、P 、B 三点线;(2)当m=2时,是否存在垂直于x 轴的直线l ‘,使得l ‘被以PA 为直径的圆所截得的弦长为定值?如果存在求出l ’的方程. 分析:设点AB 的坐标(2)l :x=3.4、 已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为F1,F2,短轴的两个端点为A 、B ,且四边形F1AF2B 是边长为2的正方形.(1)求椭圆的方程.(2)若C 、D 分别是椭圆长轴的左、右端点,动点M满足MD ⊥CD,连结CM 交椭圆于点P ,证明:OM OP 为值.(3)在(2)的条件下,试问x 轴上是否存在异于C 的定点Q ,使得以MP 为直径的圆过直线DP ,MQ 的交点,若存在,求出点Q 的坐标.分析:(1)22142x y +=(2)由O 、M 、P 三点共线,得42p mp y y x =+,所以OM OP =4 (3)设Q 点(a ,0),由0QM DP =,得a=0.5、设P 为双曲线22221(,0)x y a b a b-=>上任意一点,F1,F2是双曲线的左右焦点,若12PF PF 的最小值是-1.(1)求双曲线C 的方程;(2)过双曲线C 的右焦点F2的直线交双曲线于A 、B 两点,过作右准线的垂线,垂足为C ,求证:直线AC 恒过定点.分析:(1)2213x y -= (2)先猜再证:(74,0)1217144y y x =--换失落x1代入韦达定理得证.方法二:设AB :x=my+2代入方程得:(m2-3)y2+4my+1=0故1221224313m y y m y y m -⎧+=⎪⎪-⎨⎪=⎪-⎩AC :12213()322y y y x y x -=-+-=1212122113()21212y y y y my y y x my my -----++又2my 1y 2=-12(y1+y2)然后代入韦达定理得.6、在平面直角坐标系xOy 中,Rt △ABC 的斜边BC 恰在x 轴上,点B(-2,0),C (2,0),且AD 为BC 边上的高.(I)求AD 中点G 的轨迹方程; (II)若过点(1,0)的直线l 与(I)中G 的轨迹交于两分歧点P 、Q ,试问在x 轴上是否存在定点E(m,0),使PE ·QE 恒为定值λ?若存在,求出点E 的坐标及实数λ的值;若不存在,请说明理由.分析:(1)221(0)4x y y +=≠ (2)m=178 定值为3364 不容易先猜出,只能是化简求出.7、已知直线l 过椭圆E :2222x y +=的右焦点F,且与E 相交于P ,Q 两点.(1)设1()2OR OP OQ =+,求点R 的轨迹方程.(2)若直线l 的倾斜角为60︒,求11||||PF QF +的值.(当l 的倾斜角不按时,可证11||||PF QF +是定值.) 分析:2220x y x +-= (2)可先猜再证:解析几何中的定点定值问题考纲解读:定点定值问题是解析几何解答题的考查重点.此类问题定中有动,动中有定,而且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识.考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法.四、定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决.例1、已知A 、B 是抛物线y 2=2p x (p >0)上异于原点O 的两个分歧点,直线OA 和OB 的倾斜角分别为α和β+β=4π时,证明直线AB 解析: 设A (121,2y py),B (222,2y py212tan ,2tan y py p==βα,代入1)tan(=+βα 得221214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则 ∴kpy y kpb y y 2,22121=+=,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p说明:本题在特殊条件下很难探索出定点,因此要从已知动身,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点.例2.【2010·东城一模】已知椭圆C :22221(0)x y a b a b+=>>的离心率为0x y -=相切.⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N是椭圆C 上关于x 轴对称的任意两个分歧的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.解析:⑴由题意知c e a==,所以22222234c a b e a a -===,即224a b =,又因为1b ==,所以224,1a b ==,故椭圆C 的方程为C :2214x y +=.⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =-①联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0kk k ∆=-+->得21210k -<,又0k =分歧题意,所以直线PN的斜率的取值范围是0k <<或0k << ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x xy y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-.②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =,所以直线ME 与x 轴相交于定点(1,0).【针对性练习1】 在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不外点A 的直线:l y kx b =+与轨迹C 交于分歧的两点P 和Q . ⑴求轨迹C 的方程;⑵那时0AP AQ ⋅=,求k 与b 的关系,并证明直线l 过定点. 解:⑴∵点M到(),0,),0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x轴上焦中为2214x y +=. ⑵将y kx b =+,代入曲线C的方程,整理得22(14)40kx +++=,因为直线l 与曲线C交于分歧的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+>①设()11,P xy ,()22,Q x y,则12x x +=,122414x xk =+②且2212121212()()()()y ykx b kx b k x x kb x x b ⋅=++=+++,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+,()222,AQ xy =+.由0AP AQ ⋅=,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650kkb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①,那时2b k =,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点.即直线l 经过点A ,与题意不符.那时65b k =,直线l 的方程为6556y kx k k x ⎛⎫=+=+ ⎪⎝⎭. 显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,且不外点A .综上,k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点.【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右极点为A 、B ,右焦点为F.设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y .(1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标;(3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解析】本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识.考查运算求解能力和探究问题的能力.解:(1)设点P (x ,y ),则:F (2,0)、B (3,0)、A (-3,0).由422=-PB PF ,得2222(2)[(3)]4,x y x y -+--+= 化简得92x =.故所求点P 的轨迹为直线92x =.(2)将31,221==x x 分别代入椭圆方程,以及0,021<>y y 得:M (2,53)、N (13,209-) 直线MTA 方程为:0352303y x -+=+-,即113y x =+,直线NTB 方程为:032010393y x --=---,即5562y x =-.联立方程组,解得:7103x y =⎧⎪⎨=⎪⎩, 所以点T 的坐标为10(7,)3.(3)点T 的坐标为(9,)m 直线MTA 方程为:03093y x m -+=-+,即(3)12m y x =+, 直线NTB 方程为:03093y x m --=--,即(3)6m y x =-.分别与椭圆15922=+y x 联立方程组,同时考虑到123,3x x ≠-≠,解得:2223(80)40(,)8080m m M m m -++、2223(20)20(,)2020m mN m m --++. (方法一)那时12x x ≠,直线MN 方程为:222222222203(20)202040203(80)3(20)80208020m m y x m m m m m m m m m m -+-++=--+-++++ 令0y =,解得:1x =.此时必过点D (1,0);那时12x x =,直线MN 方程为:1x =,与x 轴交点为D (1,0). 所以直线MN 必过x 轴上的一定点D (1,0).(方法二)若12x x =,则由222224033608020m m m m --=++及0m >,得210m =,此时直线MN 的方程为1x =,过点D (1,0).若12x x ≠,则m ≠,直线MD 的斜率2222401080240340180MDmm m k m m m+==---+,直线ND 的斜率222220102036040120ND mm m k m m m -+==---+,得MD ND k k =,所以直线MN 过D点.因此,直线MN 必过x 轴上的点(1,0).【针对性练习3】(2011年石景山期末理18)已知椭圆C 中心在原点,焦点在x 轴上,焦距为2,短轴长为C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于分歧的两点M N 、(M N 、不是椭圆的左、右极点),且以MN 为直径的圆经过椭圆的右极点A .求证:直线l 过定点,并求出定点的坐标.解: (Ⅰ)设椭圆的长半轴为a ,短半轴长为b ,半焦距为c ,则22222,2,c b a b c =⎧⎪=⎨⎪=+⎩解得2,a b =⎧⎪⎨=⎪⎩ ∴椭圆C 的标准方程为 22143x y +=.…… 4分(Ⅱ)由方程组22143x yy kx m ⎧⎪+=⎨⎪=+⎩消去y ,得 ()2223484120k xkmx m +++-=.…… 6分由题意△()()()22284344120km k m =-+->, 整理得:22340k m +->①………7分 设()()1122,,M x y N x y 、,则122834kmx x k +=-+, 212241234m x x k -=+.……… 8分由已知,AM AN ⊥, 且椭圆的右极点为A (2,0), ∴()()1212220x x y y --+=.…… 10分 即 ()()()2212121240k x x km x x m ++-+++=,也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++, 整理得2271640m mk k ++=.解得2m k =- 或 27k m =-,均满足①……… 11分那时2m k =-,直线l 的方程为 2y kx k =-,过定点(2,0),不符合题意舍去;那时27k m =-,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7, 故直线l 过定点,且定点的坐标为2(,0)7.………… 13分例3、已知椭圆的焦点在x 轴上,它的一个极点恰好是抛物线24x y =的焦点,离心率e =F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点. (I )求椭圆的标准方程;(Ⅱ)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥,求m 的取值范围;(Ⅲ)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.解法一: (I )设椭圆方程为22221(0)x y a b a b +=>>,由题意知1b =25a =⇒=故椭圆方程为2215x y += (Ⅱ)由(I )得(2,0)F ,所以02m ≤≤,设l 的方程为(2)y k x =-(0k ≠)代入2215x y +=,得2222(51)202050k x k x k +-+-= 设1122(,),(,),A x y B x y则2212122220205,5151k k x x x x k k -+==++,12121212(4),()y y k x x y y k x x ∴+=+--=-2222220420,(85)05151∴--=∴--=++k k m m k m k k 由280,0855m k m m =>∴<<-, ∴那时805m <<,有()MA MB AB +⊥成立.(Ⅲ)在x 轴上存在定点5(,0)2N ,使得C 、B 、N 三点共线.依题意知11(,)C x y -,直线BC 的方程为211121()y y y y x x x x ++=--, 令0y =,则121122112121()y x x y x y x x x y y y y -+=+=++l 的方程为(2),y k x A =-、B 在直线l 上,222222205202255151202451k k k k k k k k k k -⋅-⋅++==-+∴在x 轴上存在定点5(,0)2N ,使得C B N 三点共线.解法二:(Ⅱ)由(I )得(2,0)F ,所以02m ≤≤.设l 的方程为(2)(0),y k x k =-≠代入2215x y +=,得2222(51)202050k x k k +-+-=设1122(,),(,),A x y B x y 则2212122220205,5151k k x x x x k k -+==++1212121224(4),()51ky y k x x y y k x x k ∴+=+-=--=-+∴那时805m <<,有()MA MB AB +⊥成立.(Ⅲ)在x 轴上存在定点5(,0)2N ,使得C 、B 、N 三点共线.设存在(,0),N t 使得C 、B 、N 三点共线,则//CB CN ,122111(,),(,)CB x x y y CN t x y =-+=-, 211112()()()0x x y t x y y ∴---+=即211112()(2)()(4)0x x k x t x k x x ----+-=12122(2)()40x x t x x t ∴-+++=2222205202(2)405151k k t t k k -∴-++=++,52t ∴=∴存在5(,0)2N ,使得C B N 三点共线.五、定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量暗示题中所涉及的界说,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果,;另一种思路是通过考查极端位置,探索出“定值”是几多,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时有许多定值问题,通过特殊探索法不单能够确定出定值,还可以为我们提供解题的线索.如果试题是客观题形式呈现,特珠化方法往往比力奏效.例4、已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A 、B 两点,)1,3(-=+a OB OA 与共线. (1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R OB OA OM ∈+=μλμλ,证明22μλ+为定值.解析:(1)设椭圆方程为12222=+b y a x (a >b >0),A(x 1,y 1),B(x 2,y 2) ,AB 的中点为N(x 0,y 0),∴⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x b y a x ,两式相减及11212=--x x y y 获得0220x a b y -=,所以直线ON 的方向向量为),1(22ab ON -=,∵a ON //,∴2231a b =,即223b a =,从而得36=e (2)探索定值因为M 是椭圆上任意一点,若M 与A 重合,则OA OM =,此时0,1==μλ,∴122=+μλ证明 ∵223b a =,∴椭圆方程为22233b y x =+,又直线方程为c x y -=又设M (x ,y ),则由OB OA OM μλ+=得⎩⎨⎧+=+=2121y y y x x x μλμλ,代入椭圆方程整理得2222122222212123)3(2)3()3(b y y x x y x y x =+++++λμμλ又∵2212133b y x =+,2222233b y x =+,例5、已知,椭圆C 过点A 3(1,)2,两个焦点为(-1,0),(1,0).(1) 求椭圆C 的方程;(2)E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.解析:(1)由题意,c=1,可设椭圆方程为2219114b b+=+,解得23b =,234b =-(舍去) 所以椭圆方程为22143x y +=.(2)设直线AE 方程为:3(1)2y k x =-+,代入22143x y +=得设(x ,y )E E E ,(x ,y )F F F ,因为点3(1,)2A 在椭圆上,所以2234()122x 34F k k --=+,32E E y kx k =+- 又直线AF 的斜率与AE 的斜率互为相反数,在上式中以—K 代K ,可得2234()122x 34F k k+-=+, 32E E y kx k =-++ 所以直线EF 的斜率()212F E F E EFF E F E y y k x x k K x x x x --++===--即直线EF 的斜率为定值,其值为12.将第二问的结论进行如下推广: 结论1.过椭圆22221(0,0)x y abab 上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两点,则直线EF 的斜率为定值202b x a y (常数).证明:直线AE 的方程为0()yy k xx ,则直线AF 的方程为0()yy k xx , 联立00()y y k xx 和22221x y ab ,消去y 可得结论2.过双曲线22221(0,0)x y a bab 上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两点,则直线EF 的斜率为定值2020b x a y (常数).结论 3.过抛物线22(0)y px p上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两点,则直线EF 的斜率为定值0p y (常数).例6、【2010·巢湖市第一学期期末质检】已知椭圆的中心在原点,焦点F 在y 轴的非负半轴上,点F 到短轴端点的距离是4,椭圆上的点到焦点F 距离的最年夜值是6.(Ⅰ)求椭圆的标准方程和离心率e ;(Ⅱ)若F '为焦点F 关于直线32y =的对称点,动点M 满足MF e MF ||='||,问是否存在一个定点A ,使M 到点A 的距离为定值?若存在,求出点A 的坐标及此定值;若不存在,请说明理由.解析:(Ⅰ)设椭圆长半轴长及半焦距分别为a c ,,由已知得44,26a a c a c =⎧==⎨+=⎩,解得,.所以椭圆的标准方程为2211612y x +=. 离心率21.42e ==(Ⅱ)(0,2),(0,1)F F ',设(,),M x y 由MF e MF ||='||得 化简得223314150xy y +-+=,即22272)()33xy +-=(故存在一个定点7(0,)3A ,使M 到A 点的距离为定值,其定值为2.3例7、【2010·湖南师年夜附中第二次月考】已知抛物线C 的极点在坐标原点,焦点在x 轴上,P(2,0)为定点. (Ⅰ)若点P 为抛物线的焦点,求抛物线C 的方程;(Ⅱ)若动圆M 过点P ,且圆心M 在抛物线C 上运动,点A 、B 是圆M 与y 轴的两交点,试推断是否存在一条抛物线C ,使|AB|为定值?若存在,求这个定值;若不存在,说明理由.解析:(Ⅰ) 设抛物线方程为22(0)y px p =≠,则抛物线的焦点坐标为(,0)2p .由已知,22p=,即4p =,故抛物线C 的方程是28y x =.(Ⅱ)设圆心(,)M a b (0a ≥),点A 1(0,)y ,B 2(0,)y . 因为圆M 过点P(2,0),则可设圆M 的方程为2222()()(2)x a y b a b -+-=-+. 令0x =,得22440y by a -+-=.则122y y b +=,1244y y a ⋅=-. 所以||AB ===,设抛物线C 的方程为2(0)y mx m =≠,因为圆心M 在抛物线C 上,则2b ma =. 所以||AB =由此可得,那时4m =,||4AB =为定值.故存在一条抛物线24y x =,使|AB|为定值4.例8、已知椭圆E 的中心在原点,焦点在x 轴上,椭圆上的点到焦点的距离的最小值为1,离心率为e =(Ⅰ)求椭圆E 的方程;(Ⅱ)过点()1,0作直线交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,MP MQ ⋅为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由﹒解析:(I )设椭圆E 的方程为2222x y 1a b +=,由已知得:a c 1c a⎧-=⎪⎨⎪⎩.....2分a c 1⎧⎪∴⎨=⎪⎩222b a c 1=-=∴椭圆E的方程为22x y 12+=....3分(Ⅱ)法一:假设存在符合条件的点M(m,0),又设1122P(x ,y ),Q(x ,y ),则:2121212x x m(x x )m y y =-+++.....5分 ①当直线l 的斜率存在时,设直线l 的方程为:y k(x 1)=-,则由22x y 12y k(x 1)⎧+=⎪⎨⎪=-⎩得222x 2k (x 1)20+--=2222(2k 1)x 4k x (2k 2)0+-+-=221212224k 2k 2x x ,x x 2k 12k 1-+=⋅=++ 7分 所以22222222k 24k k MP MQ m m 2k 12k 12k 1-⋅=-⋅+-+++2222(2m 4m 1)k (m 2)2k 1-++-=+ 9分对任意的k 值,MP MQ ⋅为定值,所以222m 4m 12(m 2)-+=-,得5m 4=, 所以57M(,0),MP MQ 416⋅=-;11分②当直线l 的斜率不存在时,直线1212121l:x 1,x x 2,x x 1,y y 2=+===- 由5m 4=得7MP MQ 16⋅=-综上述①②知,符合条件的点M 存在,起坐标为5(,0)4﹒ 13分法二:假设存在点M(m,0),又设1122P(x ,y ),Q(x ,y ),则:1122MP (x m,y ),MQ (x m,y )=-=-1212MP MQ (x m)(x m)y y ⋅=-⋅-+=2121212x x m(x x )m y y -+++…. 5分①当直线l 的斜率不为0时,设直线l 的方程为x ty 1=+,由22x y 12x ty 1⎧+=⎪⎨⎪=+⎩得22(t 2)y 2ty 10++-=1212222t 1y y ,y y t 2t 2--∴+=⋅=++ 7分222222t 24m 1MP MQ m t 2t 2t 2-+∴⋅=-+-+++2222(m 2)t 2m 4m 1t 2-+-+=+ 9分 设MP MQ ⋅=λ则2222(m 2)t 2m 4m 1t 2-+-+=λ+2222222(m 2)t 2m 4m 1(t 2)(m 2)t 2m 4m 120∴-+-+=λ+∴--λ+-+-λ=22m 202m 4m 120⎧--λ=⎪∴⎨-+-λ=⎪⎩5m 4716⎧=⎪⎪∴⎨⎪λ=-⎪⎩5M(,0)4∴ 11分②当直线l 的斜率为0时,直线l :y 0=,由5M(,0)4得:综上述①②知,符合条件的点M 存在,其坐标为5(,0)4 (13)分六、定直线问题 例9、设椭圆2222:1(0)x y C a b a b+=>>过点M,且焦点为1(F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两分歧点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB=,证明:点Q 总在某定直线上解析:(1)由题意:2222222211c a b c a b ⎧=⎪⎪+=⎨⎪⎪=-⎩,解得224,2a b ==,所求椭圆方程为 22142x y += (2)设点1122(,),(,),(,)Q x y A x y B x y ,由题设,,,,PA PB AQ QB 均不为零.且PA PB AQQB=又 ,,,P A Q B 四点共线,可设,(0,1)PA AQ PB BQ λλλ=-=≠±,于是1141,11x yx y λλλλ--==--(1) 2241,11x y x y λλλλ++==++(2)由于1122(,),(,)A x y B x y 在椭圆C 上,将(1),(2)分别代入C 的方程2224,x y +=整理得222(24)4(22)140x y x y λλ+--+-+= (3)222(24)4(22)140x y x y λλ+-++-+= (4)(4)-(3) 得 8(22)0x y λ+-=0,220x y λ≠+-=∵∴,即点(,)Q x y 总在定直线220x y +-=上例10、已知椭圆C的离心率e =()1A 2,0-,()2A 2,0.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x my 1=+与椭圆C 交于P 、Q 两点,直线1A P 与2A Q 交于点S.试问:当m 变动时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由.解法一:(Ⅰ)设椭圆C 的方程为()2222x y 1a b 0a b+=>>. (1)分∵a 2=,c e a ==c =,222b a c 1=-=. ………………4分∴椭圆C 的方程为222x y 14+=. (5)分(Ⅱ)取m 0,=得P ,Q 1,⎛⎛ ⎝⎭⎝⎭,直线1A P的方程是y = 直线2A Q的方程是y -交点为(1S .…………7分,若P 1,,Q ⎛⎛ ⎝⎭⎝⎭,由对称性可知交点为(2S 4,. 若点S 在同一条直线上,则直线只能为:x 4=.…………………8分以下证明对任意的m,直线1A P 与直线2A Q 的交点S 均在直线:x 4=上.事实上,由22x y 14x my 1⎧+=⎪⎨⎪=+⎩得()22my 14y 4,++=即()22m 4y 2my 30++-=,记()()1122P x ,y ,Q x ,y ,则1212222m 3yy ,y y m 4m 4--+==++.…………9分设1A P 与交于点00S (4,y ),由011yy ,42x 2=++得116y y .x 2=+ 设2A Q 与交于点00S (4,y ),''由022y y ,42x 2'=--得2022y y .x 2'=-………10 ()()221212m 12mm 4m 40x 2x 2---++==+-,……12分∴00yy '=,即0S 与0S '重合,这说明,当m 变动时,点S 恒在定直线:x 4=上.13分解法二:(Ⅱ)取m 0,=得P ,Q 1,⎛⎛ ⎝⎭⎝⎭,直线1A P的方程是y =直线2A Q的方程是y =交点为(1S (7)分取m 1,=得()83P ,,Q 0,155⎛⎫- ⎪⎝⎭,直线1A P 的方程是11y x ,63=+直线2A Q 的方程是1y x 1,2=-交点为()2S 4,1.∴若交点S 在同一条直线上,则直线只能为:x 4=. ……………8分以下证明对任意的m,直线1A P 与直线2A Q 的交点S 均在直线:x 4=上.事实上,由22x y 14x my 1⎧+=⎪⎨⎪=+⎩得()22my 14y 4,++=即()22m 4y 2my 30++-=,记()()1122P x ,y ,Q x ,y ,则1212222m 3yy ,y y m 4m 4--+==++.………………9分 1A P 的方程是()11y y x 2,x 2=++2A Q 的方程是()22y y x 2,x 2=--消去y,得()()1212y yx 2x 2x 2x 2+=-+-…①以下用分析法证明x 4=时,①式恒成立.要证明①式恒成立,只需证明12126y 2y ,x 2x 2=+-即证()()12213y my 1y my 3,-=+即证()12122my y 3y y .=+………………②∵()1212226m 6m2my y 3y y 0,m 4m 4---+=-=++∴②式恒成立.这说明,当m 变动时,点S 恒在定直线:x 4=上.解法三:(Ⅱ)由22x y 14x my 1⎧+=⎪⎨⎪=+⎩得()22my 14y 4,++=即()22m 4y 2my 30++-=.记()()1122P x ,y ,Q x ,y ,则1212222m 3yy ,y y m 4m 4--+==++.……………6分 1A P 的方程是()11y y x 2,x 2=++2A Q 的方程是()22y y x 2,x 2=--……7分 由()()1122y y x 2,x 2y y x 2,x 2⎧=+⎪+⎪⎨⎪=-⎪-⎩得()()1212y y x 2x 2,x 2x 2+=-+-…………………9分即()()()()21122112y x2y x 2x 2y x 2y x 2++-=+--()()()()21122112y my 3y my 12y my 3y my 1++-=+--1221212my y 3y y 23y y +-=+ 112211232m 2m 3y y m 4m 424.2m 3y y m 4--⎛⎫+-- ⎪++⎝⎭==-⎛⎫-+ ⎪+⎝⎭………………………………12分这说明,当m 变动时,点S 恒在定直线:x 4=上 (13)分五、其它定值问题 例11、已知双曲线2222:1(0,0)x y C a b a b -=>>程为x =(Ⅰ)求双曲线C 的方程;(Ⅱ)设直线l 是圆22:2O x y +=上动点0000(,)(0)P x y x y ≠处的切线,l 与双曲线C 交于分歧的两点,AB ,证明AOB ∠的年夜小为定值.解析:本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.(Ⅰ)由题意,得2a c c a⎧=⎪⎪⎨⎪=⎪⎩,解得1,a c ==∴2222b c a =-=,∴所求双曲线C 的方程为2212y x -=.(Ⅱ)点()()0000,0P x y x y ≠在圆222x y +=上,圆在点()00,P x y 处的切线方程为()0000x y y x x y -=--,化简得002x x y y +=.由2200122y x x x y y ⎧-=⎪⎨⎪+=⎩及22002x y +=得 ()222000344820xx x x x --+-=① ()222000348820xy y x x ---+=②∵切线l 与双曲线C 交于分歧的两点A 、B ,且2002x <<, ∴20340x -≠,设A 、B 两点的坐标分别为()()1122,,,x y x y ,则2200121222008228,3434x x x x y y x x --==--,∴12120OA OB x x y y ⋅=+=,∴AOB ∠的年夜小为90︒. 例12、己知椭圆12222=+by a x (a >b >0),过其中心O 的任意两条互相垂直的直径是P 1P 2、Q 1Q 2,求证:以两条直径的四个端点所成的四边形P 1Q 1P 2Q 2与一定圆相切.探索定圆1=+bya x ,原点O 到直线22B A 的距离为r =则与菱形2211B A B A 内切的圆方程为222222ba b a y x +=+.证明:设直径P 1P 2的方程为,kx y =则Q 1Q 2的方程为x ky 1-=∴⎪⎩⎪⎨⎧=+=12222b y a x kx y 解得⎪⎪⎩⎪⎪⎨⎧+=+=2222222222222k a b b a k y k a b b a x ∴22222222)1(ka b b a k OP ++=同理OQ 22=222222)1(kb a b a k ++,作OH ⊥P 2Q 2则22222222ba ab OQ OP OQ OP OH+=+⋅=又四边形P 1Q 1P 2Q 2是菱形,∴菱形P 1Q 1P 2Q 2必外切于圆222222ba b a y x +=+. 例13、已知P ),(00y x 是双曲线)0(2≠=a a xy 上的一个定点,过点P 作两条互相垂直的直线分别交双曲线于P 1、P 2两点(异于P 点),求证:直线P 1P 2的方向不变.探索定值:取P ),(020x a x ,过P 点且互相垂直的直线中有一条过原点,则这一条直线与曲线的另一个交点),(0201x a x P --,其斜率1k PP ∴2202axk PP -= PP 2的方程为)(02200x x ax y y --=-把xa y 2=代入解得),(2303042ax x a P 22021a x k P P =∴ 证明:设PP 1的斜率为k ,则PP 2的斜率为-k1,∴PP 1的方程为)(00x x k y y -=-PP 2的方程为)(100x x ky y --=-,与抛物2a xy =联立解得),(0201y k a k y P --、 ),(0202ky a ky P ,从而2220221ax y a k P P ==(定值)EX :过抛物线y 2=2px (P>0)上一定点(x 0,y 0)作两条直线分别交抛物线于A ,B 两点,满足直线PA 、PB 斜率存在且倾斜角互补,则AB 的斜率为定值.推广:抛物线推广到椭圆或双双曲线均可.五、练习1、(2008唐山三模)椭圆中心在原点,焦点在x 轴上,离心率为ABM 的三个极点都在椭圆上,其中M 点为(1,1),且直线MA 、MB 的斜率之和为0.(1)求椭圆的方程.(2)求证:直线AB 的斜率是定值.分析:(1)x 2+2y 2=3 (2)122、(2008年西城一模)已知定点)01(,-C 及椭圆5322=+y x ,过点C 的动直线与椭圆相交于A B ,两点.(Ⅰ)若线段AB 中点的横坐标是12-,求直线AB 的方程;(Ⅱ)在x 轴上是否存在点M ,使MB MA ⋅为常数?若存在,求出点M 的坐标;若不存在,请说明理由. 分析:M (73-,0) 493、已知不垂直于x 轴的动直线l 交抛物线y2=2mx (m>0)于A 、B 两点,若A 、B 两点满足∠AQP=∠BQP ,若其中Q 点坐标为(-4,0),原点O 为PQ 中点.(1)证明:A 、P 、B 三点线;(2)当m=2时,是否存在垂直于x 轴的直线l ‘,使得l ‘被以PA 为直径的圆所截得的弦长为定值?如果存在求出l ’的方程. 分析:设点AB 的坐标 (2)l :x=3.4、(2009年保定统测)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为F1,F2,短轴的两个端点为A 、B ,且四边形F1AF2B 是边长为2的正方形.。
解析几何定点、定值问题1、已知椭圆C :(22221>>0)y x a b a b +=的离心率为21,以原点为圆点,椭圆的短半轴为半径的圆与直线06=+-y x 相切。
(Ⅰ)求椭圆的标准方程;(Ⅱ)设P (4,0),A,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;2、斜率为1的直线l 过抛物线2:2(0)y px p Ω=>的焦点F ,与抛物线交于两点A ,B 。
(1)若|AB|=8,求抛物线Ω的方程;(2)设P 是抛物线Ω上异于A ,B 的任意一点,直线PA ,PB 分别交抛物线的准线于M ,N 两点,证明M ,N 两点的纵坐标之积为定值(仅与p 有关)。
3、在平面直角坐标系中,点(,)P x y 为动点,已知点A,(B ,直线PA 与PB的斜率之积为12-.(I )求动点P 轨迹E 的方程;(II )过点(1,0)F 的直线l 交曲线E 于,M N 两点,设点N 关于x 轴的对称点为Q (Q M 、不重合),求证:直线MQ 过定点.4、如图,曲线C 1是以原点O 为中心,F 1、F 2为焦点的椭圆的一部分,曲线C 2是以原点O为顶点,F 2为焦点的抛物线的一部分,3(2A 是曲线C 1和C 2的交点.(Ⅰ)求曲线C 1和C 2所在的椭圆和抛物线的方程;(Ⅱ)过F 2作一条与x 轴不垂直的直线,分别与曲线C 1、C 2依次交于B 、C 、D 、E 四点,若G 为CD 中点,H 为BE 中点,问22||||||||BE GF CD HF ⋅⋅是否为定值,若是,求出定值;若不是,请说明理由.5、已知抛物线)0(22>-=p px y 的焦点为F ,过F 的直线交y 轴正半轴于P 点,交抛物线于,A B 两点,其中A 在第二象限。
(1)求证:以线段FA 为直径的圆与y 轴相切; (2)若12FA AP,BF FA λλ==,求21λλ-的值.6、已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .⊙M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线,交l 于点A , 交⊙M 于另一点B ,且2AO OB ==.(Ⅰ)求⊙M 和抛物线C 的方程;(Ⅱ)过圆心M 的直线交抛物线C 于P 、Q 两点,求OP OQ ⋅的值。
赏析解析几何中的典型问题作者:陈伟斌张启兆来源:《中学生数理化·高考使用》2020年第04期解析几何是高中数学的重要内容,也是高考考查的重点内容。
解析几何的核心观点就是恰当运用代数的方法解决几何问题,基本思想是数形结合思想,核心方法是坐标法。
数形结合思想和坐标法是统领全局的,解析几何就是在坐标系的基础上,用代数的方法研究几何问题的一门学科。
同学们在复习过程中要注意积累解决解析几何的基本问题及典型问题的常用方法、技巧,提高解题能力,确保复习效果。
一,存在性问题解析几何中探究存在性问题实质上是探索结论的开放性问题,是在一定的条件下判断某种数学对象是否存在的问题,它有结论存在和结论不存在两种情形,解答这类问题,一般先对结论作肯定存在的假设,然后由此出发,结合已知条件进行推理论证。
若导出矛盾,则说明先前假设错误;若推出合理的结论,则说明先前假设正确,由此得出问题的结论,“假设推证结论”是解答此类问题的三个步骤。
评注:(l)已知椭圆中的某些参数求椭圆方程是常见题型,因为椭圆中三个参数a,b,c 三者之间已经有了关系a2=b2+c2,所以只要再给出两个条件就可以解出方程,若已知离心率,常见的处理办法就是利用离心率减少变量,即把a,b,c、都用一个变量来表示,比如这道题目就可得到a=2c,b=√3c。
(2)对于一道综合题,要能认真审题,发现其中隐含的条件,比如题目中的PF⊥x轴,这些隐含条件有时就是解决问题的关键点。
该题涉及了解析几何中常见的两种处理办法,已知直线与椭圆的一个交点,可结合韦达定理求另一个交点,以及利用对称性用-k代替k得到另一个交点。
在求k时,把A,F,B三点共线转化成斜率来运算也是简化计算的一个技巧,若写出AB的方程,再利用过点F求k就比较烦琐了。
(3)该小题中的两种不同的思路,其实都是在抓整个图形的关键元素,关键元素就是指这个元素定下后,整个图形也就定下了,解法一抓的关键元素就是A,B中的点,解法二抓的关键元素就是AB的斜率,然后把所有变量都由这个元素表示,这个思想和向量中的基底思想有点类似。
解析几何题型——《解析几何中的定值定点问题》题型特点:定值、定点问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点。
解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
这类试题考查的是在运动变化过程中寻找不变量的方法。
典例 1 如图,已知双曲线)0(1:222>=-a y ax C 的右焦点为F ,点A ,B 分别在C 的两条渐近线上,x AF ⊥轴,OB AB ⊥,OA BF //(O 为坐标原点)。
(1)求双曲线C 的方程;(2)过C 上一点),(00y x P 的直线1:020=-y y a x x l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NF MF恒为定值,并求此定值。
典例2 已知动圆过定点)0,4(A ,且在y 轴上截得的弦MN 的长为8。
(1)求动圆圆心的轨迹C 的方程;(2)已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。
典例3 已知直线6:+=x y l ,圆5:22=+y x O ,椭圆)0(1:2222>>=+b a b x a y E 的离心率33=e ,直线l 被圆O 截得的弦长与椭圆的短轴长相等。
(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值。
典例4 椭圆的两焦点坐标分别为)0,3(1-F 和)0,3(2F ,且椭圆过点)23,1(-。
(1)求椭圆方程;(2)过点)0,56(-作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断MAN ∠的大小是否为定值,并说明理由。
第十讲 定点问题一.直线的斜率和截距都未知时,设直线的方程为y kx m =+,利用题意找出k 和m 的关系式,即只要截距位置和斜率位置的参数是齐次的且为同一个参数都可以求出所过的定点。
二.斜率未知时,证明的过定点的直线的斜率位置必定含有参数,只需要令含有参数部分的x 等于零即可消去参数.三.若动直线的参数位置在截距上,则此时动直线并不是以定点为对称点转动,因此无法证明直线过定点; 注意:在圆锥曲线中证明动直线过定点,则直线方程必定含有一个或两个参数,若含有一个参数,则参数位置肯定不能只在截距上;若含有两个参数,则根据圆锥曲线中给出的条件必定可以求出两个参数之间的等量关系,因此题目的关键即为求出直线方程。
考向一 找出k 与m 得关系 【例1】已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【举一反三】1.过24y x =上一点(1,2)P ,作两条射线交抛物线于,A B 两点,且0PA PB ⋅=,则证明AB 恒过一定 点。
2.已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8.(1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明直线l 过定点.考向二 利用直线系中参得系数为0【例2】对于椭圆,有如下性质:若点是椭圆上的点,则椭圆在该点处的切线方程为.利用此结论解答下列问题.点是椭圆上的点,并且椭圆在点处的切线斜率为. (1)求椭圆的标准方程;(2)若动点在直线上,经过点的直线,与椭圆相切,切点分别为,.求证:直线必经过一定点.【举一反三】1.已知点G 在抛物线C :x 2=4y 的准线上,过点G 作抛物线C 的两条切线,切点分别为A(x 1,y 1),B(x 2,y 2)(1)证明:x 1x 2+y 1y 2为定值;(2)当点G 在y 轴上时,过点A 作直线AM ,AN 交抛物线C 于M ,N 两点,满足AM MN ⊥.问:直线MN 是否恒过定点P ,若存在定点,求出点P 的坐标;若不存在,请说明理由. ()222210x y a b a b+=>>()00,x y 00221x x y y a b +=31,2Q ⎛⎫ ⎪⎝⎭2222C :1(0)x y a b a b +=>>Q 12-C P 3x y +=P m n C M N MN考向三 圆过定点[例3]已知椭圆C :22221(0,0)x y a b a b +=>>,离心率12e =,A 是椭圆的左顶点,F 是椭圆的左焦点,1AF =,直线m :x=-4.(1)求椭圆C 方程;(2)直线l 过点F 与椭圆C 交于P 、Q 两点,直线PA 、QA 分别与直线交于M 、N 两点,试问:以MN 为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由.【举一反三】1.若动圆的圆心在抛物线212x y =上,且与直线30y +=相切,则此圆恒过定点______________. 2.已知椭圆E 的方程为2221x y a+=,点A 为长轴的右端点.B 、C 为椭圆E 上关于原点对称的两点.直线AB 与直线AC 的斜率k AB 、k AC 满足:12AC AB k k ⋅=-. (1)求椭圆E 的标准方程;(2)若直线:l y kx t =+与圆2223x y +=相切,且与椭圆E 相交于M 、N 两点,求证:以线段MN 为直径的圆恒过原点.3.已知离心率为2的双曲线的一个焦点F(c,0)到一条渐近线的距离为3.(1)求双曲线C 的方程;(2)设A 1、A 2分别为的左右顶点,P 为C 异于一点A 1、A 2,直线A 1P 与A 2P 分别交y 轴于M 、N 两点,求证:以线段MN 为直径的圆D 经过两个定点.1.已知椭圆221221(0)x y C a b a b+=>>:的离心率为2,抛物线22:4C y x =-的准线被椭圆C 1截得的线段.(1)求椭圆C 1的方程;(2)如图,点A 、F 分别是椭圆C 1的左顶点、左焦点直线l 与椭圆C 1交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.2.已知抛物线C 的焦点是椭圆22198x y +=的右焦点,准线方程为x=-1. Ⅰ求抛物线C 的方程;Ⅱ若点P ,Q 是抛物线C 上异于坐标原点O 的任意两点,且满足OP OQ ⊥,求证:直线PQ 过定点.3.已知抛物线21:2(0)C y px p =>与椭圆222:143x y C +=有一个相同的焦点,过点A(2,0)且与x 轴不垂直的直线l 与抛物线C 1交于P ,Q 两点,P 关于x 轴的对称点为M.(1)求抛物线C 1的方程;(2)试问直线MQ 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.4.已知抛物线2:2(0)C y px p =>,直线y=x-1与C 相交所得的长为8.求p 的值;过原点的直线l 与抛物线C 交于M 点,与直线x=-1交于H 点,过点H 作轴的垂线交抛物线C 于N 点,求证:直线MN 过定点.5.在直角坐标系xOy 中,点P 到两点(0,−√3),(0,√3)的距离之和等于4,设点P 的轨迹为C 。
初探高考解析几何中的定点、定值问题作者:林全德来源:《理科爱好者(教育教学版)》2018年第02期【摘要】解析几何是高考中数学的重要组成部分,每年的高考都会涉及若干个小题,及一道大题。
这道大题经常考查直线与圆锥曲线的位置关系,其中尤为常见的是考查直线过定点、某些几何量的斜率、长度、角度、面积为定值等问题。
这部分内容对考生的运算求解能力、数形结合思想、坐标建模思维、用代数方法解决几何问题要求比较高。
本文通过近三年全国各地高考试卷定点、定值问题的分析,希望对考生如何做好解析几何此类问题有所帮助。
【关键词】解析几何;定点;定值【中图分类号】G633.65 【文献标识码】B 【文章编号】1671-8437(2018)10-0066-02题型一:过定点问题直线或者曲线过定点问题,是高考中数学的热点,我们通常可以通过联立方程组,求出直线中含有参数的方程,然后证明其过某个定点。
例1.【2017课标1,理20】已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上。
(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点,若直线P2A与直线P2B的斜率的和为–1,证明:l过定点。
分析:(1)略;(2)先设直线P2A与直线P2B的斜率分别为k1,k2,在设直线l的方程,当l与x轴垂直,通过计算,不满足题意,再设设l:y=kx+m(M=1),将y=kx+m代入+y2=1,写出判别式,韦达定理,表示出k1+k2,根据k1+k2=-1列出等式表示出k和m的关系,判断出直线恒过定点。
解法:设P2A,P2B的斜率分别为k1,k2(k1+k2=-1)P2A与P2B两直线方程为(k1x+1-y)(k2x+1-y)=0化简得k1k2x2+(1-y)2+(1-y)(k1+k2)x=0椭圆方程变形为x2=4(1-y2),代入可得得4k1k2(1-y2)+(1-y)2-x(1-y)=0,此方程的解是椭圆与两条直线的三个公共点P2,A,B的坐标。
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
【解题思路】1.把向量用OA ,OB ,OC 表示出来。
2.把求最值问题转化为三角函数的最值求解。
【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。
【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。
【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。
2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。
【解题思路】1.设出点的坐标,列出方程。
2.利用韦达定理,设而不求,简化运算过程。
3.根据圆的性质,巧用点到直线的距离公式求解。
【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。
即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。
题型分值完全一样。
选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。
3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。
四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。