大学物理习题答案解析第七章
- 格式:docx
- 大小:624.54 KB
- 文档页数:24
第七章7-1容器内装有质量为0.lkg 的氧气,其压强为l0atm(即lMPa),温度为47C 0。
因为漏气,经过若干时间后,压强变为原来的85,温度降到27C 0。
问:(1)容器的容积有多大?(2)漏去了多少氧气? 解:(1)由RT MmpV =把p =10atm, T=(47+273)K=320K.m =0.1kg, M=32×10-3kg R =8.31J ·mol -1·K -1代入.证V =8.31×10-3m 3(2) 设漏气后,容器中的质量为m ′,则漏去的氧气为kg 103.3kg 301kg )1511.0(2-⨯≈=-='-=m m m ∆ 7-2设想太阳是由氢原子组成的理想气体,其密度可当作是均匀的。
若此气体的压强为Pa 141035.1⨯,试估算太阳的温度。
已知氢原子的质量kg H 271067.1-⨯=μ,太阳半径m R S 81096.6⨯=,太阳质量kg M S 301099.1⨯=。
解: 太阳内氢原子数HSm M N =故氢原子数密度为由P =nkT 知)(1015.11038.1105.81035.17232914K nk p T ⨯=⨯⨯⨯⨯==- 7-3 一容器被中间隔板分成相等的两半,一半装有氮气,温度为1T ,另一半装有氧气,温度为2T ,二者压强相等,今去掉隔板,求两种气体混合后的温度。
解: 如图混合前:2221112222111O He T M m T M m RT M m pV RT M m pV =⇒⎪⎪⎭⎪⎪⎬⎫==气有对气有对 ① 总内能 222111212523RT M m RT M m E E E +=+=前 ② ①代入②证混合后:设共同温度为T()RT M m T T EF RT M m M m E 21210221125231,2523⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=式得又由后 ③ 题7-2图又后前E E =,故由(2)(3)知)/53(8211T T T T +=7-4 设有N 个粒子的系统,速率分布函数如习题7一4图所示,求:(1))(v f 的表达式;(2)a 与0v 之间的关系;(3)速率在之间的粒子数;(4)最概然速率;(5)粒子的平均速率;(6) 0.50v ~0v 区间内粒子的平均速率。
r R r REOr(D)E ∝1/r 222第七章 静电场7-1 关于电场强度与电势的关系,描述正确的是[ ]。
(A) 电场强度大的地方电势一定高; (B) 沿着电场线的方向电势一定降低; (C) 均匀电场中电势处处相等; (D) 电场强度为零的地方电势也为零。
分析与解 电场强度与电势是描述静电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零;电场强度等于负电势梯度;静电场是保守场,电场线的方向就是电势降低的方向。
正确答案为(B )。
7-2 半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为[ ]。
7-3、下分析与解 根据静电场的高斯定理可以求得均匀带电球面的电场强度分布为⎪⎩⎪⎨⎧>πε<=Rr r QR r E 2040。
正确答案为(B )。
7-3 下列说法正确的是[ ]。
(A )带正电的物体电势一定是正的 (B)电场强度为零的地方电势一定为零 (C )等势面与电场线处处正交 (D)等势面上的电场强度处处相等分析与解 正电荷在电场中所受的电场力的方向与电场线的切线方向相同,电荷在等势面上移动电荷时,电场力不做功,说明电场力与位移方向垂直。
正确答案为(C )。
7-4 真空中一均匀带电量为Q 的球壳,将试验正电荷q 从球壳外的R 处移至无限远处时,电场力的功为[ ]。
(A )24R qQ o πε (B )R Q o πε4 (C ) R q o πε4 (D )R qQ o πε4分析与解 静电场力是保守力,电场力做的功等电势能增量的负值,也可以表示成这一过程的电势差与移动电量的乘积,由习题7-2可知电场强度分布,由电势定义式⎰∞⋅=R rE d V 可得球壳与无限远处的电势差。
正确答案为(D )。
7-5 关于静电场的高斯定理有下面几种说法,其中正确的是[ ]。
第七章课后习题解答、选择题7-1处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[](A)温度,压强均不相同(B)温度相同,但氦气压强大于氮气的压强(C)温度,压强都相同(D)温度相同,但氦气压强小于氮气的压强3分析:理想气体分子的平均平动动能 \ - kT,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。
又由理想气体的压强公式p nkT ,当两者分子数密度相同时,它们压强也相同。
故选( C)。
7-2理想气体处于平衡状态,设温度为T,气体分子的自由度为i,则每个气体分子所具有的[](A)动能为-kT (B)动能为丄RT2 2(C)平均动能为-kT (D)平均平动动能为-RT2 23分析:由理想气体分子的的平均平动动能 \ 3kT和理想气体分子的的平均动能2-丄kT,故选择(C)。
27-3三个容器A、B、C中装有同种理想气体,其分子数密度n相同,而方均根1/2 1/2 1/2速率之比为v A : v B : v C 1:2:4,则其压强之比为P A:P B:P c[](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1分析:由分子方均根速率公式厂2,又由物态方程p nkT,所以当三容器中得分子数密度相同时,得p1: P2: P3 T1 :T2 :T3 1: 4:16。
故选择(C)。
7-4图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。
如果V p O和V p H分别表示氧气和氢气的最概然速率,则[] O 2 H 2(A)图中a表示氧气分子的速率分布曲线且V p O/ V p H4质量M H 2 M O 2,可知氢气的最概然速率大于氧气的最概然速率,故曲线 M 1 ( ) i于氧分子的速率分布曲线。
又因16,所以盘4。
故选择(B )。
f(v)习题7-4图7-5在一个体积不变的容器中,储有一定量的某种理想气体,温度为T 。
第七章课后习题解答一、选择题7-1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能32k kT ε=,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。
又由理想气体的压强公式p nkT =,当两者分子数密度相同时,它们压强也相同。
故选(C )。
7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为2i kT (B) 动能为2iRT(C) 平均动能为2i kT (D) 平均平动动能为2iRT分析:由理想气体分子的的平均平动动能32k kT ε=和理想气体分子的的平均动能2ikT ε=,故选择(C )。
7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()1/21/21/222::2A B Cv v v =1:2:4,则其压强之比为A B C p :p :p[ ](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1=,又由物态方程p nkT =,所以当三容器中得分子数密度相同时,得123123::::1:4:16p p p T T T ==。
故选择(C )。
7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。
如果()2p O v 和()2p H v 分别表示氧气和氢气的最概然速率,则[ ](A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=质量22H O M M <,可知氢气的最概然速率大于氧气的最概然速率,故曲线a 对应于氧分子的速率分布曲线。
习题精解7-1一条无限长直导线在一处弯折成半径为R 的圆弧,如图7.6所示,若已知导线中电流强度为I,试利用比奥—萨伐尔定律求:(1)当圆弧为半圆周时,圆心O 处的磁感应强度;(2)当圆弧为1/4圆周时,圆心O 处的磁感应强度。
解(1)如图7.6所示,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。
因为圆心O 位于直线电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。
根据比奥—萨伐尔定律,半圆弧上任一电流元在O 点产生的磁感应强度为 024IdldB Rμπ=方向垂直纸面向内。
半圆弧在O 点产生的磁感应强度为 000220444RIIdl I B R R R Rπμμμπππ===⎰方向垂直纸面向里。
(2)如图7.6(b )所示,同理,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。
因为圆心O 位于电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。
根据毕奥—萨伐尔定理,1/4圆弧上任一电流元在O 点产生的磁感应强度为 024IdldB R μπ=方向垂直纸面向内,1/4圆弧电流在O 点产生的磁感应强度为00022204428RIIdl I R B R R Rπμμμπππ===⎰方向垂直纸面向里。
7.2 如图7.7所示,有一被折成直角的无限长直导线有20A 电流,P 点在折线的延长线上,设a 为,试求P 点磁感应强度。
解 P 点的磁感应强度可看作由两段载流直导线AB 和BC 所产生的磁场叠加而成。
AB 段在P 点所产生的磁感应强度为零,BC 段在P 点所产生的磁感应强度为 0120(cos cos )4IB r μθθπ=- 式中120,,2r a πθθπ=== 。
所以500(cos cos ) 4.010()42I B T a μπππ=-=⨯ 方向垂直纸面向里。
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
对称分析E y =0。
θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。
第七章 稳恒磁场习题7-1 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为多少?解:取平面S ’与半球面S 构成闭合曲面,根据高斯定理有 0m mS mS ΦΦΦ'=+=2cos mS mS r E ΦΦπα'=-=-球面外法线方向为其正方向7-2 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?08IR μ垂直画面向外0022II RR μμπ-垂直画面向里 00+42I IR Rμμπ垂直画面向外 7-3 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解: 如图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θ-πθ==21221R R I I 电阻电阻 1I 产生1B 方向⊥纸面向外πθπμ2)2(2101-=R I B2I 产生2B 方向⊥纸面向里πθμ22202R I B =∴1)2(2121=-=θθπI I B B 有0210=+=B B B7-4 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T 。
如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?(已知圆电流轴线上北极点的磁感强度()R IRR IR B 24202/32220μμ=+=)解:9042 1.7310A RBI μ==⨯方向如图所示7-5 有一同轴电缆,其尺寸如题图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感应强度:(1)r<R 1;(2)R 1<r<R 2;(3)R 2<r<R 3;(4)r>R 3。
解:同轴电缆的电流分布具有轴对称性在电缆各区域中磁感应线是以电缆轴线为对称轴的同心圆。
第七章恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r,螺线管通过的电流相同为I ,螺线管中的磁感强度大小BR 、Br满足()(A)B R 2B r (B)B R B r (C)2B R B r (D)B R 4B r分析与解在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比n R r 1n r R 2因而正确答案为(C)。
7 - 2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为()(A)2πr 2B (B)πr2B22(C)2πr 2Bcosα(D)πr 2Bcosα分析与解作半径为r 的圆S′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S′的磁通量;Φm B S .因而正确答案为(D).7 - 3 下列说法正确的是()( A )闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C)磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D)磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为( B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P1 、P2 为两圆形回路上的对应点,则(A)BL1dl BL2dl,B P1B P2B)BL1dl BL2dl,B P1B P2C)BL1dl BL2dl,B P1B P2D)BLdl BLdl,B P1B P2由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C).*7 - 5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为质的相对磁导率为μr(μr<1),则磁介质内的磁化强度为((A)μr 1 I /2πr (B)μr 1I /2πr(C)μr I /2πr (D)I /2πμr r分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M=(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B).7 - 6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行?已知电子的速率接近光速。
第七章静电场中的导体和电介质一、基本要求1.掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律;2.学会计算电容器的电容;3.了解介质的极化现象及其微观解释;4.了解各向同性介质中D和E的关系和区别;5.了解介质中电场的高斯定理;6.理解电场能量密度的概念。
二、基本内容1.导体静电平衡(1)静电平衡条件:导体任一点的电场强度为零(2)导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。
(3)导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。
2.电容(1)孤立导体的电容q CV电容的物理意义是使导体电势升高单位电势所需的电量。
电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。
它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关。
(2)电容器的电容BA V V qC -=q 为构成电容器两极板上所带等量异号电荷的绝对值。
B A V V -为A 、B 两极间电势差。
电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。
(3)电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之和。
等效电容由121111nC C C C =+++进行计算。
并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。
等效电容为12n C C C C =+++。
(4)计算电容的一般步骤①设两极带电分别为q +和q -,由电荷分布求出两极间电场分布。
②由BA B A V V d -=⋅⎰E l 求两极板间的电势差。
③根据电容定义求BA V V qC -=3.电位移矢量D人为引入的辅助物理量,定义0ε=+D E P ,D 既与E 有关,又与P 有关。
说明D 不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。
定义式无论对各向同性介质,还是各向异性介质都适用。
第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( ) (A ) (B ) (C ) (D )分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C )。
7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A ) (B ) (C ) (D )分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;.因而正确答案为(D ). 7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )r R B B 2=r R B B =r R B B =2r R B B 4=21==R r n n r R B r 2π2B r 2παB r cos π22αB r cos π2S B ⋅=m Φ(A ) ,(B ) ,(C ) ,(D ) ,分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )(B ) (C ) (D )分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。
分析 一个电子绕存储环近似以光速运动时,对电流的贡献为,因而由,可解出环中的电子数。
解 通过分析结果可得环中的电子数7 -7 已知铜的摩尔质量M =63.75 g·mol -1,密度ρ =8.9 g · cm -3,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度 ,求此时铜线内电子的漂移速率v d ;(2) 在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍?⎰⎰⋅=⋅21L L d d l B l B 21P P B B =⎰⎰⋅≠⋅21L L d d l B l B 21P P B B =⎰⎰⋅=⋅21L L d d l B l B 21P P B B ≠⎰⎰⋅≠⋅21L L d d l B l B 21P P B B ≠()r I μr π2/1--()r I μr π2/1-r I μr π2/-r μI r π2/c I e I /Δ=lNec I =10104⨯==ecIlN 26.0A mm m j -=⋅分析 一个铜原子的质量,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度 .从而可解得电子的漂移速率v d . 将电子气视为理想气体,根据气体动理论,电子热运动的平均速率其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系. 解 (1) 铜导线单位体积的原子数为电流密度为j m 时铜线内电子的漂移速率(2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.7 -8 有两个同轴导体圆柱面,它们的长度均为20 m ,内圆柱面的半径为3.0 mm ,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA 电流沿径向流过,求通过半径为6.0 mm 的圆柱面上的电流密度.分析 如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得解 由分析可知,在半径r =6.0 mm 的圆柱面上的电流密度A N M m /=m ρn /=d m ne j v =em kTπ8=v M ρN n A /=14s m 1046.4//--⋅⨯===e ρN M j ne j A m m d v 81042.2π81⨯≈=ed d m kTv vv rl I j π2/=7 -9 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第7 -4 节例2 知,圆电流轴线上北极点的磁感强度因此赤道上的等效圆电流为由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.7 -10 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接。
求环心O 的磁感强度.分析 根据叠加原理,点O 的磁感强度可视作由ef 、b e 、fa 三段直线以及ac b 、a d b 两段圆弧电流共同激发.由于电源距环较远,.而b e 、fa 两段直线的延长线通过点O ,由于,由毕-萨定律知.流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为2m m A 3.13π2/-⋅==rl Ij ()RIμR R IR μB 24202/3220=+=A 1073.12490⨯==μRBI 0=ef B 0Idl r ⨯=0be fa ==B B, 其中I 1 、I 2 分别是圆弧ac b 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧ac b 、a d b 又构成并联电路,故有将B1 、B2 叠加可得点O 的磁感强度B . 解 由上述分析可知,点O 的合磁感强度7 -11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度解 (a) 长直电流对点O 而言,有,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得B 0 的方向垂直纸面向外.21101π4r l I μB =22202π4r l I μB =2211l I l I =0π4π42220211021=-=-=rl I μr l I μB BB ∑=iB B 00=⨯r l Id RIμB 800=RIμR I μB π22000-=RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=7 -12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O 的磁感强度B .分析 由教材7 -4 节例题可知,圆弧载流导线在圆心激发的磁感强度,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度,磁感强度的方向依照右手定则确定。
点O 的磁感强度B O 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加。
解 根据磁场的叠加 在图(a)中,在图(b)中,在图(c )中,7 -13 如图所示,一个半径为R 的无限长半圆柱面导体,沿长度方向的电流I 在柱面上均匀分布.求半圆柱面轴线OO ′上的磁感强度.RαI μB π40=RIμB π40=k i k k i B RI μR I μR I μR I μR I μπ24π4π44000000--=---=k i k i i B RI μR I μR I μR I μR I μπ41π14π44π4000000-⎪⎭⎫ ⎝⎛+-=---=k j i B RIμR I μR I μπ4π4830000---=分析 毕-萨定理只能用于求线电流的磁场分布,对于本题的半圆柱形面电流,可将半圆柱面分割成宽度的细电流,细电流与轴线OO ′平行,将细电流在轴线上产生的磁感强度叠加,即可求得半圆柱面轴线上的磁感强度.解 根据分析,由于长直细线中的电流,它在轴线上一点激发的磁感强度的大小为其方向在Oxy 平面内,且与由dl 引向点O 的半径垂直,如图7 -13(b)所示.由对称性可知,半圆柱面上细电流在轴线OO ′上产生的磁感强度叠加后,得则轴线上总的磁感强度大小B 的方向指向Ox 轴负向.7 -14 实验室中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图(a)所示.一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同.试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场.(提示:如以两线圈中心连线的中点为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为;)θR I d d =R l I I π/d d =I RμB d 2πd 0=⎰==0sin d θB B y RIμθθR R I R μθB B x 20π0π0πsin d π2πsin d =⋅==⎰⎰RIμB B x 20π==0=dxdB022=dx B d分析 设磁感强度在Ox 轴线上的分布为B (x )(可由两个圆电流线圈在轴线上磁场的叠加而得),如在轴线上某点处,这表明在该点附近的磁感强度有三种可能,即有极大值()、极小值() 或均匀().据此可得获得均匀磁场的条件①. 证 取两线圈中心连线的中点为坐标原点O ,两线圈中心轴线为x 轴,在x 轴上任一点的磁感强度则当时,磁感强度在该点附近小区域内是均匀的,该小区域的磁场为均匀场. 由, 解得 x =0 由,解得 d =R① 将磁感强度B 在两线圈中点附近用泰勒级数展开,则若x <<1;且;.则磁感强度B (x )在中点O 附近近似为常量,场为均匀场. 这表明在d =R 时,中点(x =0)附近区域的磁场可视为均匀磁场. 7 -15 如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.0d d =x B0d d 22<x B 0d d 22>x B 0d d 22=xB()[]()[]2/322202/322202/2/2x d RIR μx d R IR μB ++--+=()()()[]()()[]02/2/32/2/32d d 2/5222/52220=+++-⎪⎩⎪⎨⎧-+-=x d Rx d x d R x d IR μx x B ()()()[]()()[]02/2/42/2/423d d 2/722222/72222022=++-+-⎪⎩⎪⎨⎧-+-=x d RR x d x d R x d IR μx x B 0d d =xB0d d 022==x x B ()()()()...d 0d 21d 0d 0222+++=x x B x x B B x B ()0d 0d =xB ()0d 0d 22=x B分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x [图(b)],载流长直导线的磁场穿过该面元的磁通量为矩形平面的总磁通量解 由上述分析可得矩形平面的总磁通量7 -16 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求:(1) 导线内、外磁感强度的分布;(2) 导线表面的磁感强度.分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等.方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 (1) 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有x l xlμΦd π2d d 0=⋅=S B ΦΦ⎰=d ⎰==211200ln π2d π2d d d d Il μx l x l μΦ在导线内r <R , ,因而 在导线外r >R ,,因而磁感强度分布曲线如图所示.(2) 在导线表面磁感强度连续,由I =50 A ,,得7 -17 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,,利用安培环路定理,可解得各区域的磁感强度.解 由上述分析得 r <R 1∑⎰=⋅=⋅I μB 0πr 2d l B 2222πππRr r R I I ==∑202πR IrμB =I I =∑rIμB 2π0=m 1078.1π/3-⨯==s R T 106.52π30-⨯==RIμB πr 2d ⋅=⋅⎰B l B ∑⎰=⋅I μ0d l B 2211ππ12πr R μr B =⋅21012πR IrμB =R 2 <r <R 3r >R 3磁感强度B (r )的分布曲线如图(b).7 -18 如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.分析 根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而依照安培环路定理,可以解得螺线管内磁感强度的分布.解 依照上述分析,有r <R 1rIμB 2π02=()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π2223223032πR R r R r I μB --=()02π04=-=⋅I I μr B 04=B πr 2d ⋅=⋅⎰B l B ∑⎰=⋅I μ0d l B ∑=⋅I μr B 02π02π1=⋅r B 01=Br >R 2在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若 和R 2 ,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径,则环内的磁感强度近似为 7 -19 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.分析 由题7 -16 可得导线内部距轴线为r 处的磁感强度在剖面上磁感强度分布不均匀,因此,需从磁通量的定义来求解.沿轴线方向在剖面上取面元dS=l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量解 由分析可得单位长度导线内的磁通量7 -20 设电流均匀流过无限大导电平面,其面电流密度为j .求导电平面两侧的磁感强度.(提示:可参考本章rNIμB 2π02=02π3=⋅r B 03=B 112R R R <<-()1221R R R +=RNIμB 2π0≈()202πR Irμr B =()S B d ⎰=r Φ⎰=Sr B Φd 4πd 2π0020Iμr R Ir μΦR==⎰问题7 -11,并用安培环路定理求解.)分析 依照右手螺旋定则,磁感强度B 和电流j 相互垂直,同时由对称性分析,无限大导电平面两侧的磁感强度大小相同,方向反向平行.如图所示,在垂直导电平面的平面上对称地取矩形回路a b c d ,回路所在平面与导电平面相交于OO ′,且使a b ∥c d ∥OO ′,a d ⊥OO ′,c d ⊥OO ′,a b =c d =L ,根据磁场的面对称分布和安培环路定理可解得磁感强度B 的分布.解 在如图所示的矩形回路a b c d 中,磁感强度沿回路的环路积分由于对称性B 1 =B 2 =B ,B 3 、B 4 与积分路径正交,因而(1)回路a b c d 内包围的电流I =jL ,根据安培环路定理,有(2)由式(1)和式(2)可得导电板两侧磁感强度的大小为磁感强度的方向由右手螺旋关系确定.7 -21 设有两无限大平行载流平面,它们的面电流密度均为j ,电流流向相反.求:(1) 两载流平面之间的磁感强度;(2) 两面之外空间的磁感强度.⎰⎰⎰⎰⎰⋅+⋅+⋅+⋅=⋅dabccdabll B l B l B l B l B d d d d d Bl d l2=⋅⎰l B jL μBl l2d ==⋅⎰l B j μB 021=解 由上题计算的结果,单块无限大载流平面在两侧的磁感强度大小为,方向如图所示,根据磁场的叠加原理可得(1) 取垂直于纸面向里为x 轴正向,合磁场为(2) 两导体载流平面之外,合磁场的磁感强度7 -22 已知地面上空某处地磁场的磁感强度,方向向北.若宇宙射线中有一速率的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较.解 (1) 依照可知洛伦兹力的方向为的方向,如图所示. (2) 因,质子所受的洛伦兹力在地球表面质子所受的万有引力012j μi i i B 000j μjμj μ=+=22022==i -i B 00jμj μ40.410T B -=⨯715.010m s -=⨯gv B F ⋅=v q L L F B ⊥v B ⊥v N 102.316-⨯==B F v q L N 1064.116-⨯==g m G p因而,有,即质子所受的洛伦兹力远大于重力.7 -23 在一个显像管的电子束中,电子有的动能,这个显像管安放的位置使电子水平地由南向北运动.地球磁场的垂直分量,并且方向向下.求:(1) 电子束偏转方向;(2) 电子束在显像管内通过20 cm 到达屏面时光点的偏转间距.解 (1) 如图所示,由洛伦兹力电子带负电,q <0,因而可以判断电子束将偏向东侧.(2) 在如图所示的坐标中,电子在洛伦兹力作用下,沿圆周运动,其轨道半径R (参见教材第7 -7 节)为由题知,并由图中的几何关系可得电子束偏向东侧的距离即显示屏上的图像将整体向东平移近3 mm .这种平移并不会影响整幅图像的质量.7 -24 试证明霍耳电场强度与稳恒电场强度之比,这里ρ 为材料电阻率,n 为载流子的数密度.分析 在导体内部,稳恒电场推动导体中的载流子定向运动形成电流,由欧姆定律的微分形式,稳恒电场强度与电流密度应满足其中ρ 是导体的电阻率.当电流流过位于稳恒磁场中的导体时,载流子受到洛伦兹力的作用,导体侧面出现电荷积累,形成霍耳电场,其电场强度为其中v 是载流子定向运动速率.根据导体内电流密度101095.1/⨯=G F L 41.210eV ⨯55.510T B -⊥=⨯B F ⨯=v q m 71.62===eBmE eB m R kvcm 20=y m 1098.2Δ322-⨯=--=y R R x nep B E E C H //=j E ρC =B E ⨯-=v H v ne =j由上述关系可得要证明的结果. 证 由分析知,在导体内稳恒电场强度为由霍耳效应,霍耳电场强度因载流子定向运动方向与磁感强度正交,故E H =v B ,因而7 -25 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?分析 血流稳定时,有由上式可以解得血流的速度. 解 依照分析7 -26 磁力可以用来输送导电液体,如液态金属、血液等而不需要机械活动组件.如图所示是输送液态钠的管道,在长为l 的部分加一横向磁场B ,同时沿垂直于磁场和管道方向加一电流,其电流密度为J . (1) 证明在管内液体l 段两端由磁力产生的压力差为,此压力差将驱动液体沿管道流动.(2) 要在l 段两端产生1.00 atm (1 atm =101 325 P a )的压力差,电流密度应多大? (l =2.00 cm ,B =1.50T)nev ρρC ==j E B E ⨯-=v H B/ne ρB/ρ/ρB/ρ/E E C H ===v v v/H qE B q =v m/s 63.0===dBU B E HH v p JlB ∆=解 (1) 由题意电流垂直流过管内导电液体,磁场中的导电液体受到安培力的作用,在管道方向产生一压力差(2) 7 -27 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能. 解 根据带电粒子回转半径与粒子运动速率的关系有7 -28 从太阳射来的速度为0.80 ×108m /s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少?解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径地磁北极附近的回转半径7 -29 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .JBl SIBl S F p ===Δ26A/m 1038.3Δ⨯==BlpJ m /s kg 1012.121⋅⨯===-ReB m p v keV 35.222==mp E k m 101.1311⨯==eB m R vm 2322==eB m R v分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力.解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为故合力的大小为合力的方向朝左,指向直导线.7 -30 一直流变电站将电压为500k V 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F·m -1,若导线间的静电力与安培力正好抵消.求:(1) 通过输电线的电流;(2)输送的功率.分析 当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度,导线单位长度所受安培力的大小.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度,两导线间单位长度所受的静电吸引力.依照题意,导线间的静电力和安培力正好抵消,即dlI I μF π22103=()b d lI I μF +=π22104()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F dIμB π20=BI F B =dελE 0π2=λEF E =从中可解得输电线中的电流.解 (1) 由分析知单位长度导线所受的安培力和静电力分别为由可得解得(2) 输出功率7 -31 将一电流均匀分布的无限大载流平面放入磁感强度为B 0 的均匀磁场中,电流方向与磁场垂直.放入后,平面两侧磁场的磁感强度分别为B 1 和B 2(如图所示),求该载流平面上单位面积所受磁场力的大小和方向.分析 依照题7 -20 的分析,无限大载流平面两侧为均匀磁场,磁感强度大小为,依照右手螺旋定则可知,它们的方向反向平行,并与原有磁感强度B 0的均匀外磁场叠加,则有0=+E B F F dI μBI F B π220==dεU C λE F E 022π2==0=+E B f f dεU C d I μ02220π2π2=A 105.4300⨯==μεCUI W 1025.29⨯==IUN j μ021j μB B 00121-=j μB B 00221+=从而可解得原均匀磁场的磁感强度B 0和电流面密度j .载流平面在均匀外磁场中受到安培力的作用,由于载流平面自身激发的磁场不会对自身的电流产生作用力,因此作用在dS 面积上的安培力由此可求得单位面积载流平面所受的安培力. 解 由分析可得(1) (2) 由式(1)、(2)解得外磁场B 0 作用在单位面积载流平面上的安培力依照右手定则可知磁场力的方向为水平指向左侧.7 -32 在直径为1.0 cm 的铜棒上,切割下一个圆盘,设想这个圆盘的厚度只有一个原子线度那么大,这样在圆盘上约有6.2 ×1014 个铜原子.每个铜原子有27 个电子,每个电子的自旋磁矩为.我们假设所有电子的自旋磁矩方向都相同,且平行于铜棒的轴线.求: (1) 圆盘的磁矩;(2) 如这磁矩是由圆盘上的电流产生的,那么圆盘边缘上需要有多大的电流. 解 (1) 因为所有电子的磁矩方向相同,则圆盘的磁矩(2) 由磁矩的定义,可得圆盘边缘等效电流7 -33 在氢原子中,设电子以轨道角动量绕质子作圆周运动,其半径为.求质子所在处的磁感强度.h 为普朗克常量,其值为分析 根据电子绕核运动的角动量0d B l F ⨯=Id j μB B 00121-=j μB B 00221+=()21021B B B +=()1201B B μj -=()212200021d d d d d d B B μjB y x yB x j S F -===224m A 103.9⋅⨯=-e μ27m A 1056.1⋅⨯==-e μN m A 100.2/3-⨯==S m I π2/h L =m 1029.5110-⨯=a s J 1063.634⋅⨯-π2/0h a m L ==v可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流在圆心处,即质子所在处的磁感强度为解 由分析可得,电子绕核运动的速率其等效圆电流该圆电流在圆心处产生的磁感强度7 -34 半径为R 的圆片均匀带电,电荷面密度为σ,令该圆片以角速度ω绕通过其中心且垂直于圆平面的轴旋转.求轴线上距圆片中心为x 处的P 点的磁感强度和旋转圆片的磁矩.分析 旋转的带电圆盘可等效为一组同心圆电流,在盘面上割取细圆环(如图所示),其等效圆电流此圆电流在轴线上点P 处激发的磁感强度的大小为所有圆电流在轴线上激发的磁场均沿O x 轴,因而点P 处的合磁场为.由磁矩的定义,等效圆电流的磁矩,方向沿O x 轴正向,将不同半径的等效圆电流磁矩叠加可以得到旋转圆片的磁矩v/π20a e T e i ==02a iμB =π2ma h=v 2020π4π2ma hema e i ==T 5.12π82202000===ma heμa i μB σωrdr TrdrσI ==π2d ()2/32220d 2d x r I r μB +=⎰=B B d I r m d πd 2=解 由上述分析可知,轴线上x 处的磁感强度大小为圆片的磁矩m 的大小为磁感强度B 和磁矩m 的方向都沿Ox 轴正向.7 -35 一根长直同轴电缆,内、外导体之间充满磁介质[图(a)],磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流.分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有,利用安培环路定理求出环路内的传导电流,并由,,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.解 (1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有对r <R 1得忽略导体的磁化(即导体相对磁导率μr =1),有⎰=I r m d π2()⎥⎦⎤⎢⎣⎡-++=+=⎰x R x x R σωμx r r σωr μB R222d 22222002/3223032200223/20222()R r dr B x r x μμσωσω⎡⎤==-⎥+⎦⎰403π41πR σωdr σωr m R==⎰⎰=⋅r πH d 2l H ⎰∑=⋅fId l H H μB =()H μM r 1-=∑=f I r H π2221ππr R II f =∑2112πR IrH =, 对R 2 >r >R 1得填充的磁介质相对磁导率为μr ,有, 对R 3 >r >R 2得同样忽略导体的磁化,有, 对r >R 3得,,(2) 由,磁介质内、外表面磁化电流的大小为对抗磁质(),在磁介质内表面(r =R 1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2 ),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c ).7 -36 设长L =5.0 cm ,截面积S =1.0 cm 2 的铁棒中所有铁原子的磁偶极矩都沿轴向整齐排列,且每个铁原01=M 21012πR IrμB =I If=∑rI H 2π2=()r I μM r 2π12-=rI μμB r 2π02=()()2223223ππR r R R I I I f -⋅--=∑()()222322332πR R r r R I H --=03=M ()()2223223032πR R r r R I μB --=0=-=∑I I If04=H 04=M 04=B r M I s 2π⋅=()()I μR R M I r si 12π112-=⋅=()()I μR R M I r se 12π222-=⋅=1r μ<子的磁偶极矩.求:(1) 铁棒的磁偶极矩;(2) 要使铁棒与磁感强度的外磁场正交,需用多大的力矩? 设铁的密度 ,铁的摩尔质量 .分析 (1) 根据铁棒的体积和密度求得铁棒的质量,再根据铁的摩尔质量求得棒内的铁原子数N ,即其中N A 为阿伏伽德罗常量.维持铁棒内铁原子磁偶极矩同方向排列,因而棒的磁偶极矩(2) 将铁棒视为一个磁偶极子,其与磁场正交时所需力矩解 (1) 由分析知,铁棒内的铁原子数为故铁棒的磁偶极矩为(2) 维持铁棒与磁场正交所需力矩等于该位置上磁矩所受的磁力矩7 -37 在实验室,为了测试某种磁性材料的相对磁导率μr ,常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一环形螺线管.设圆环的平均周长为0.10 m ,横截面积为0.50×10-4m 2 ,线圈的匝数为200 匝.当线圈通以0.10 A 的电流时,测得穿过圆环横截面积的磁通量为6.0 ×10-5 Wb ,求此时该材料的相对磁导率μr . 分析 根据右手定则,磁感线与电流相互环连,磁场沿环型螺线管分布,当 环形螺线管中通以电流I 时,由安培环路定理得磁介质内部的磁场强度为由题意可知,环内部的磁感强度,而,故有解 磁介质内部的磁场强度和磁感强度分别为和,因而2230m A 108.1⋅⨯=-m T 5.10=B 3cm g 8.7-⋅=ρ10mol g 85.55-⋅=M A N M VρN 0=0Nm m =0B m M ⋅=A N M SLρN 0=2000m A 85.7-⋅===m N M SLρNm m A m N 4.110⋅=⋅=B m M LNI H =S ΦB /=H μμB r 0=H μB μr 0/=L NI /S Φ/301078.4⨯==NISμLΦμr。