2013-2014学年浙教版八年级(下)期末数学检测卷
- 格式:doc
- 大小:478.23 KB
- 文档页数:20
2014浙教版八年级下学期数学期末试卷姓名 班级 学号 成绩一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案填写在括号中。
1、如果分式x11有意义,那么x 的取值范围是( ) A 、x >1 B 、x <1 C 、x ≠1 D 、x =12. 命题“两点之间线段最短”是( )A.角的定义B.假命题C.公理D.定理 3、一直角三角形两边分别为3和5,则第三边为( ) A 、4 B 、34 C 、4或34 D 、2 4、用两个全等的等边三角形,可以拼成下列哪种图形( ) A 、矩形 B 、菱形 C 、正方形 D 、等腰梯形 5. 若一个多边形的内角和等于720度,则这个多边形的边数是( ) A.5 B.6 C.7 D.86、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为( ) A 、120cm B 、360cm C 、60cm D 、320cm第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( ) A 、16 B 、14 C 、12 D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为( )A 、100B 、150C 、200D 、300 10、下列命题正确的是( )A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
浙教版数学八年级下册期末试卷一、选择题(本題有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.(3分)下列方程中属于一元二次方程的是()A.2x﹣1=3x B.x2=4 C.x2+3y+1=0 D.x3+1=x2.(3分)已知点(2,1),则它关于原点的对称点坐标为()A.(1,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)3.(3分)下列运算正确的是()A.B.C.×=4 D.4.(3分)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.65.(3分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.29.29.29.2方差(环2)0.0350.0150.0250.027则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁6.(3分)在▱ABCD中,∠B+∠D=216°,则∠A的度数为()A.36°B.72°C.80°D.108°7.(3分)将一元二次方程x2﹣4x+1=0配方后,原方程可化为()A.(x+2)2=5 B.(x﹣2)2=5 C.(x﹣2)2=3 D.(x﹣4)2=15 8.(3分)反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1 9.(3分)如图,在矩形ABCD中,AB=2,BC=10,E、F分别在边BC,AD上,BE =DF.将△ABE,△CDF分别沿着AE,CF翻折后得到△AGE,△CHF.若AG分别平分∠EAD,则GH长为()A.3 B.4 C.5 D.710.(3分)如图,正方形ABCD的边长为3,点EF在正方形ABCD内.若四边形AECF恰是菱形连结FB,DE,且AF2﹣FB2=3,则菱形AECF的边长为()A.B.C.2 D.二、填空题(本题有8小题,每小题3分,共24分)11.(3分)二次根式有意义,则x的取值范围是.12.(3分)已知一组数据4,4,5,x,6,6的众数是6,则这组数据的中位数是.13.(3分)若一元二次方程x2﹣3x+c=0有两个相等的实数根,则c的值是.14.(3分)在周长为18cm的平行四边形中,相邻两条边的长度比为1:2,则这个平行四边形的较短的边长cm.15.(3分)已知多边形的内角和等于外角和的1.5倍,则这个多边形的边数为.16.(3分)工人师傅给一幅长为120cm,宽为40cm的矩形书法作品装裱,作品的四周需要留白如图所示,已知左、右留白部分的宽度一样,上、下留白部分的宽度也一样,而且左侧留白部分的宽度是上面留白部分的宽度的2倍,使得装裱后整个挂图的面积为7000cm2,设上面留白部分的宽度为xcm,可列得方程为.17.(3分)如图,在正方形ABCD中,G是对角线BD上的点,GE⊥CD,GF⊥BC,E,F 分别为垂足,连结EF.设M,N分别是AB,BG的中点,EF=5,则MN的长为.18.(3分)如图,▱OABC的顶点A的坐标为(2,0),B,C在第一象限.反比例函数y1=和y2=的图象分别经过C,B两点,延长BC交y轴于点D.设P是反比例函数y1=图象上的动点.若△POA的面积是△PCD面积的2倍,△POD的面积等于2k﹣8,则k的值为.三、解答题(本题有6小题,共46分)19.(8分)(1)计算:(2)解方程x2+6x=020.(6分)某校为了对甲、乙两个班的综合情况进行评估,从行规、学风、纪律三个项目亮分,得分情况如下表行规学风纪律甲班838890乙班938685(1)若根据三项得分的平均数从高到低确定名次,那么两个班级的排名顺序怎样?(2)若学校认为这三个项目的重要程度有所不同,而给予“行规”“学风”“纪律”三个项目在总分中所占的比例分别为20%,30%,50%,那么两个班级的排名顺序又怎样?21.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.已知点A在格点,请在给定的网格中按要求画出图形.(1)以A为顶点在图甲中画一个面积为21的平行四边形且它的四个顶点都在格点.(2)以A为顶点在图乙中画一个周长为20的菱形且它的四个顶点都在格点.22.(8分)如图,矩形OABC放置在平面直角坐标系上,点A,C分别在x轴,y轴的正半轴上,点B的坐标是(4,m),其中m>4.反比例函数y=(x>0)的图象交AB交于点D.(1)BD=(用m的代数式表示).(2)设点P为该反比例函数图象上的动点,且它的横坐标恰好等于m,连结PB,PD.①若△PBD的面积比矩形OABC面积多8,求m的值.②现将点D绕点P逆时针旋转90°得到点E,若点E恰好落在x轴上,直接写出m的值.23.(8分)暑假期间,某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.[销售利润=销售总额﹣进货成本)(1)若该纪念品的销售单价为45元时,则当天销售量为件.(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元.(3)该纪念品的当天销售利润有可能达到3700元吗?若能请求出此时的销售单价;若不能,请说明理由.24.(10分)如图1,AB=10,P是线段AB上的一个动点,分别以AP,BP为边,在AB的同侧构造菱形APEF和菱形PBCD,P,E,D三点在同一条直线上,连结FP,BD,设射线FE与射线BD交于G.(1)当G在点E的右侧时,求证:四边形FGBP是平形四边形;(2)连结DF,PG,当四边形DFPG恰为矩形时,求FG的长;(3)如图2,设∠ABC=120°,FE=2EG,记点A与C之间的距离为d,直接写出d 的所有值.参考答案与试题解析一、选择题(本題有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.B2.D3.C4.A5.B6.B 7.C8.A9.B10.D二、填空题(本题有8小题,每小题3分,共24分)11.x≥3.12.5.5 13.14.3 15.5 16.(120+4x)(40+2x)=7000.17.2.5 18.6.4三、解答题(本题有6小题,共46分)19.解:(1)原式=3﹣=2;(2)x2+6x=0,x(x+6)=0,x=0,x+6=0,x1=0,x2=﹣6.20.解:(1)甲班算术平均数:(83+88+90)÷3=87,乙班的算术平均数:(93+86+85)÷3=88,因此第一名是乙班,第二名是甲班,答:根据三项得分的平均数从高到低确定名次,乙班第一,甲班第二.(2)甲班的总评成绩:83×20%+88×30%+90×50%=88,乙班的总评成绩:93×20%=86×30%+85×50%=86.9∵88>86.9∴甲班高于乙班,答:两个班级的排名顺序发生变化,甲班第一,乙班第二.21.解:(1)如图甲所示:平行四边形ABCD即为所求;(2)如图乙所示:菱形ABCD即为所求.22.解:(1)当x=4时,y==4,∴点D的坐标为(4,4),∴BD=AB﹣AD=m﹣4.故答案为:m﹣4.(2)①过点P作PF⊥AB于点E,则PF=m﹣4,如图1所示.∵△PBD的面积比矩形OABC面积多8,∴BD•PF﹣OA•OC=8,即(m﹣4)2﹣4m=8,整理,得:m2﹣16m=0,解得:m1=0(舍去),m2=16.②过点P作PM⊥AB于点M,作PN⊥x轴于点N,如图2所示.∵∠DOM+∠MPE=90°,∠MPE+∠EPN=90°,∴∠DPM=∠EPN.在△DPM和△EPN中,,∴△DPM≌△EPN(AAS),∴PM=PN.∵点P在反比例函数y=(x>0)的图象上,∴点P的坐标为(m,),∴PM=m﹣4,PN=,∴m﹣4=,解得:m1=2+2,m2=2﹣2(舍去).∴若点E恰好落在x轴上时,m的值为2+2.23.解:(1)280﹣(45﹣40)×10=230(件).故答案为:230.(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,依题意,得:(x﹣30)[280﹣(x﹣40)×10]=2610,整理,得:x2﹣98x+2301=0,整理,得:x1=39(不合题意,舍去),x2=59.答:当该纪念品的销售单价为59元时,该产品的当天销售利润是2610元.(3)不能,理由如下:设该纪念品的销售单价为y元(y>40),则当天的销售量为[280﹣(y﹣40)×10]件,依题意,得:(y﹣30)[280﹣(y﹣40)×10]=3700,整理,得:y2﹣98y+2410=0.∵△=(﹣98)2﹣4×1×2410=﹣36<0,∴该方程无解,即该纪念品的当天销售利润不能达到3700元.24.证明:(1)∵四边形APEF是菱形∴AP∥EF,∠APF=∠EPF=∠APE,∵四边形PBCD是菱形∴PB∥CD,∠CDB=∠PDB=∠CDP∴∠APE=∠PDC∴∠FPE=∠BDP∴PF∥BD,且AP∥EF∴四边形四边形FGBP是平形四边形;(2)若四边形DFPG恰为矩形∴PD=FG,PE=DE,EF=EG,∴PD=2EF∵四边形APEF是菱形,四边形PBCD是菱形∴AP=EF,PB=PD∴PB=2EF=2AP,且AB=10∴PB==FG(3)如图,点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H,∵FE=2EG,∴PB=FG=3EG,EF=AP=2EG∵AB=10∴AP+PB=5EG=10∴EG=2,∴AP=4,PB=6=BC,∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=3,CH=BH=3∴AH=13∴AC===14若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H∵FE=2EG,∴PB=FG=EG,EF=AP=2EG∵AB=10,∴3EG=10∴EG=∴BP=BC=∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=,CH=BH=∴AH=∴AC==综上所述:d=14或。
浙教版八年级下学期期末考试数学试卷及答案一.仔细选一选(本题有10个小题,每小题3分,共30分)1.设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.82.小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考()A.众数B.平均数C.加权平均数D.中位数3.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个4.若平行四边形的一边长为5,则它的两条对角线长可以是()A.12和2 B.3和4 C.4和6 D.4和85.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.已知一元二次方程x2﹣8x+12=0的两个解恰好是等腰△ABC的底边长和腰长,则△ABC的周长为()A.14 B.10 C.11 D.14或107.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,B.a,C.a,D.a,8.给出下列命题:①要了解一批灯泡的使用寿命,应采用普查的方式;②我们知道若关于x的一元二次方程ax2+bx+c=0(a≠0)有一根是x=1,则a+b+c=0,那么如果9a+c=3b,则方程ax2+bx+c=0有一根为x=﹣3;③对角线相等且互相垂直的四边形是正方形;④点(x1,y1)和点(x2,y2)在反比例函数y=﹣的图象上,若x1<x2,则y1<y2.其中真命题有()A.1个B.2个C.3个D.4个9.小兰画了一个函数y=的图象如图,那么关于x的分式方程=2的解是()A.x=1 B.x=2 C.x=3 D.x=4(第9题) (第10题)10.如图,两个正方形ABCD和AEFG共顶点A,连BE,DG,CF,AE,BG,K,M分别为DG和CF的中点,KA的延长线交BE于H,MN⊥BE于N.则下列结论:①BG=DE且BG⊥DE;②△ADG和△ABE的面积相等;③BN=EN,④四边形AKMN为平行四边形.其中正确的是()A.③④B.①②③ C.①②④ D.①②③④二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.方程(x﹣1)(x+2)=2(x+2)的根是.12.如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,则平行四边形ABCD的周长是.(第12题) (第14题) (第15题)13.已知直线y=(a﹣2b)x与双曲线y=相交于点(,﹣2),那么它们的另一个交点坐标是.14.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需个五边形.15.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为.16.线段OA=2(O为坐标原点),点A在x轴的正半轴上.现将线段OA绕点O逆时针旋转α度,且0<α<90.①当α等于时,点A落在双曲线上;②在旋转过程中若点A能落在双曲线上,则k的取值范围是.三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.计算:(1)(+6﹣);(2)已知x﹣1=,求代数式(x+1)2﹣4(x+1)+4的值.18.如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6)(1)请直接写出这个平行四边形第四个顶点的坐标;(2)在△ABC中,试求出AB边上的高.19.(1)用反证法证明命题:“三角形的三个内角中,至少有一个内角大于或等于60°.先假设所求证的结论不成立,即;(2)写出命题“一次函数y=kx+b,若k>0,b>0,则它的图象不经过第二象限.”的逆命题,并判断逆命题的真假.若为真命题,请给予证明;若是假命题,请举反例说明.20.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.21.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF∥CE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.22.某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳x 2元的附加费,设月利润为w 外(元).(1)当x =1000时,y = 元/件,w 内= 元; (2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值.23.如图1所示,已知y =(x >0)图象上一点P ,PA ⊥x 轴于点A (a ,0),点B (0,b )(b >0),动点M 是y 轴正半轴点B 上方的点,动点N 在射线AP 上,过点B 作AB 的垂线,交射线AP 于点D ,交直线MN 于点Q ,连接AQ ,取AQ 中点为C .(1)如图2,连接BP ,求△PAB 的面积;(2)当Q 在线段BD 上时,若四边形BQNC 是菱形,面积为2,①求此时Q 、P 点的坐标;②并求出此时在y轴上找到点E 点,使|EQ ﹣QP |值最大时的点E 坐标.参考答案一.仔细选一选1.解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.2.解:由于众数是数据中出现次数最多的数,故应重点参考众数.故选A.3.解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选D.4.解:如图,过点C作CF∥BD,交AB延长线于点F,∴四边形BFCD为平行四边形,∴CF=BD,∴在△AFC中:AC﹣CF<AF<AC+CF,即AC﹣BD<2AB<AC+BD,∵AB=5,∴选项中只有D中的数据能满足此关系:8﹣4=4<5×2<8+4=12,故选D.5.已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD 是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.6.解:方程x2﹣8x+12=0,因式分解得:(x﹣2)(x﹣6)=0,解得:x=2或x=6,若2为腰,6为底,2+2<6,不能构成三角形;若2为底,6为腰,周长为2+6+6=14.故选:A.7.解:由平均数定义可知:(a1+a2+a3+0+a4+a5)=×5a=a;将这组数据按从小到大排列为0,a5,a4,a3,a2,a1;由于有偶数个数,取最中间两个数的平均数.∴其中位数为.故选C.8.解:①要了解一批灯泡的使用寿命,应采用抽查的方式,故错误,为假命题;②根据题意知,当x=﹣3时,9a﹣3b+c=0,∴9a+c=3b,∴x=﹣3满足方程ax2+bx+c=0,∴方程ax2+bx+c=0的另一根是x=﹣3,正确,为真命题;③对角线相等且互相垂直的平行四边形是正方形,故错误,是假命题;④∵k=﹣<0,∴反比例函数y=﹣在每个象限内y随着x的增大而增大,∴若x1<x2,则y1<y2错误,为假命题;故选A.9.解:由图可知当x=3时,y=0,即=0,解得a=3,当=2时,解得x=1.故选A.10.解:由两个正方形的性质易证△AED≌△AGB,∴BG=DE,∠ADE=∠ABG,∴可得BG与DE相交的角为90°,∴BG⊥DE.①正确;如图,延长AK,使AK=KQ,连接DQ、QG,∴四边形ADQG是平行四边形;作CW⊥BE于点W,FJ⊥BE于点J,∴四边形CWJF是直角梯形;∵AB=DA,AE=DQ,∠BAE=∠ADQ,∴△ABE≌△DAQ,∴∠ABE=∠DAQ,∴∠ABE+∠BAH=∠DAQ+∠BAH=90°.∴△ABH是直角三角形.易证:△CWB≌△BHA,△EJF≌△AHE;∴WB=AH,AH=EJ,∴WB=EJ,又WN=NJ,∴WN﹣WB=NJ﹣EJ,∴BN=NE,③正确;∵MN是梯形WGFC的中位线,WB=BE=BH+HE,∴MN=(CW+FJ)=WC=(BH+HE)=BE;易证:△ABE≌△DAQ(SAS),∴AK=AQ=BE,∴MN∥AK且MN=AK;四边形AKMN为平行四边形,④正确.S△ABE=S△ADQ=S△ADG=S▱ADQG.,②正确所以,①②③④都正确;故选D.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.解:(x﹣1)(x+2)﹣2(x+2)=0(x+2)(x﹣1﹣2)=0(x+2)(x﹣3)=0x+2=0或x﹣3=0∴x1=﹣2,x2=3.故答案是:x1=﹣2,x2=3.12.解:∵AD∥BC,∴∠AEB=∠EBC,∵∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∵E是AD边上的中点,∴AD=2AB,∵AB=2,∴AD=4,∴平行四边形ABCD的周长=2(4+2)=12.故答案为:12.13.解:∵直线y=(a﹣2b)x与双曲线y=,相交于点(,﹣2),∴a﹣2b==﹣3,xy=3b+a=﹣∴直线为y=﹣3x.双曲线为y=﹣.解方程组:,解得:,.∴另一个交点为(﹣,2).故答案为:(﹣,2).14.解:延长正五边形的相邻两边,交于圆心,∵正五边形的外角等于360°÷5=72°,∴延长正五边形的相邻两边围成的角的度数为:180°﹣72°﹣72°=36°,∴360°÷36°=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故答案为:7.15.解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,故四边形BDFG的周长=4GF=20.故答案为:20.16.解:①∵点A落在双曲线上,∴设A点横坐标为x,纵坐标为,根据勾股定理得,x2+()2=4,解得,x=1或x=.则A点坐标为(1,)或(,1).∴sinA=或sinA=,∴∠A=60°或∠A=30°;②如图当OA为第一象限的角平分线的时候,A点坐标为(,).k=×=2;则k的取值范围是0<k≤2.三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.解:(1)原式=(2+﹣4)=×(﹣)=﹣;(2)原式=[(x+1)﹣2]2=(x+1)2,当x﹣1=时,原式=()2=3.18.解:(1)BC为对角线时,第四个点坐标为(7,7);AB为对角线时,第四个点为(5,1);当AC为对角线时,第四个点坐标为(1,5).(2)∵S△ABC=×AB×h=3×3﹣(1×3+1×3+2×2)=4,AB==,∴h=.19.解:(1)用反证法证明命题:“三角形的三个内角中,至少有一个内角大于或等于60°.先假设所求证的结论不成立,即三角形内角中全都小于60°;故答案为:三角形内角中全都小于60°;(2)逆命题:“一次函数y=kx+b的图象不经过第二象限,则k>0,b>0,”逆命题为假命题,反例:当b=0时,一次函数图象也不过第二象限(不唯一).20.解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得××(x+4)=×|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).21.(1)证明:∵DE垂直平分BC,∴∠EDB=90°,∴DE∥AC,即FE∥AC,∵AF∥CE,∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF是菱形.理由:∵DE垂直平分BC,∴BE=EC,∴∠B=∠BCE,∵∠B=30°,∴∠BCE=30°,∴∠AEC=∠B+∠BCE=30°+30°=60°.∵∠BCA=90°∴∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACE是等边三角形,∴AC=E C.∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.22.解:(1)∵销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,∴当x=1000时,y=﹣10+150=140,w=x(y﹣20)﹣62500=1000×120﹣62500=57500,内故答案为:140,57500.(2)根据题意得出:w=x(y﹣20)﹣62500=x2+130x﹣62500,内=x2+(150﹣a)x.w外最大,(3)当x==6500时,w内∵在国外销售月利润的最大值与在国内销售月利润的最大值相同,∴由题意得:,解得a1=30,a2=270(不合题意,舍去).所以a=30.23.解:(1)如图2,连接OP.S△PAB=S△PAO=xy=×6=3;(2)①如图1,∵四边形BQNC是菱形,∴BQ=BC=NQ,∠BQC=∠NQC,∵AB⊥BQ,C是AQ的中点,∴BC=CQ=AQ,∴∠BQC=60°,∠BAQ=30°,在△ABQ和△ANQ中,,∴△ABQ≌△ANQ(SAS),∴∠BAQ=∠NAQ=30°,∴∠BAO=30°,∵S=2=×CQ×BN,菱形BQNC令CQ=2t=BQ,则BN=2×(2t×)=2t,∴t=1∴BQ=2,∵在Rt△AQB中,∠BAQ=30°,∴AB=BQ=2,∵∠BAO=30°∴OA=AB=3,又∵P点在反比例函数y=的图象上,∴P点坐标为(3,2),∵△ABQ≌△ANQ,∴∠ANQ=∠ABQ=90°,AN=AB=2,∴MN∥OA,∴∠BMQ=90°,∵∠BAO=30°,∠AOB=90°,∴∠ABO=60°,∴∠MBQ=30°,∴MQ=BQ=×2=1,∵OM=AN=2,∴Q(1,2);②如图3,作直线PQ,交y轴于E点,此时|EQ﹣QP|值最大;设直线PQ的解析式为y=kx+b,∵P(3,2),Q(1,2),∴,解得,∴直线PQ的解析式为y=(1﹣)x+3﹣1,令x=0,则y=3﹣1,∴E(0,3﹣1).。
2013—2014学年八年级数学科第二学期期末检测题班别: 姓名: 评价:一、 填空题。
(每小题4分,共32分)1、当x_______时,分式2-xx 2+1 的值为负数。
2、当x=_______时,分式x 3与x-62的值互为相反数。
3、已知反比例函数y=xm 5-的图象分布在第二、四象限内,则m 的取值范围是______。
4、已知y 与x 成反比例,且当x=3时,y=-6;则当y=3时,x= ______。
5、在△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,AB=8,则BC=______ 。
6、如图,矩形ABCD 的对角线AC 、BD 交于点O ,∠AOD=120°,AB+AC=15cm ,则BD=______ cm 。
7、如图,在直角梯形中,底AD=6 cm ,BC=11 cm ,腰CD=12 cm ,则这个直角梯形的周长为______cm 。
8、数据11,9,7,10,14,7,6,5的中位数是______ ,众数是______。
二、 选择题。
(每小题5分,共40分)9、若分式 x 2-9x-3 的值为零,则x 的值是 ( )A 、3B 、-3C 、±3D 、0110、人的头发的直径约为0.00007m ,用科学记数法表示这长度时,正确的是( )A 、0.7×10-5mB 、0.7×10-6mC 、7×10-5mD 、7×10-6m11、当路程s 一定时,速度v 与时间t 之间的函数关系是 ( )A 、正比例函数B 、反比例函数C 、一次函数D 、函数关系不能确定12、已知函数y=x1( x >0),则 ( )A 、函数在第一象限内,且y 随x 的增大而减小B 、函数在第一象限内,且y 随x 的增大而增大C 、函数在第二象限内,且y 随x 的增大而减小D 、函数在第二象限内,且y 随x 的增大而增大13、在△ABC 中,已知AC=6,AB=8,BC=10,则 ( )A 、∠A=90°B 、∠B=90°C 、∠C=90°D 、∠B=∠C14ABCD 中,∠C=108°,点E 在ADAE=CD ,则∠ABE= ( )A 、18°B 、36°C 、72°D 、108°15、用二块边长为a 的等边三角形纸片拼成的四边形是 ( )A 、菱形B 、矩形C 、正方形D 、等腰梯形16、下列各组数据中,方差是2的是 ( )A 、101,98,102,100,99B 、101,101,102,102,99C 、100,100,99,98,98D 、103,101,97,99,1002三、 解答题。
杭州市公益中学2014-2015学年第二学期期末考试八年级数学试题一、选择1、下列二次根式:222,2,5.0,31,5y x b a a +-中,是最简二次根式的有( ) A 、2个 B 、3个 C 、4个 D 、5个2、用配方法解方程0222=--x x ,下列变形正确的是( )A 、()212=-xB 、()222=-xC 、()312=-xD 、()322=-x 3、已知实数b a ,分别满足046,04622=+-=+-b b a a ,且b a ≠,则22b a +的值为( )A 、36B 、50C 、28D 、254、小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求。
根据他的作图方法可知四边形ADBC 一定是( )A 、矩形B 、菱形C 、正方形D 、平行四边形5、已知点()()2211,,,y x B y x A 是反比例函数)0(>=k xk y 图象上的两点,若210x x <<,则有( ) A 、210y y << B 、120y y << C 、021<<y y D 、012<<y y6、如图,E 是矩形ABCD 内的一个动点,连接EA 、EB 、EC 、ED ,得到△EAB 、△EBC 、△ECD 、△EDA ,设它们的面积分别是m 、n 、p 、q ,给出如下结论:上。
点一定在,则)若(的交点;与点一定是,则若BD E n m BD AC E n m q n p m p q n m ====++=+4)3(;)2(;)1(其中正确的结论的序号是( ) 第6题图A 、(1)(3)B 、(2)(4)C 、(1)(2)(3)D 、(2)(3)(4)7、如图,矩形ABCD 的边分别与两坐标轴平行,对角线AC 经过坐标原 点,点D 在反比例函数)0(1052>=-=x xk k y 的图象上。
浙教版八年级数学(下)期末测试卷一、选择题(本题有10小题,每小题3分,共30分)1.二次根式a+3中,字母a的取值范围是()(A)a>-3 (B)a≥-3 (C)a>3 (D)a≥32.在下列关于平行四边形的各命题中,假命题是()(A)平行四边形的对边相等(B)平行四边形的对角相等(C)平行四边形的对角线互相平分(D)平行四边形的对角线互相垂直3.一元二次方程x2-4x-6=0,经过配方可变形为())(A)(x-2)2=10 (B)(x-2)2=6 (C)(x-4)2=6 (D)(x-2)2=24.在下列图形中,中心对称图形是()(A)等边三角形(B)平行四边形(C)等腰梯形(D)正五边形5若是一个完全平方式。
则的值是:----------------------------()A 6BCD 以上都不对6.下列计算正确的是()(A)3+2= 5 (B)3-2=1 (C)32-8= 2 (D)3+3=3 37.一幅平面图案,在某个顶点处由四个正多边形镶嵌而成,其中的三个分别为正三角形、正方形、正六边形,那么另外一个为()¥(A)正三角形(B)正方形(C)正五边形(D)正六边形8.将50个数据分成五组,编成组号为①~⑤的五个组,频数颁布如下表:组号①②③④⑤:频数8 10 ■14 11那么第③组的频率为()(A)14 (B)7 (C)(D)#9.如图,已知矩形ABCD的对角线AC的长为10cm,连结各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()(A)20cm (B)202cm(C)203cm (D)25cm10.如图,梯形ABCD中,AD∥BC,AB=CD,AD=5,BC=8.将腰DC绕点D逆时针方向旋转90º至DE,连结AE,则△ADE的面积为()(A )4 (B )154(C )152(D )20二、填空题(本题有10小题,每小题3分,共30分) !11.数据10,5,12,7的极差为__________. 12.五边形的内角和等于__________. 13.方程2x 2=6的解是__________.14.如图,四边形ABCD 是周长为20cm 的菱形,点A 的坐标是(4,0),则点B 的坐标为__________.15.在□ABCD 中,若给出四个条件:①AB =BC ,②∠BAD =90º,③AC ⊥BD ,④AC =BD .其中选择两个可推出四边形ABCD 是正方形,你认为这两个条件是__________.(填序号,只需填一组) 16.写出命题“矩形的对角线互相平分且相等”的逆命题______________________________. 17.数a 、b 在数轴上的位置如图: 则a2-(a -b)2=__________.18.如图,□ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC边于点E ,则线段EC 的长度为__________.19.已知关于x 的一元二次方程(m +2)x 2+mx +m 2-4=0有一个根是0,则m =__________.20.设a ,b 是一个直角三角形两条直角边的长,且(a 2+b 2)(a 2+b 2+1)=12,则这个直角三角形的斜边长为__________.!三、解答题(本题有6小题,共40分) 21.(6分)(1)解方程:x 2+2x -3=0; (2)计算:27÷3-8×32. >22. (8分)某地区为了增强市民的法制意识, 抽调了一部分市民进行了一次知识竞赛,竞赛 成绩(得分取整数)进行了整理后分5组, 并绘制了频数分布直方图,请结合右图提供 的信息,解答下列问题: ①抽取多少人参加竞赛 ②到这一分数段的频数和 频率分别是多少 ;-2,-10 1 2 3③这次竞赛成绩的中位数落在哪个分数段内④根据频数分布直方图,请你提出一个问题,并回答你所提出的问题。
2014学年八年级数学(下册)质量检测卷(2014.6 )温馨提醒:1、本试卷分试题卷和答题卷,答案做在答题卷上。
2、本试卷共三大题,24小题,共120分,考试时间120分钟一、选择题(本题共有10小题,每小题3分,共30分,请将正确的选项写在答题纸上.)3. 下列命题中,正确的是 ()4. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x ,那么x 满足的方程是()p1EanqFDPwA • 50(1 x )2 =182B • 50 50(1 x ) 50(1 x )= 182 2C • 50(1 x ) 50(1 x ) =182D . 50 50(1 x ) =1825. 下面这几个车标中,是中心对称图形而不是轴对称图形的共有(8•在平面直角坐标系中,将抛物线式是()5PCzVD7HxAy=x 2先向右平移2个单位,再向上平移 2个单位,得到的抛物线的解析2 A. y=(x+2) +22C.y=(x-2) +22B.y=(x-2) -2D.y=(x+2)2-2 9 •已知点A 与点B 关于原点对称•若点 A 的坐标为(一1,a ),点B 的坐标为(b ,3),则a b =( )A • x w 2B • x > 2C • x > 2)2•卜列方程是 元二次方程的是(2A • x -2y =11B • — 1=2xC • x 2 -2 =0D • X M 2b5E2RGbCAPD • 3x 1 = 2 — xA •对角线相等的四边形是矩形B •对角线互相平分的四边形是平行四边形C •对角线互相垂直的四边形是菱形D •对角线互相垂直且相等的四边形是正方形A • 1个 若三角形的边长为A • 6B • 6.53、 B • 2 个C • 3 个D • 4 个 DXDiTa9E3d4、5,那么连结各边中点所成的三角形的周长为( )C • 7D . 8将一张正方形纸片,按如图步骤①,②, 沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( )RTCrpUDGiT卜~zlrI—-7— 1 •代数式、、x-2有意义,则x 的取值范围是(①③(C) (D)A . — 310 .如图①,在矩形 的路程为x , △ ABP 的面积为y ,如果y 关于x 的函数图象如图②所示,则在此运动过程中点 最大距离为( B . 3 C . — 1 D . 1ABCD 中,动点P 从点B 出发,沿 B ~C T D T A 方向运动至点 A 处停止.设点 P 与点P 运动 A 间的 jLBHrnAlLg图① (第 二、填空题(本题共有 6小题,11.已知一个多边形的内角和等于12 .用反证法证明“若丨 B.D . . 41 XHAQX74J0X每小题4分,共24分,请将答案写在答题纸上 .)900,则这个多边形的边数是a |工|b |,则a 我”时,应假设 ______ 13 如图,在四边形 ABCD 中,已知AB=CD ,再添加一个条件 _______________ 边形ABCD 是平行四边形•(图形中不再添加辅助线) Zzz6ZB2Ltk14 .如图,点A 、B 是双曲线y=?上的点,分别经过 A 、B 两点向x 轴、 x ___ . LDAYtRyKfE(写出一个即可) ,则四y 轴作垂线段,若S 阴影=1,则S i S2 ~ 做第二个菱形 AAB,C 2 D 2,使• B^60 ;作 AD 3 _B (C 2 于点 D 3,以 AD 3 为一边做第三个菱形 AB 3C 3D 3,使• B^ = 60 ; .... 依此类推,第n 个菱形A^C n D n 的边AD n 的长是.rqyn14ZNXI2014学年八年级数学(下册)质量检测答题卷(2014.6 ) EmxvxOtOco选择题 二、填空题 11. ______ 14. _____________ SixE2yXPq5 15. ___________________12. _________ 16. ________13. ___________三、 解答题(本题共有 8小题,共66分,请将答案写在答题纸上,务必写出解答过程 17.计算(本题6分)(1)( 2) 2、一2-3.3 3.3 2,218 .解方程(6分)2(1) 4x -4x 1 =02(2) x 2x T = 019.(本题8分)商场某种商品平均每天可销售 30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价 1元,商场平均每天可多售出2件•设每件商品降价x 元.据此规律,请回答:6ewMyirQFL(1) 商场日销售量增加 ________ 件,每件商品盈利 ___________ 元(用含x 的代数式表示);kavU42VRUs (2) 在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?20. (本题8分)如图,0是矩形ABCD的对角线的交点. 作ED // AC, CE // BD , DE, CE 相交于点E.求证:四边形OCED是菱形.C221. (本小题满分8分)已知关于x的一元二次方程x r x^m-I^O .(1)当m的值为、,17 1时,请利用求根公式判断此方程的解的情况;(2)请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根,并说明理由。
一、选择题1.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C .这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩 2.有一组数据:1,1,1,1,m .若这组数据的方差是0,则m 为( ) A .4-B .1-C .0D .13.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖): 组员 甲乙丙丁戊平均成绩众数得分81 77 80 82 80A .80,80B .81,80C .80,2D .81,24.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( ) A .平均数B .方差C .众数D .中位数5.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( ) A .12y y >B .12y y =C .12y y <D .不确定6.如图,在矩形ABCD 中,3AB =,4BC =,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,ADP △的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C.D.7.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.8.在数轴上,点A表示-2,点B表示4.,P Q为数轴上两点,点Р从点A出发以每秒1个单位长度的速度向左运动,同时点Q从点B出发以每秒2个单位长度的速度向左运动,点Q到达原点О后,立即以原来的速度返回,当点Q回到点B时,点Р与点Q同时停止运动.设点Р运动的时间为x秒,点Р与点Q之间的距离为y个单位长度,则下列图像中表示y与x的函数关系的是()A.B.C .D .9.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠10.若二次根式1x -有意义,则x 的取值范围是( ) A .x <1B .x >1C .x≥1D .x≤111.如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为( )A .26B .29C .2243D .125312.若实数m 、n 满足|m ﹣4n -0,且m 、n 恰好是Rt ABC 的两条边长,则ABC 的周长是( )A .5B .57C .12D .12或7二、填空题13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.14.已知一组数据a ,b ,c 的方差为2,那么数据a +3,b +3,c +3的方差是_____.15.如图,正方形ABCD,CEFG边在x轴的正半轴上,顶点A,E在直线12 y x =上,如果正方形ABCD边长是1,那么点F的坐标是______.16.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3...在直线l上,点B1,B2,B3..在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3...,依次均为等腰直角三角形,直角顶点都在x轴上,则第2021个等腰直角三角形A2021B2020B2021顶点B2021的横坐标为__________.17.如图,正方形ABCD中,5AD=,点E、F是正方形ABCD内的两点,且4AE FC==,3BE DF==,则EF的平方为________.18.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若1DE=,则BF的长为__________.19.222233+=333388+=4441515+= (77)a ab b+(a、b均为实数)则=a__________,=b__________.20.如图所示的网格是正方形网格,则CBD ABC∠+∠=______°(点A,B,C,D是网格线交点)三、解答题21.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________; (3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.22.今年5月12日是我国第11个全国防灾减灾日,重庆某中学为普及推广全民防灾减灾知识和避灾自救技能,开展了“提高灾害防治能力,构筑生命安全防线”知识竞赛活动.初一、初二年级各500人,为了调查竞赛情况,学校进行了抽样调查,过程如下,请根据表格回答问题. 收集数据:从初一、初二年级各抽取20名同学的测试成绩(单位:分),记录如下:初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89 整理数据: 表一 分数段 70x <7080x ≤< 8090x ≤< 90100x ≤≤初一人数 1 mn12 初二人数22412分析数据: 表二 种类 平均数 中位数 众数方差 初一 90.5 91.5y84.75 初二90.5x100123.05得出结论:(1)在表中:m =_______,n =_______,x =_______,y =_______; (2)得分情况较稳定的是___________(填初一或初二);(3)估计该校初一、初二年级学生本次测试成绩中可以得满分的人数共有多少人? 23.小慧家与文具店相距960m ,小慧从家出发,沿笔直的公路匀速步行12min 来到文具店买笔记本,停留3min ,因家中有事,便沿原路匀速跑步6min 返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y 与时间x 的函数图象; (3)根据图象回答,小慧从家出发后多少分钟离家距离为480m ?24.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,点M ,N 分别为OA 、OC 的中点,延长BM 至点E ,使EM BM =,连接DE .(1)求证:AMB CND △≌△;(2)若2BD AB =,且3AM =,4DN =,求四边形DEMN 的面积. 25.计算:(183(26)27+(2)11513(1)(0.5) 2674⨯-÷;(3)5 2311x yx y+=⎧⎨+=⎩;(4)4(2)153123x yy x+=-⎧⎪+⎨=-⎪⎩.26.亲爱的同学们,在全等三角形中,我们见识了很多线段关系的论证题,下面请你用本阶段所学知识,分别完成下列题目.(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.容易证明△ACD≌△BCE,则①∠AEB的度数为;②直接写出AE、BE、CM之间的数量关系:(3)如图3,△ABC中,若∠A=90°,D为BC的中点,DE⊥DF交AB、AC于E、F,求证:BE2+CF2=EF2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.2.D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.3.A解析:A【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【详解】根据题意得:805(81778082)80⨯-+++=(分),则丙的得分是80分;众数是80,故选A.【点睛】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.4.B解析:B 【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定. 【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B. 【点睛】考核知识点:均数、众数、中位数、方差的意义.5.A解析:A 【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案. 【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0,∴12y y >, 故选A . 【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键.6.D解析:D 【分析】分别求出04x ≤≤、47x <<时函数表达式,即可求解. 【详解】解:由题意当04x ≤≤时,如题图,1134622y AD AB =⨯⨯=⨯⨯=, 当47x <<时,如下图,11(7)414222y PD AD x x =⨯⨯=⨯-⨯=-.故选:D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.7.B解析:B【分析】根据一次函数y=kx+b的图象经过第一、二、四象限,可以得到k和b的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k中b,-k的正负,从而得到图象经过哪几个象限,从而可以解答本题.【详解】解:∵一次函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴b>0,-k>0,∴一次函数y=bx-k图象第一、二、三象限,故选:B.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.8.B解析:B【分析】数轴上两点之间的距离等于靠近右边点对应的数值减去左边点对应的数值,这是计算的基础;其次,要学会分段分析,分0≤<x≤2和2<x≤4求解,用x表示点P表示的数为-2-x,点Q表示的数为4-2x或2x-4,具体计算画图即可.【详解】∵A表示-2,B表示4,∴BA=4-(-2)=6,∴当x=0时,PQ=AB=6;∵OB=4个单位,点Q的速度是2个单位/s,∴Q运动到原点的时间为4÷2=2(s),∴当0<x≤2时,点P表示的数为-2-x,点Q表示的数为4-2x,∴PQ=4-2x-(-2-x)=6-x,∴当x=2时,y=6-2=4,∴当2<x≤4时,点Q从返回运动,点P表示的数为-2-x,点Q表示的数为2x-4,∴PQ=2x-4-(-2-x)=3x-2,∴当x=4时,y=12-2=10,只有B图像与上面的分析一致,故选B.【点睛】本题考查了数轴上两点之间的距离,数轴上的点与表示的数的关系,路程,速度和时间的关系,根据时间的大小,正确分类表示动线段PQ的长度是解题的关键.9.D解析:D【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.【详解】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵BD=DE,∴四边形DBFE是菱形.其余选项均无法判断四边形DBFE是菱形,故选:D.【点睛】本题考查菱形的判定、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.10.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案.【详解】∵∴x−1≥0,解得:x≥1.故选:C.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.11.A解析:A【分析】由题意可得对角线EF⊥AD,且EF与平行四边形的高相等,进而利用面积与边的关系求出BC边的高即可.【详解】解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120,∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A.【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.12.D解析:D【分析】根据非负数的性质分别求出m、n,分4是直角边、4是斜边两种情况,根据勾股定理、三角形的周长公式计算,得到答案.【详解】∵|m﹣4n-0,∴|m﹣3|=04n-0,∴m﹣3=0,n﹣4=0,解得,m=3,n=4,当42234+5,则△ABC的周长=3+4+5=12,当42243-7,则△ABC的周长=7=7,故选:D.【点睛】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.二、填空题13.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个 解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.2【分析】根据数据abc 的方差为2由方差为2可得出数据a+3b+3c+3的方差【详解】解:∵数据abc 的方差为2设平均数为m 则则数据a+3b+3c+3的平均数是m+3∴方差为:故答案为:2【点睛】本解析:2【分析】根据数据a ,b ,c 的方差为2,由方差为2可得出数据a+3,b+3,c+3的方差.【详解】解:∵数据a ,b ,c 的方差为2,设平均数为m , 则2222()()()23a mb mc m S -+-+-==, 则数据a +3,b +3,c +3的平均数是m+3, ∴方差为:2222(33)(33)(33)3a m b m c m S +--++--++--=222()()()23a mb mc m -+-+-==, 故答案为:2.【点睛】本题考查的是方差,熟记方差的定义是解答此题的关键.15.【分析】令y =1可得x =2即点A (21)根据正方形的性质可得点E 的横坐标待入解析式即可求得点E 的纵坐标继而根据正方形的性质可得点F 的坐标【详解】∵正方形边在轴的正半轴上∴AB =BC =CD =AD =1C 解析:93,22⎛⎫ ⎪⎝⎭【分析】令y =1可得x =2,即点A (2,1)根据正方形的性质可得点E 的横坐标,待入解析式即可求得点E 的纵坐标,继而根据正方形的性质可得点F 的坐标.【详解】∵正方形ABCD ,CEFG 边在x 轴的正半轴上,∴AB =BC =CD =AD =1,CE =CG =EF =GF ,AB 、CD 、CE 、FG ⊥x 轴,∵顶点A ,E 在直线12y x =令y =1,则x =2∴点A (2,1)∴点E 的横坐标为3将x =3代入直线12y x =,得32y = ∴点E 、F 的纵坐标是32 即32CE FG EF === ∴点F 的横坐标为39322+= 即点F (92,32) 故答案为:(92,32) 【点睛】本题考查一次函数的应用,涉及到正方形的性质、点的坐标,解题的关键是熟练掌握正方形的性质求得点A 、E 的坐标.16.【分析】先求出…的横坐标探究总结得到即可根据规律解决问题【详解】解:探究规律:令则令则∴∴…发现并总结规律:∴运用规律:当时故答案为【点睛】本题考查规律型:点的坐标等腰直角三角形的性质等知识解题的关 解析:202222-【分析】先求出123,,B B B …的横坐标,探究总结得到122,n n B x +=-,即可根据规律解决问题.【详解】解:探究规律: :2,l y x =+令0,x = 则2,y =()10,2,A ∴令0,y = 则2,x =-()2,0,A ∴-12,OA OA ∴==∴11121223232,4,8,OB OA B B B A B A B B ======∴12222,B x ==- 23622,B x ==-341422,B x ==-…,发现并总结规律:∴122,n n B x +=-运用规律:当2021n =时,202120222 2.B x ∴=-故答案为20222 2.-【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.17.2【分析】延长BE 交CF 于G 再根据全等三角形的判定得出△BCG 与△ABE 全等得出AE=BG=4由BE=3得出EG=1同理得出GF=1再根据勾股定理得出EF 的平方【详解】解:延长BE 交CF 于G 如图:∵解析:2【分析】延长BE 交CF 于G ,再根据全等三角形的判定得出△BCG 与△ABE 全等,得出AE=BG=4,由BE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF 的平方.【详解】解:延长BE 交CF 于G ,如图:∵AB=5,AE=4,BE=3,222345+=,∴△ABE 是直角三角形,∴同理可得△DFC 是直角三角形,在Rt △ABE 和Rt △CDF 中,543AB CD AE CF BE DF ==⎧⎪==⎨⎪==⎩,∴Rt △ABE ≅Rt △CDF ,∴∠1=∠5,∵四边形ABCD 是正方形,∴∠ABC=∠BCD=90︒,∴∠4+∠5=90︒,∠4+∠3=90︒,∠1+∠2=90︒,∴∠3=∠5,∠4=∠2,在△CBG 和△BAE 中,3524AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CBG ≌△BAE (ASA ),∴AE=BG=4,CG=BE=3,∴EG=4-3=1,同理可得:GF=1,∴EF 2=EG 2+GF 2=2,故答案为:2.【点睛】本题考查了正方形的性质及全等三角形的判定与性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.18.【分析】连接FE 根据题意得CD=2AE=设BF=x 则FG=xCF=2-x 在Rt △GEF 中利用勾股定理可得EF2=(-2)2+x2在Rt △FCE 中利用勾股定理可得EF2=(2-x )2+12从而得到关于 51【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.748【分析】利用已知条件找出规律写出结果即可【详解】解:∵⋯⋯∴⋯⋯∴故答案为:748【点睛】本题考查归纳推理考查对于所给的式子的理解主要看清楚式子中的项与项的数目与式子的个数之间的关系本题是一个解析:7, 48【分析】利用已知条件,找出规律,写出结果即可.【详解】解:∵=== ⋯⋯,∴====== ⋯⋯,==∴7a =,27148b =-=,故答案为:7,48【点睛】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.20.45【分析】做线段BA 关于BC 的对称线段BE 连接DE 先证明再证明△BDE 为等腰直角三角形得到∠DBE=45°问题得证【详解】解:如图做线段BA 关于BC 的对称线段BE 连接DE 则∠ABC=∠EBC ∴根据解析:45【分析】做线段BA 关于BC 的对称线段BE ,连接DE ,先证明CBD ABC DBE ∠+∠=∠,再证明△BDE 为等腰直角三角形,得到∠DBE=45°,问题得证.【详解】解:如图,做线段BA 关于BC 的对称线段BE ,连接DE ,则∠ABC=∠EBC ,∴CBD ABC CBD EBC DBE ∠+∠=∠+∠=∠,根据勾股定理得BD ==BE ==,DE ,∴BE=DE ,222=26=BE DE BD +∴∠BED=90°,∴△BDE 为等腰直角三角形,∴∠DBE=45°,∴45CBD ABC ∠+∠=︒.故答案为:45【点睛】本题考查了勾股定理及其逆定理在网格中应用,根据题意作出线段BA 关于BC 的对称线段BE 是解题关键.三、解答题21.(1)40;(2)30元,50元;(3)50500元.【分析】(1)根据条形统计图的信息把计划购买课外书的不同费用的人数相加计算即可; (2)根据众数的定义,中位数的定义,逐一进行求解即可;(3)先根据条形统计图展现的数据,计算样本中每个学生平均花费,再用全校总人数×每个学生平均花费,即可估算全校购买课外书的总花费.【详解】解:(1)6121084=40++++(2)购买30元课外书的人数最多,所以这次抽样的众数是30元;购买课外书排第20,第21的费用均为50元,所以这次抽样的中位数是50元; (3)样本中平均每个学生的费用是620123010508804100=50.56121084⨯+⨯+⨯+⨯+⨯++++(元) 因此该校1000学生购买课外书的总花费约为100050.5=50500⨯(元)答:该校本学期计划购买课外书的总花费约为50500元.【点睛】本题主要考查抽样调查中样本容量,众数,中位数的定义及由样本数据估算总体数量的知识.22.(1)2,5,93,98;(2)初一;(3)225【分析】(1)根据给出的初一20名同学测试成绩,成绩在7080x ≤<范围内的共有2名,可知m 值,成绩在8090x ≤<范围内的有5名,可得n 值,再根据中位数、众数的定义即可得出x、y;(2)判断哪个年级得分情况较稳定,根据方差的意义即可得出答案;(3)先求出各年级满分的人数所占的百分比,用该校各年级的总人数分别乘以得满分的人数所占的百分比,即可得出答案.【详解】(1)根据给出的数据可得:∵成绩在7080x≤<范围内的共有2名,∴m=2∵成绩在8090x≤<范围内的有5名,∴n=5把初二成绩从小到大排列,则中位数x=92942+=93,∵初一成绩中出现次数最多的是98∴y=98;故答案为:2,5,93,98;(2)∵根据表二可得初一的方差是84.75,初二的方差是123.05∴初一的方差小于初二的方差∴得分情况较稳定的是初一故答案为:初一(3)根据20名初一同学测试成绩,取得100分的同学有3个,占3 20根据20名初二同学测试成绩,取得100分的同学有6个,占6 20则该校初一、初二年级学生本次测试成绩中可以得满分的人数共有:500×320+500×620=225(人)该校初一、初二年级学生本次测试成绩中可以得满分的人数共有225人.故答案为:225【点睛】本题考查了中位数、众数的定义,已知一组数求中位数和众数;考查了方差的意义,在考虑稳定性时,利用方差来判断;会用样本估算总体.23.(1)80m/min;(2)答案见解析;(3)6分钟或18分钟.【分析】()1根据速度=路程/时间的关系,列出等式96096080(m/min)612-=即可求解;()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后6分钟或18分钟离家距离为480m.【详解】解:(1)由题意可得:96096080(m/min)612-= 答:小慧返回家中的速度比去文具店的速度快80m/min(2)如图所示:(3)根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为480m .【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.24.(1)见解析;(2)24【分析】(1)依据平行四边形的性质,即可得到△AMB ≌△CND ;(2)依据全等三角形的性质,即可得出四边形DEMN 是平行四边形,再根据等腰三角形的性质,即可得到∠EMN 是直角,进而得到四边形DEMN 是矩形,即可得出四边形DEMN 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,OA OC =,∴BAC DCA ∠=∠,又点M ,N 分别为OA 、OC 的中点, ∴1122===AM AO CO CN , 在AMB 和CND △中, AB CD BAC DCA AM CN =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△CND(SAS)(2)∵△AMB ≌△CND ,∴BM=DN ,∠ABM=∠CDN ,又∵BM=EM ,∴DN=EM ,∵AB ∥CD ,∴∠ABO=∠CDO ,∴∠MBO=∠NDO ,∴ME∥DN,∴四边形DEMN是平行四边形,∵BD=2AB,BD=2BO,∴AB=OB,又∵M是AO的中点,∴BM⊥AO,∴∠EMN=90°,∴四边形DEMN是矩形,∵AM=3,DN=4,∴AM=MO=3,DN=BM=4,∴MN=6,∴矩形DEMN的面积=6×4=24.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及矩形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.(1;(2;(3)41xy=⎧⎨=⎩;(4)31xy=-⎧⎨=⎩【分析】(1)先进行二次根式的乘法运算,然后化简后合并即可;(2)利用二次根式的乘除法则运算;(3)利用加减消元法解方程组;(4)先把原方程组整理后,然后利用加减消元法解方程组.【详解】(1++=;(2(÷=-16;(3)5 2311x yx y+=⎧⎨+=⎩①②,②﹣①×2得3y﹣2y=1,解得y=1,把y=1代入①得x +1=5,解得x=4,所以方程组的解为41x y =⎧⎨=⎩; (4)原方程组整理为457233x y x y +=-⎧⎨+=-⎩①②, ①﹣②×2得﹣y=﹣1,解得y=1,把y=1代入②得2x +3=﹣3,解得x=﹣3,所以原方程组的解为31x y =-⎧⎨=⎩. 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组. 26.(1)见解析;(2)①90°,②2AE BE CM =+;(3)见解析【分析】(1)利用AAS 证明△ABD ≌△CAE ,得到BD=AE ,AD=CE ,即可得到结论成立;(2)①由等腰直角三角形的性质,得∠CDE=∠CED=45°,则∠ADC=135°,由全等三角形的性质,∠BEC=135°,即可求出∠AEB 的度数;②由全等三角形的性质和等腰直角三角形的性质,得到AD=BE ,CM=DM=EM ,即可得到AE=BE+2CM ;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,证明△DBE ≌△DCG ,得到BE=CG ,根据勾股定理解答.【详解】解:(1)如图1,∵∠BAC =90°,BD ⊥直线m ,CE ⊥直线m ,∴∠ADB=∠AEC=90°,∴∠BAD+∠ABD=∠BAD+∠CAE=90°,∴∠ABD=∠CAE ,∵AB =AC ,∴△ABD ≌△CAE ,∴BD=AE ,AD=CE ,∵DE DA AE CE BD =+=+;(2)如图2,①∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴∠CDE=∠CED=45°,∴∠ADC=180°-45°=135°,∵△ACD ≌△BCE ,∴AD=BE ,∠ADC=∠BEC=135°,∴∠AEB=∠BEC -∠CED=135°-45°=90°;②∵△DCE 均为等腰直角三角形,CM 为△DCE 中DE 边上的高,∴CM=DM=EM ,∵AD=BE ,∴AE=AD+DM+EM=BE+2CM ;故答案为:①90°;②2AE BE CM =+;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,如图,∵ED ⊥DF ,DG=ED ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED GD BDE GDC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△DCG (SAS ),∴BE=CG ,∵∠A=90°,∴∠B+∠ACB=90°,∵△DBE≌△DCG,EF=GF,∴BE=CG,∠B=∠GCD,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt△CFG中,CF2+GC2=GF2,∴BE2+CF2=EF2.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.。
浙教版数学八年级下册期末考试试题一、单选题1.下列计算正确的是()A=B=C=D3=-2.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°3.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1 =0 D.x2﹣2x+2=0 4.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.平行四边形C.正五边形D.矩形5.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“”带,鲜花带一边宽1m,另一边宽2m,剩余空地的面积为18m2,求原正方形空地的边长xm,可列方程为()A.(x﹣1)(x﹣2)=18 B.x2﹣3x+16=0C.(x+1)(x+2)=18 D.x2+3x+16=07.如图,四边形ABCD是菱形,8AC=,DB=6,DH⊥AB于H,则DH等于( )A.245B.125C.5 D.48.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=kx(k≠0)的图象过点C,则该反比例函数的表达式为()A.y=3xB.y=4xC.y=5xD.y=6x二、填空题9.方程230x x-=的根为.10.在二次根式√2x+1中,x的取值范围是_________.11.在实数0,−π,√2,−4中,最小的数是__________.12.如图,在▱ABCD 中,AB =3,BC =5,以点B 为圆心,以任意长为半径画弧,分别交BA 、 BC 于点P 、Q 再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠ABC 内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为____________.13.在矩形ABCD 中,由9个边长均为1的正方形组成的“L 型”模板如图放置,此时量得CF=3,则BC 边的长度为_____________.14.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示放置,点A 1、A 2、A 3…在直线y=x+1上,点C 1、C 2、C 3…在x 轴上,则An 的坐标是________________.三、解答题 15.解方程:(1)()x 2x 2x 1-=- (2)2x 3x 20-+=16.计算:|−√3|+√2×√6+(12)−1−(√2019−√2017)017.已知关于x 的方程x 2+ax+a ﹣2=0.若该方程的一个根为1,求a 的值及该方程的另一根.18.阅读下面材料,解答问题:将4个数a 、b 、c 、d 排列成2行2列,记为:|acb d|,叫做二阶行列式.意义是|a c b d |=ad −bc .例如:|57 68|=5×8−6×7=−2. (1)请你计算|5√27 √6√8|的值; (2)若|x +13x 2x +1|=9,求x 的值.19.如图,网格每个小正方形的顶点叫格点,线段AB 的端点在格点上.按要求以线段AB 为边或对角线,分别在网格中作两个不全等四边形. 要求(1)四边形顶点在格点上;(2)四边形为轴对称图形20.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 7453 7446 6754 7638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m= ______ ,n= ______ ;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在______ 组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.21.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.22.如图所示,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8,BC=10,(1)求BF的长;(2)求△ECF的面积.23.数学兴趣小组几名同学到商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.(1)现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?(2)若每天盈利为W元,请利用配方法直接写出每箱售价为多少元时,每天盈利最多.24.如图,矩形ABCD中,AB=5cm,BC=10cm,动点M从点D出发,按折线DCBAD方向以3cm/s的速度运动,动点N从点D出发,按折线DABCD方向以2cm/s的速度运动.点E在线段BC上,且BE=1cm,若M、N两点同时从点D 出发,到第一次相遇时停止运动.(1)求经过几秒钟M、N两点停止运动?(2)求点A、E、M、N构成平行四边形时,M、N两点运动的时间;(3)设运动时间为t(s),用含字母t的代数式表示△EMN的面积S(cm2).参考答案1.B【解析】【分析】根据二次根式的运算法则对各选项进行计算,然后判断即可.【详解】解:A. A选项错误;B. ==C. ==,所以C选项错误;=-=,所以D选项错误,33故选:B.【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题关键.2.C【解析】试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.考点:1矩形;2平行线的性质.3.D【解析】【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【详解】A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D 、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D 选项正确. 故选D . 4.D 【解析】 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 【详解】解:A 、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误; B 、平行四边形不是轴对称图形,是中心对称图形,故本选项错误; C 、正五边形是轴对称图形,不是中心对称图形,故本选项错误. D 、矩形既是轴对称图形,又是中心对称图形,故本选项正确; 故选:D . 【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 5.D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙,∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 6.A 【解析】 【分析】可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式方程可列出. 【详解】设原正方形的边长为xm ,依题意有: (x ﹣1)(x ﹣2)=18. 故选A . 【点睛】本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键. 7.A 【解析】 【分析】根据菱形性质求出AO =4,OB =3,∠AOB =90°,根据勾股定理求出AB ,再根据菱形的面积公式求出即可. 【详解】解:∵四边形ABCD 是菱形,设AB,CD 交于O 点, ∴AO =OC ,BO =OD ,AC ⊥BD , ∵AC =8,DB =6,∴AO =4,OB =3,∠AOB =90°,由勾股定理得:AB 5,∵S 菱形ABCD =12×AC×BD =AB×DH ,∴12×8×6=5×DH , ∴DH =245, 故选:A .【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S 菱形ABCD =12×AC×BD =AB×DH 是解此题的关键.8.A【解析】解:如图,过点C 作CE ⊥y 轴于E .在正方形ABCD 中,∵AB =BC ,∠ABC =90°,∴∠ABO +∠CBE =90°.∵∠OAB +∠ABO =90°,∴∠OAB =∠CBE .∵点A 的坐标为(﹣4,0),∴OA =4.∵AB =5,∴OB =3.在△ABO 和△BCE 中,∵∠OAB =∠CBE ,∠AOB =∠BEC ,AB =BC ,∴△ABO ≌△BCE (AAS ),∴OA =BE =4,CE =OB =3,∴OE =BE ﹣OB =4﹣3=1,∴点C 的坐标为(3,1).∵反比例函数k y x =(k ≠0)的图象过点C ,∴k =xy =3×1=3,∴反比例函数的表达式为3y x=.故选A .点睛:本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D 的坐标是解题的关键.9.120,?3x x ==.【解析】试题分析:x (x -3)=0 解得:1x =0,2x =3.考点:解一元二次方程.10.x ≥−12【解析】【分析】根据二次根式的性质:二次根式的被开方数是非负数,得2x+1≥0.解不等式可得答案.【详解】解:根据题意,得2x+1≥0,解得,x≥-12;故答案是:x≥-12.【点睛】本题考查了二次根式的意义和性质.概念:式子√a (a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.-4【解析】【分析】根据正数大于0,0大于一切负数,两个负数绝对值大的反而小判断即可.【详解】解:∵√2>0,-4<−π<0∴-4<−π<0<√2最小的数是-4.故答案为:-4.【点睛】考查实数的比较;用到的知识点为:正数大于0;0大于一切负数;两个负数绝对值大的反而小,注意应熟记常见无理数的约值.12.2【解析】根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,解:根据作图的方法得:AE平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=2;故答案为2.“点睛”此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AE=AB是解决问题的关键.13.7.【解析】试题分析:由图和已知,EF=5,CF=3,∴根据勾股定理可得EC=4.易证ΔABE≌ΔECF(AAS),∴BE="CF=3" .∴BC=7.考点:1.矩形的性质;2.勾股定理;3.全等三角形的判定和性质.14.(21n--1,21n-)【解析】【详解】解:∵直线y=x+1和y轴交于A1,∴A1的坐标(0,1),即OA1=1,∵四边形C1OA1B1是正方形,∴OC1=OA1=1,把x=1代入y=x+1得:y=2,∴A2的坐标为(1,2),同理A3的坐标为(3,4),…A n 的坐标为(121n --,12n -),故答案为(121n --,12n -).15.(1)12x =22x = (2)11x =,22x =【解析】【分析】(1)对方程去括号、移项合并同类项,化成一元二次方程的一般形式,把常数项移到等号的右边,再运用配方法求解;(2)先根据2x x +(p+q )x+pq=(x+p)(+q )对方程左边进行因式分解,化为两个一元一次方程求解.【详解】(1)去括号:2x -2x=2x-1,移项、合并同类项:2x -4x+1=0,配方得:2(2)3x -=解得12x =22x =(2)2320x x -+=(x-1)(x-2)=0x-1=0或x-2=0解得11x =,22x =.故答案为(1)12x =22x = (2)11x =,22x =.【点睛】本题考查了用配方法和因式分解法解一元二次方程,能根据方程的特点选择合适的方法并熟练掌握解方程的方法和步骤是关键.16.3√3+1【解析】【分析】根据负整数指数幂a n =1a n (a≠0,n 为正整数),零指数幂的意义a 0=1(a≠0),和实数的运算法则进行计算.【详解】解:|−√3|+√2×√6+(12)−1−(√2019−√2017)0=√3+2√3+2-1=3√3+1.故答案为:3√3+1.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值、整数指数幂等考点的运算.17.a=21;另一根为-23. 【解析】试题分析:将x=1代入方程x 2+ax+a-2=0得到a 的值,再根据根与系数的关系求出另一根;试题解析:将x=1代入方程x 2+ax+a-2=0得,1+a+a-2=0,解得,a=21; 方程为x 2+21x-23=0,即2x 2+x-3=0,设另一根为x 1,则1•x 1=-23,x 1=-23. 考点:1、一元二次方程的解;2、根与系数的关系.18.(1)√2;(2)x 1=2,x 2=−2.【解析】【分析】(1)根据新定义得到|5√27 √6√8|=5×√8-√6×√27,然后进行二次根式的乘法运算; (2)根据新定义得到(x+1)(2x+1)-3x=9,然后整理后利用直接开平方法解方程.【详解】(1)原式=5×√8−√6×√27=5×2√2−√6×3√3=10√2−9√2=√2;(2)由题可得:(x+1)(2x+1)﹣3x=9,2x2+3x+1−3x=9,∴2x2=8解得:x1=2,x2=−2.故答案为:(1)√2;(2)x1=2,x2=−2.【点睛】本题通过新定义运算的形式考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了直接开平方法解一元二次方程.19.见解析,本题答案不唯一.【解析】【分析】利用轴对称图形性质,以及全等四边形的定义,如矩形、正方形都是轴对称图形,根据题意画出图形即可.【详解】解:如图所示,本题答案不唯一.【点睛】本题考查作图-轴对称变换,轴对称图形是按一条直线折叠后重合的图形.解题的关键是理解题意,掌握常见图形的性质,并按要求作图.20.(1)4;1;(2)见解析;(3)B;(4)48.【解析】【分析】(1)根据题目中的数据即可直接确定m和n的值;(2)根据(1)的结果即可直接补全直方图;(3)根据中位数的定义直接求解;(4)利用总人数乘以对应的比例即可求解.【详解】解:(1)由记录的数据可知,7500≤x<8500的有8430、8215、7638、7850这4个,即m=4;9500≤x<10500的有9865这1个,即n=1.故答案为4;1;(2)如图:(3)由于一共20个数据,其中位数是第10、11个数据的平均数,而第10、11个数据的平均数均落在B组,∴这20名“健步走运动”团队成员一天行走步数的中位数落在B组;故答案为B;(4)120×43120++=48(人),答:估计其中一天行走步数不少于7500步的有48人.故答案为48.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(1)见解析;(2)见解析.【解析】【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.【详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形.(2) 证明:∵∠BAC=90°,AD是边BC上的中线.∴AD=CD∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.22.(1)BF=6;(2)6.【解析】【分析】(1)因为点F为点D的折后的落点,所以△AFE≌△ADE,由此可得AF=AD=10cm,在△ABF中利用勾股定理,可得BF的值,(2)先求出DE的长,进而求出CE的长,利用三角形的面积公式即可求出△ECF 的面积.【详解】(1)∵△ADE折叠后的图形是△AFE,∴△AFE≌△ADE∴AD=AF,∠D=∠AFE,DE=EF,∵AD=BC=10,∴AF=AD=10,又∵AB=8,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2,∴82+BF2=102,∴BF=6;故答案为:6.(2)则可得FC=BC-BF=10-6=4,设EC的长为x,∴DE=(8-x),∵FC=4,在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8-x)2,即16+x2=64-16x+x2,化简,得16x=48,∴x=3,故EC=3.∴S△ECF=12EC·FC=12×4×3=6.故答案为:6.【点睛】本题考查了图形对折的问题,在解题时一定要注意,折叠的图形与折叠后的图形全等,此题还考查了勾股定理以及三角形的面积公式的应用.23.(1)当每箱牛奶售价为50元时,平均每天的利润为900元.(2)60元. 【解析】【分析】(1)根据平均每天销售这种牛奶的利润=每箱的利润×销售量,设每箱售价为x 元,根据“每天盈利900元”列出方程(x-40)[30+3(70-x)]=900 求解即可;(2)根据平均每天销售这种牛奶的利润等于每箱的利润×销售量得到W=(x-40)[30+3(70-x)],整理后根据二次函数的性质求解.【详解】(1)解:设每箱售价为x元,根据题意得:(x-40)[30+3(70-x)]=900化简得:x2-120x+3500=0解得:x1=50或x2=70(不合题意,舍去)∴x=50答:当每箱牛奶售价为50元时,平均每天的利润为900元.(2)由题意得W=(x-40)[30+3(70-x)]=-3x2+360x-9600=−3(x−60)2+1200∴当售价为每箱牛奶60元时,每天盈利最多.【点睛】本题考查了二次函数的应用:先把二次函数关系式变形成顶点式:y=a(x-k)2+h,当a<0,x=k时,y有最大值h;当a>0,x=k时,y有最小值h.也考查了利润的含义.24.(1)经过6 s两点相遇.(2)当点A、E、M、N构成平行四边形时,M、N两点运动的时间为4或4.8s.(3)当0<t<53时,S =-3t2+372t;当53≤t<143时,S=S△EMN=12EM•CD=12×(3t-5-1)×5=35-152t;当143<t≤5时,S= t-35;当5<t<6时,S =15-52t.【解析】【分析】(1)由题意可得:M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),则可得t=30÷(2+3)=6;(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,然后设经过t秒,四点可组成平行四边形,①当构成▱AEMN时,10-2t=14-3t,②当构成▱AMEN时,10-2t=3t-14,继而求得答案;(3)分别从当0<t<53时,当53t <143时,当143<t<5时,当5<t<6时,去分析求解即可求得答案.【详解】解:(1)∵矩形ABCD中,AB=5cm,BC=10cm,∴M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),∴t=30÷(2+3)=6 (s)答:经过6 s两点相遇.故答案为6s.(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,设经过t秒,四点可组成平行四边形,①当构成▱AEMN时,10-2t=14-3t,解得t =4;②当构成▱AMEN时,10-2t=3t-14,解得t=4.8;答:当点A、E、M、N构成平行四边形时,M、N两点运动的时间为4s或4.8s.故答案为4s或4.8s.(3)如图(1),当0<t<53时,点M在线段CD上,S=S△EMN =S梯形CDNE-S△DMN-S△CEM=12×(2t+9)×5 -12×2t×3t -12×9×(5-3t)=-3t2+372t;如图(2),当53≤t<143时,点M在线段CE上,S=S△EMN=12EM•CD=12×(3t-5-1)×5=35-152t;如图(3),当143<t<5时,点M在线段BE上,S=S△EMN=12ME•CD =12×(3t-14)×5=152t-35;如图(4),当5<t<6时,点M、N都在线段AB上,S=S△EMN=12MN•BE=12×(30-2t-3t)×1=15-52t.故答案为当0<t<53时,S =-3t2+372t;当53≤t<143时,S= 35-152t;当143<t<5时,S= t-35;当5<t<6时,S =15-52t.【点睛】此题考查了矩形的性质.此题难度较大,属于动点题目,解题时注意分类讨论思想、方程思想与数形结合思想的应用.。
浙教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,对角线AC、BD交与点O,以下说法错误的是()A.∠ABC=90°B.AC=BDC.OA=OBD.OA=AD2、某班 6 个合作小组的人数分别是:4,6,4,5,7,8,现第 4 小组调出 1 人去第 2 小组,则调动后各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是()A.平均数变小B.平均数变大C.方差不变D.方差变大3、下列说法中,正确是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C.一组数据8,8,7,10,6,8,9的众数是8 D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小4、一个多边形的内角和是360°,则这个多边形的边数为()A.6B.5C.4D.35、正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直平分C.四条边都相等D.对角线平分一组对角6、将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为()A.125°B.115°C.110°D.120°7、下列说法不正确的是()A.条形统计图能清楚地反映出各项目的具体数量B.折线统计图能清楚地反映事物的变化情况C.扇形统计图能清楚地表示出各个部分在总体中所占的百分比D.统计图只有以上三种8、某次器乐比赛共有11名选手参加,且他们的得分都互不相同.现在知道这次比赛按选手得分由高到低的顺序设置了6个获奖名额.若已知某位选手参加这次比赛的得分,要判断他能否获奖,则在下列描述选手比赛成绩的统计量中,只需知道()A.方差B.平均数C.众数D.中位数9、下列式子中无意义的是()A. B. C. D.10、一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根11、A,B,C是平面内不在同一条直线上的三点,D是平面内任意一点,若A,B,C,D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有( )A.1个B.2个C.3个D.4个12、能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CDB.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB13、二次函数y=ax2+bx+c的图像如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图像是()A. B. C. D.14、下列命题中,正确命题的序号是()①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形③对角线相等的四边形是矩形④对角互补的四边形内接于圆A.①②B.②③C.③④D.①④15、若,0<x<1,则的值是()A. B.-2 C.±2 D.±二、填空题(共10题,共计30分)16、如图,直线x=t(t>0)与反比例函数的图象分别交于B,C 两点,A为y轴上的任意一点,则△ABC的面积为________.17、如图,菱形的周长是,,那么这个菱形的对角线的长是________.18、如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:________,使四边形ABCD为平行四边形.(不添加任何辅助线)19、如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为________.20、一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为________.21、关于x的方程ax2+bx﹣1=0的一个解是x=﹣1,则2015﹣a+b=________.22、如果x≥1,那么化简的结果是________.23、如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为________.24、圆柱的体积为10cm3,则它的高ycm与底面积xcm2之间的函数关系式是________ .25、如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C (2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y= 的图象上,则k的值为________.三、解答题(共5题,共计25分)26、解方程:3x(2x+1)=4x+2.27、甲、乙两名战士在相同条件下各射靶6次,每次命中的环数分别是:(单位:环)甲:4,9,10,7,8,10;乙:8,9,9,8,6,8.(1)分别计算甲、乙两名战士的平均数和方差;(2)哪名战士的成绩比较稳定.28、如图,在中,,正方形的三个顶点分别在边,,上。
2013-2014学年浙教版八年级(下)期末数学检测卷一、选择题(每小题2分,共20分) 1.(2分)(2010•深圳)下列图形中,是中心对称图形但不是轴对称图形的是( ) A .B .C .D .2.(2分)(2003•武汉)不解方程,判别方程5x 2﹣7x+5=0的根的情况是( ) A . 有两个相等的实数根 B . 有两个不相等的实数根 C . 只有一个实数根 D . 没有实数根 3.(2分)若化简的结果为2x ﹣5,则x 的取值范围是( )A . x 为任意实数B . 1≤x ≤4C . x ≥1D . x ≤ 4 4.(2分)(2007•湖州)要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是( ) A . 平均数 B . 中位数 C . 众数 D . 方差 5.(2分)一元二次方程x 2+x ﹣1=0的两根分别为x 1,x 2,则+=( )A .B .1 C .D .6.(2分)(2007•日照)如图,在周长为20cm 的▱ABCD 中,AB ≠AD ,对角线AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A . 4cmB . 6cmC . 8cmD . 10cm 7.(2分)(2010•威海)如图,在梯形ABCD 中,AB ∥CD ,AD=BC ,对角线AC ⊥BD ,垂足为O ,若CD=3,AB=5,则AC 的长为( )A .B . 4C .D . 8.(2分)(2010•丹东)把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( )A . (10+2)cmB . (10+)cmC .22cm D .18cm9.(2分)(2005•宁波)正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x轴于B,CD⊥y 轴于D(如图),则四边形ABCD的面积为()A.1B.C.2D.10.(2分)关于x的方程k2x2+2(k﹣1)x+1=0有两个实数根,则k的取值范围是()A.k<B.k≤C.k<且k≠0D.k≤且k≠0二、填空题(每小题3分,共30分)11.(3分)化简:=_________.12.(3分)当x=_________时,代数式6x2+15x+12的值等于21.13.(3分)某公司在2012年的盈利额为200万元,预计2014年的盈利额将达到242万元.若每年比上一年盈利额增长的百分率相同,那么该公司在2013年的盈利额为_________万元.14.(3分)(2006•芜湖)一组数据5,8,x,10,4的平均数是2x,则这组数据的方差是_________.15.(3分)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为_________.16.(3分)如图①,将长为20cm,宽为2cm的长方形白纸条,折成如图②的图形并在其一面着色,则着色的面积为_________cm2.17.(3分)如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有_________个.18.(3分)已知n是正整数,P n(x n,y n)是反比例函数图象上的一列点,其中x1=1,x2=2,…,x n=n,记T1=x1y2,T2=x2y3,…,T9=x9y10;若T1=1,则T1•T2…T9的值是_________.19.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC边上一动点,PE⊥AB于点E,PF⊥AC于点F,连结EF,点M为EF的中点,则AM的最小值为_________.20.(3分)(2009•莆田)如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为_________.三、解答题(共50分)21.(6分)计算:(1)﹣++;(2).22.(6分)解方程:(1)2x2﹣x﹣6=0;(2)y2﹣8y=4.23.(6分)(2006•扬州)某校九年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州两位同学在父母的支持下各捐献了50册图书.班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):册数4567 8 50人数6815 2(1)分别求出该班级捐献7册图书和8册图书的人数.(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由.24.(6分)(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?25.(8分)如图,在△ACE中,点B是AC的中点,点D是CE的中点,点M是AE的中点,四边形BCGF 和四边形CDHN都是正方形.求证:△FMH是等腰直角三角形.26.(8分)已知有两张全等的矩形纸片.(1)将两张纸片叠合成如图1,请判断四边形ABCD的形状,并说明理由;(2)设矩形的长是6,宽是3.当这两张纸片叠合成如图2时,菱形的面积最大,求此时菱形ABCD的面积.27.(10分)(2008•镇江)如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T(m,n)表示火炬位置,火炬从离北京路10米处的M点开始传递,到离北京路1000米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000平方米(路线宽度均不计).(1)求图中反比例函数的关系式(不需写出自变量的取值范围);(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示);(3)设t=m﹣n,用含t的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示).2013-2014学年浙教版八年级(下)期末数学检测卷参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)(2010•深圳)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形;生活中的旋转现象.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、是轴对称图形,也是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选A.点评:掌握中心对称图形与轴对称图形的概念.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.2.(2分)(2003•武汉)不解方程,判别方程5x2﹣7x+5=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵a=5,b=﹣7,c=5∴△=b2﹣4ac=(﹣7)2﹣4×5×5=﹣51<0∴方程没有实数根故选D.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.(2分)若化简的结果为2x﹣5,则x的取值范围是()A.x为任意实数B.1≤x≤4 C.x≥1 D.x≤4考点:二次根式的性质与化简.专题:计算题.分析:根据完全平方公式先把多项式化简为|1﹣x|﹣|x﹣4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.解答:解:原式可化简为|1﹣x|﹣|x﹣4|,当1﹣x≥0,x﹣4≥0时,可得x无解,不符合题意;当1﹣x≥0,x﹣4≤0时,可得x≤4时,原式=1﹣x﹣4+x=﹣3;当1﹣x≤0,x﹣4≥0时,可得x≥4时,原式=x﹣1﹣x+4=3;当1﹣x≤0,x﹣4≤0时,可得1≤x≤4时,原式=x﹣1﹣4+x=2x﹣5.据以上分析可得当1≤x≤4时,多项式等于2x﹣5.故选B.点评:本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.4.(2分)(2007•湖州)要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是()A.平均数B.中位数C.众数D.方差考点:统计量的选择.专题:应用题.分析:根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.解答:解:由于方差反映数据的波动情况,应知道数据的方差.故选D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.(2分)一元二次方程x2+x﹣1=0的两根分别为x1,x2,则+=()A.B.1C.D.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到x1+x2=﹣1,x1•x2=﹣1,然后把+进行通分,再利用整体代入的方法进行计算.解答:解:根据题意得x1+x2=﹣1,x1•x2=﹣1,所以+===1.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.6.(2分)(2007•日照)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD 交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm考点:线段垂直平分线的性质;平行四边形的性质.专题:压轴题.分析:根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.解答:解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,∴根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10m.故选:D.点评:运用了平行四边形的对角线互相平分,线段垂直平分线上的点到线段两个端点的距离相等,平行四边形的对边相等.7.(2分)(2010•威海)如图,在梯形ABCD中,AB∥CD,AD=BC,对角线AC⊥BD,垂足为O,若CD=3,AB=5,则AC的长为()A.B.4C.D.考点:等腰梯形的性质.分析:作辅助线,平移一腰,由等腰梯形的性质和勾股定理解得答案.解答:解:过点C作CE∥BD,交AB的延长线于点E,∵AB∥CD,∴四边形BECD是平行四边形,∴BE=CD=3,∵AC⊥BD,∴AC⊥CE,∴∠ACE=90°,∵AD=BC,∴AC=BD,∴AC=CE,由勾股定理得,2AC2=64,∴AC=4,故选A.点评:本题主要考查等腰梯形的性质的应用.8.(2分)(2010•丹东)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()A.(10+2)cm B.(10+)cm C.22cm D.18cm考点:等腰梯形的性质.分析:根据剪去的三角形的面积可得矩形的宽,利用勾股定理即可求得等腰梯形的腰长,根据折叠可得梯形其余边长,相加即为梯形的周长.解答:解:∵剪掉部分的面积为6cm2,∴矩形的宽为2,易得梯形的下底为矩形的长,上底为(8÷2﹣3)×2=2,腰长为=,∴打开后梯形的周长是(10+2)cm.故选:A.点评:此题主要考查了学生对等腰梯形的性质及翻折掌握情况,解决本题的关键是根据折叠的性质得到等腰梯形的各边长.9.(2分)(2005•宁波)正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x轴于B,CD⊥y轴于D(如图),则四边形ABCD的面积为()A.1B.C.2D.考点:反比例函数系数k的几何意义.专题:计算题;数形结合.分析:首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,得出S△AOB=S△ODC=,再根据反比例函数的对称性可知:OB=OD,得出S△AOB=S△ODA,S△ODC=S△OBC,最后根据四边形ABCD的面积=S△AOB+S△ODA+S△ODC+S△OBC,得出结果.解答:解:根据反比例函数的对称性可知:OB=OD,AB=CD,∴四边形ABCD的面积=S△AOB+S△ODA+S△ODC+S△OBC=1×2=2.故选C.点评:本题主要考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.10.(2分)关于x的方程k2x2+2(k﹣1)x+1=0有两个实数根,则k的取值范围是()A.k<B.k≤C.k<且k≠0D.k≤且k≠0考点:根的判别式.分析:因为关于x的一元二次方程k2x2+2(k﹣1)x+1=0有两个实数根,所以必须满足下列条件:二次项系数不为零且判别式△=b2﹣4ac≥0,列出不等式求解即可确定k的取值范围.解答:解:(1)∵关于x的一元二次方程k2x2+2(k﹣1)x+1=0有两个实数根,∴△=[2(k﹣1)]2﹣4k2≥0且k2≠0,解得k≤且k≠0.故选D.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件,二、填空题(每小题3分,共30分)11.(3分)化简:=.考点:二次根式的性质与化简.分析:根据二次根式的性质,算术平方根的值必须是正数,所以开方所得结果是|1﹣|,然后再去绝对值.解答:解:因为>1,所以=﹣1故答案为:﹣1.点评:本题主要考查二次根式的化简,其中必须符合二次根式的性质.12.(3分)当x=0.5或3时,代数式6x2+15x+12的值等于21.考点:解一元二次方程-因式分解法.专题:计算题.分析:根据题意列出方程,求出方程的解即可得到x的值.解答:解:根据题意得:6x2+15x+12=21,即6x2+15x﹣9=0,分解因式得:(6x﹣3)(x+3)=0,解得:x1=0.5,x2=﹣3,故答案为:0.5或3点评:此题考查了解一元二次方程﹣因式分解法,熟练掌握各自解法是解本题的关键.13.(3分)某公司在2012年的盈利额为200万元,预计2014年的盈利额将达到242万元.若每年比上一年盈利额增长的百分率相同,那么该公司在2013年的盈利额为220万元.考点:一元二次方程的应用.专题:增长率问题.分析:此题可通过设出营业额增长的百分率x,根据等量关系“2014年的营业额等于2012年的营业额乘(1+增长的百分率)乘(1+增长的百分率)”列出一元二次方程求解增长的百分率,再通过一元一次方程解得:2013年的盈利额等于2012年的营业额乘(1+增长的百分率).解答:解:设盈利额增长的百分率为x,则该公司在2013年的盈利额为200(1+x);由题意得,200(1+x)2=242,解得x=0.1或﹣2.1(不合题意,舍去),故x=0.1∴该公司在2013年的盈利额为:200(1+x)=220万元.故答案为:220.点评:此题考查增长率的定义,同学们应加强培养对应用题的理解能力,判断出题干信息,列出一元二次方程去求解.14.(3分)(2006•芜湖)一组数据5,8,x,10,4的平均数是2x,则这组数据的方差是 6.8.考点:方差;算术平均数.专题:压轴题.分析:本题可运用求平均数公式:解出x的值,再运用方差的公式解出方差.解答:解:依题意得:5+8+x+10+4=2x•5所以x=3,2x=6方差s2=[(5﹣6)2+(8﹣6)2+(3﹣6)2+(10﹣6)2+(4﹣6)2]=6.8.故填6.8.点评:本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.15.(3分)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为﹣1.考点:一元二次方程的解;一元二次方程的定义.分析:已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出a的值.解答:解:∵关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,∴|a|﹣1=0,即a=±1,∵a﹣1≠0∴a=﹣1,故答案为:﹣1.点评:此题主要考查了方程解的定义,所谓方程的解,即能够使方程左右两边相等的未知数的值.16.(3分)如图①,将长为20cm,宽为2cm的长方形白纸条,折成如图②的图形并在其一面着色,则着色的面积为36cm2.考点:翻折变换(折叠问题).分析:根据折叠的性质,已知图形的折叠就是已知两个图形全等.由图知,着色部分的面积是原来的纸条面积减去两个等腰直角三角形的面积.解答:解:着色部分的面积=原来的纸条面积﹣两个等腰直角三角形的面积=20×2﹣2××2×2=36cm2.故答案为:36.点评:本题考查图形的折叠变化及等腰直角三角形的面积公式.关键是要理解折叠是一种对称变换.17.(3分)如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有5个.考点:勾股定理的逆定理;勾股定理.专题:网格型.分析:根据题意画出图形,根据勾股定理的逆定理进行判断即可.解答:解:如图所示:当∠C为直角顶点时,有C1,C2两点;当∠A为直角顶点时,有C3一点;当∠B为直角顶点时,有C4,C5两点,综上所述,共有5个点.故答案为:5.点评:本题考查的是勾股定理的逆定理,根据题意画出图形,利用数形结合求解是解答此题的关键.18.(3分)已知n是正整数,P n(x n,y n)是反比例函数图象上的一列点,其中x1=1,x2=2,…,x n=n,记T1=x1y2,T2=x2y3,…,T9=x9y10;若T1=1,则T1•T2…T9的值是51.2.考点:反比例函数图象上点的坐标特征.专题:压轴题.分析:根据反比例函数图象上点的坐标特征,得出原式=,进而求出即可.解答:解:T1•T2•…•T n=x1y2•x2y3…x n y n+1=x1••x2••x3•…x n•=x1•,又因为x1=1,n=9,又因为T1=1,所以x1y2=1,又因为x1=1,所以y2=1,即=1,又x2=2,k=2,所以原式=,于是T1•T2•…•T9=x1(y2•x2)(y3•x3)…(y9•x9)y10===51.2.故答案为:51.2.点评:此题主要考查了反比例函数图象上点的特征,解答此题的关键是将x1••x2••x3•…x n•的相同字母消掉,使原式化简为一个仅含k的代数式,然后解答.19.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC边上一动点,PE⊥AB于点E,PF⊥AC于点F,连结EF,点M为EF的中点,则AM的最小值为.考点:矩形的判定与性质;垂线段最短.分析:根据矩形的性质就可以得出,EF,AP互相平分,且EF=AP,垂线段最短的性质就可以得出AP⊥BC 时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.解答:解:∵四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP.BC=AB.AC,∴AP.BC=AB.AC.在Rt△ABC中,由勾股定理,得BC=5.∵AB=3,AC=4,∴5AP=3×4∴AP=.∴AM=故答案为:.点评:本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AP的最小值是关键.20.(3分)(2009•莆田)如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为.考点:反比例函数系数k的几何意义.专题:压轴题;规律型.分析:根据反比例函数中k的几何意义再结合图象即可解答.解答:解:∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.∴S1=1,S△OA2P2=1,∵OA1=A1A2,∴S△OA2P2=,同理可得,S2=S1=,S3=S1=,S4=S1=,S5=S1=.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.三、解答题(共50分)21.(6分)计算:(1)﹣++;(2).考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据零指数幂、负整数指数幂和平方差公式计算.解答:解:(1)原式=2﹣++﹣1=﹣1;(2)原式=2﹣1﹣1++=.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.22.(6分)解方程:(1)2x2﹣x﹣6=0;(2)y2﹣8y=4.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.专题:计算题.分析:(1)方程左边利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程两边加上16,利用完全平方公式变形,开方即可求出解.解答:解:(1)分解因式得:(2x+3)(x﹣2)=0,可得2x+3=0或x﹣2=0,解得:x1=1.5,x2=2;(2)配方得:y2﹣8y+16=20,即(y﹣4)2=20,开方得:y﹣4=±2,解得:y1=4+2,y2=4﹣2.点评:此题考查了解一元二次方程﹣因式分解法及配方法,熟练掌握各自解法是解本题的关键.23.(6分)(2006•扬州)某校九年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州两位同学在父母的支持下各捐献了50册图书.班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):册数4567 8 50人数6815 2(1)分别求出该班级捐献7册图书和8册图书的人数.(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由.考点:中位数;二元一次方程组的应用;算术平均数;众数.专题:图表型.分析:(1)根据:全班40名同学和共捐图书320册这两个相等关系,设捐献7册的人数为x,捐献8册的人数为y,就可以列出方程组解决.(2)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.然后根据它们的意义判断.解答:解:(1)设捐献7册的人数为x,捐献8册的人数为y,则解得答:捐献7册的人数为6人,捐献8册的人数为3人.(2)捐书册数的平均数为320÷40=8,按从小到大的顺序排列得到第20,21个数均为6,所以中位数为6.出现次数最多的是6,所以众数为6.因为平均数8受两个50的影响较大,所以平均数不能反映该班同学捐书册数的一般情况.点评:此题考查了学生对中位数、众数、平均数的掌握情况及对二元一次方程组的应用.24.(6分)(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?考点:一元二次方程的应用.专题:销售问题;压轴题.分析:设应将每千克小型西瓜的售价降低x元.那么每千克的利润为:(3﹣2﹣x),由于这种小型西瓜每降价O.1元/千克,每天可多售出40千克.所以降价x元,则每天售出数量为:200+千克.本题的等量关系为:每千克的利润×每天售出数量﹣固定成本=200.解答:解:设应将每千克小型西瓜的售价降低x元.根据题意,得[(3﹣2)﹣x](200+)﹣24=200.原式可化为:50x2﹣25x+3=0,解这个方程,得x1=0.2,x2=0.3.因为为了促销故x=0.2不符合题意,舍去,∴x=0.3.答:应将每千克小型西瓜的售价降低0.3元.点评:考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.25.(8分)如图,在△ACE中,点B是AC的中点,点D是CE的中点,点M是AE的中点,四边形BCGF 和四边形CDHN都是正方形.求证:△FMH是等腰直角三角形.考点:全等三角形的判定与性质;三角形中位线定理;正方形的性质.专题:证明题.分析:首先要连接MB、MD,然后证明△FBM≌△MDH,从而求出两角相等,且有一角为90°.解答:证明:连接MB、MD,如图2,设FM与AC交于点P,∵B、D、M分别是AC、CE、AE的中点,∴MD∥BC,且MD=AC=BC=BF;MB∥CD,且MB=CE=CD=DH(三角形的中位线平行于第三边并且等于第三边的一半),∴四边形BCDM是平行四边形,∴∠CBM=∠CDM,又∵∠FBP=∠HDC,∴∠FBM=∠MDH,在△FBM和△MDH中,∴△FBM≌△MDH(SAS),∴FM=MH,且∠FMB=∠MHD,∠BFM=∠HMD.∴∠FMB+∠HMD=180°﹣∠FBM,∵BM∥CE,∴∠AMB=∠E,同理:∠DME=∠A.∴∠AMB+∠DME=∠A+∠AMB=∠CBM.由已知可得:BM=CE=AB=BF,∴∠A=∠BMA,∠BMF=∠BFM,∴∠FMH=180°﹣(∠FMB+∠HMD)﹣(∠AMB+∠DME),=180°﹣(180°﹣∠FBM)﹣∠CBM,=∠FBM﹣∠CBM=∠FBC=90°.∴△FMH是等腰直角三角形.点评:此题主要考查了全等三角形的判定和性质,三角形的中位线,平行四边形的性质和判定应用,关键是找出能使三角形全等的条件,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等,本题综合考查了等腰三角形的判定,偏难,学生要综合运用学过的几何知识来证明.26.(8分)已知有两张全等的矩形纸片.(1)将两张纸片叠合成如图1,请判断四边形ABCD的形状,并说明理由;(2)设矩形的长是6,宽是3.当这两张纸片叠合成如图2时,菱形的面积最大,求此时菱形ABCD的面积.考点:菱形的判定与性质;勾股定理;矩形的性质.专题:计算题.分析:(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AP=AQ 得平行四边形ABCD是菱形;(2)设BC=x,则CG=6﹣x,CD=BC=x,在Rt△CDG中,由勾股定理得出x,再求得面积.解答:解:(1)四边形ABCD是菱形.理由:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)设BC=x,则CG=6﹣x,CD=BC=x,在Rt△CDG中,CG2+DG2=CD2,∴(6﹣x)2+32=x2,解得x=,∴S=BC•DG=.点评:本题是一道综合性质的题目,考查了菱形的判定和性质、勾股定理和矩形的性质等知识点,是中考的常见题型.27.(10分)(2008•镇江)如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T(m,n)表示火炬位置,火炬从离北京路10米处的M点开始传递,到离北京路1000米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000平方米(路线宽度均不计).(1)求图中反比例函数的关系式(不需写出自变量的取值范围);(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示);(3)设t=m﹣n,用含t的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示).考点:反比例函数的应用.专题:应用题.分析:首先根据题意,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递,且方阵始终保持矩形形状且面积恒为10000平方米,将此数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.解答:解:(1)设反比例函数为(k>0),则k=xy=mn=S矩形OA TB=10000,∴.(2)设鲜花方阵的长为m米,则宽为(250﹣m)米,由题意得。