双相不锈钢制造标准封面
- 格式:docx
- 大小:15.68 KB
- 文档页数:1
METRODE PRODUCTS LIMITED HANWORTH LANE CHERTSEY SURREY KT16 9LL UKDUPLEX & SUPERDUPLEX FERRITIC-AUSTENITIC STAINLESS STEELSCONTENTSPage 1. 2. 3. 4. 5. 6 7 8 8a 8b 8c 8d Introduction Base Materials Consumables Welding Guidelines Properties IIW Position Statement on Ferrite Project References Links to Appendices Data Sheets Weld Procedures Welding Guidelines Application Studies 2 3 4-6 7 8 16 - 17 18 19©Metrode Products LimitedPage 1Website Special Issue – 03/03 rev 1DUPLEX & SUPERDUPLEX FERRITIC-AUSTENITIC STAINLESS STEELSFor structural applicationsFor Offshore applicationsFor general fabrication1.INTRODUCTION Duplex and superduplex stainless steels are currently finding widespread use for a range of applications. The excellent combination of strength and corrosion resistance has proved to be invaluable, especially in the offshore and chemical industries. The more widespread application of duplex and superduplex stainless steels is rapidly increasing into areas of general fabrication, where it is replacing standard austenitic stainless steels such as 316L. The different industry sectors and applications each have their own welding consumable requirements. For this reason the range of consumables available is relatively large, each consumable having particular attributes. For example, in the offshore industry, where fixed pipe welding is prevalent and relatively stringent impact requirements are imposed, the 2205XKS, Zeron 100XKS, 2507XKS and Supercore 2205P are used. In general fabrication where ease of use and cosmetic appearance are important, with less emphasis on impact properties, Ultramet 2205 and Ultramet 2507 will be preferred. There is also an entirely separate area of use, covering casting repairs which will be subsequently solution annealed, where lower nickel, matching composition, consumables are sometimes used. The Metrode product range has consumables for the MMA(SMAW), TIG (GTAW), MIG (GMAW), FCAW and SAW processes which cover all of the potential applications. This Technical Profile covers not only the extensive range of Metrode consumables for duplex and superduplex materials, but also the practical aspects of welding these steels. The important features of weld procedure qualification – corrosion (G48A), impact properties, hardness and microstructure – are discussed and the procedural controls required to achieve the optimum properties are examined. Weld procedure records of successful procedures are provided together with the typical properties achieved. This information is intended to give sufficient guidance to enable weld procedures to be successfully carried out.©Metrode Products LimitedPage 2Website Special Issue – 03/032.BASE MATERIALS There is a wide range of base materials that can be broadly grouped into duplex and superduplex alloys. There are many, essentially equivalent, materials from many different manufacturers. Tables 1, 2 and 3 list the main base material specifications for wrought and cast duplex and superduplex along with nominal composition and examples of the proprietary alloys available.Table 1:UNS NoS32304 S31803 S32205 S32550 S31260(1)Wrought alloys – standard duplex stainless steelsEN 100881.4362 1.4462 1.4462 1.4507 -Cr 23 22 23 25 25Ni 4 5 6 6.5 7Mo 0.1 2.8 3 3 3Cu 1.5 0.5W 0.3N 0.10 0.15 0.18 0.16 0.16PREN * 24 32/33 35 38/39 37Examples of proprietary materials SAF 2304 (Sandvik/Avesta) UR35N (CLI) UR45N (CLI) SAF 2205 (Sandvik/Avesta) 2205 (Avesta) UR45N+ (CLI) Ferralium 255 (Meighs) DP3 (Sumitomo)(1)(1)UNS S32205, a variant of S31803 with analysis restricted to the upper range.Wrought alloys – superduplex stainless steelsEN 10088 1.4501 1.4410 1.4507 Cr 25 25 25 26 Ni 7.5 7 7 7 Mo 3.5 3.8 3.1 3.5 Cu 0.7 1.5 W 0.7 2 N 0.23 0.25 0.25 0.26 PREN * 40 42 40 40 Examples of proprietary materials Zeron 100 (Weir) SAF 2507 (Sandvik/Avesta) DP3W (Sumitomo) UR52N+ (CLI) Ferralium SD40 (Meighs)Table 2:UNS No S32760 S32750 S39274 S32550*PREN = PREW =Pitting Resistance Equivalent based on:Cr + 3.3Mo + 16NCr + (3.3Mo + 0.5W) + 16N includes the role of tungsten alloyingTable 3:UNS No J92205 J93370 J93380 J93404Cast alloys – duplex and superduplex stainless steelsDIN 1.4515/1.4517 1.4508 1.4469 ASTM A890 4A 6A 5A Equivalent wrought alloyS31803 / S32205 S32550 S32760 S32750©Metrode Products LimitedPage 3Website Special Issue – 03/033.CONSUMABLES Tables 4 and 5 summarise the Metrode range of duplex and superduplex welding consumables. Full data sheets for these products are presented in Appendices 1-3.Table 4: Filler materials for welding 22%Cr duplex stainless steels Wrought CastParent materialUNS S32304 & S31803Filler material Final condition TIG / MIG Filler wireUNS J92205 & J93370 Matching analysis * Solution annealed (1120°C + WQ)Overmatching analysis As-weldedER329N 1.6, 2.4 & 3.2mm ø: TIG 1.2mm MIG & Mechanised/Orbital TIG PREN: 35 min SUPERMET 2205 Rutile coated General purpose: downhand 2.5 – 5.0mm ø PREN: 38 ULTRAMET 2205 Rutile coated AWS: E2209-16 All-positional: structural 2.5 – 4.0mm ø PREN: 35 min 2205XKS Basic coated (maximum weld toughness) AWS: E2209-15 All-positional: pipework 2.5 – 5.0mm ø PREN: 35 min SUPERMET 2506 Rutile coated Downhand welding and repair of castings 2.5 – 5.0mm ø PREN: 36MMA ElectrodesSUPERMET 2506Cu Rutile coated AWS: E2553-16 Downhand welding and repair of Cu-bearing alloy castings 2.5 – 5.0mm ø PREN: 38Flux Cored Wire (FCAW)SUPERCORE 2205& Rutile Flux CoredSUPERCORE 2205PDownhand All-positional: pipework AWS: E2209T0-4 AWS: E2209T1-4 1.2mm ø, Argon +20% CO2 PREN: 35 minSub-Arc (SAW) Wire / FluxER329N 1.6 & 2.4mm ø SSB Flux or LA491 25kg drum Basic: (BI ≈ 3) PREN: 35 min*'Matching analysis' preferred, but in practice overmatching consumables have proved acceptable, eg Supermet 2205.©Metrode Products LimitedPage 4Website Special Issue – 03/03Table 5:Filler materials for welding 25%Cr type superduplex stainless steels Wrought & CastParent materialUNS S32760, S32750, S32550, S39274, J93380 & J93404Filler material Final condition TIG / MIG Filler wiresOvermatching analysis As-welded & Solution annealed (1120°C + WQ) ZERON 100X 1.6, 2.4 & 3.2mm ø: TIG 1.0mm MIG & Mechanised/Orbital TIG PREN: 40 min ZERON 100XKS Basic coated (max weld toughness) All-positional: pipework 2.5 – 5.0mm ø PREN: 40 min 2507XKS * Basic coated (max weld toughness) All-positional: pipework 2.5 – 4.0mm ø PREN: 40 min ULTRAMET 2507 * Rutile coated All-positional: structural 2.5 – 4.0mm ø PREN: 40 minMMA ElectrodesFlux cored wire (FCAW)SUPERCORE Z100XP Rutile flux cored Positional pipework and downhand welding 1.2mm ø, Argon + 20%CO2 PREN: 40 min ZERON 100X 1.6 & 2.4mm Ø SSB or LA491 FLUX 25kg drum Basic (BI=3) PREN: 40 minSub-Arc (SAW) Wire / Flux*For welding UNS S32760 Zeron 100XKS is preferred, especially for service in sulphuric acid.Page5Table 6:Filler materials for welding 25%Cr + 2%Cu superduplex stainless steels Wrought & CastParent materialUNS S32550 and J93370Filler material Final condition TIG / MIG Filler wiresOvermatching analysis As-welded & Solution annealed (1120°C + WQ) ZERON 100X * 1.6, 2.4 & 3.2mm ø: TIG 1.0mm MIG & Mechanised/Orbital TIG PREN: 40 min SUPERMET 2506Cu Rutile coated AWS: E2553-16 Downhand welding and repair of Cu-bearing alloy castings 2.5 – 5.0mm ø PREN: 40 ULTRAMET B2553 Basic coated AWS: E2553-15 All-positional pipework of Cu bearing superduplex 2.5 – 4.0mm ø PREN: 40 minMMA ElectrodesFlux cored wire (FCAW)SUPERCORE Z100XP * Rutile flux cored Positional pipework and downhand welding 1.2mm ø, Argon + 20%CO2 PREN: 40 min ZERON 100X 1.6 & 2.4mm ∅ * SSB FLUX 25kg drum Basic (BI=3) PREN: 40 minSub-Arc (SAW) Wire / Flux*These consumables contain about 0.7%Cu, so do not match the copper content of the base materials, but they are satisfactory for most applications.Page64.4.1WELDING GUIDELINESGENERAL GUIDELINESWeld procedures for duplex and superduplex stainless steels need to be controlled to ensure weld properties are achieved and also to ensure conformance with appropriate standards. Welding guidelines for Zeron 100 are presented in Appendix 4, and Appendix 5 gives examples of some successful weld procedures and the properties achieved. The general philosophy for welding duplex and superduplex stainless steels is shown in Figure 1. Some of the specific areas of weld procedure control that are closely defined in specification and application standards are explained in more detail in section 4.2.Figure 1: Welding duplex & superduplex stainless steels©Metrode Products LimitedPage 7Website Special Issue – 02/034.2PREHEAT, INTERPASS & HEAT INPUT CONTROLSPreheat Interpass temperature Heat inputIs not normally required. Preheat should only be used on material below about 5°C (41°F) or which is not dry. With standard duplex stainless steel, interpass temperatures are normally restricted to 150oC (300°F) maximum. This is in line with a number of specifications/codes: NORSOK M601, Shell ES106 and ES124; all 150°C (300°F) maximum. For the filling runs of a joint fairly high heat inputs are required before any noticeable effect is seen on the properties of duplex stainless steel welds. A range of 0.5 – 2.5 kJ/mm (12.5-62.5kJ/in) has been proposed as acceptable based on work at TWI, but the maximum is often restricted to lower heat inputs, eg Shell ES106, 0.5 – 2.0 kJ/mm (12.5-50kJ/in); Shell ES124, 0.5 – 1.75 kJ/mm (12.5-45kJ/in).The procedural controls required are described here generally for duplex and superduplex stainless steels, in practice the control for duplex stainless steels can be more relaxed than for superduplex.4.3 DISSIMILAR JOINTSDuplex and superduplex stainless steels are inevitably joined to other alloys. For most commonly used engineering alloys, this does not present any problem, provided the appropriate consumable used. Diagrams such as the Schaeffler diagram can prove useful in selecting the correct filler material. There will generally be a number of consumables which will provide an acceptable technical solution for any dissimilar joint, so the selection will often be based on practical aspects. For example, to reduce the number of procedures and consumables utilised, if duplex (2205) consumables are being used, these can conveniently be used for joints between duplex and CMn, low alloy and most austenitic stainless steels. The same applies to superduplex consumables. Duplex and superduplex consumables can also be used for surfacing CMn and low alloy steels without any intermediate buffer layers. Figure 2 summarises the selection of weld metals for dissimilar joints involving duplex and superduplex stainless steels.©Metrode Products LimitedPage 8Website Special Issue – 02/03Figure 2:Duplex & superduplex stainless steel dissimilar butt joints Recommended filler wires ** **Only wires are listed for brevity – associated MMA and FCW are also suitable. Consumable may need to be selected to meet minimum strength requirements of the CMn/low alloy steel.©Metrode Products LimitedPage 9Website Special Issue – 02/035.5.1PROPERTIESTENSILEThe tensile properties of duplex and superduplex weld metals comfortably achieve the requirements of the associated base materials. Transverse tensile tests made using the correct consumable fail in the base material. Typical tensile properties for the various welding processes in duplex and superduplex are given below in Table 6.Table 6: Typical tensile properties UTS, MPa (Ksi) TIG ER329N MIG ER329N SAW ER329N + SSB 2205XKS Ultramet 2205 Supermet 2205 Supercore 2205 / 2205P TIG Zeron 100X MIG Zeron 100X SAW Zeron 100X + SSB Zeron 100XKS Supercore Z100XP 2507XKS Ultramet 2507 800 (116) 800 (116) 800 (116) 810 (118) 850 (123) 850 (123) 800 (116) 920 (133) 920 (133) 920 (133) 900 (130) 880 (128) 900 (130) 950 (138) 0.2% Proof Stress, MPa (Ksi) 600 (87) 600 (87) 600 (87) 660 (96) 675 (98) 650 (94) 650 (94) 725 (105) 725 (105) 725 (105) 700 (102) 690 (100) 700 (102) 750 (109) Elongation, % 4d 32 32 32 28 27 30 27 25 25 25 24 27 28 25 5d 29 29 30 26 25 28 25 24 24 24 22 25 25 22 RoA, % 65 50 50 45 40 40 40 40 40 40 45 33 45 40Although the consumables listed in Table 6 are primarily for use in the as-welded condition, they are also used in the solution annealed condition – typically >1120°C (2050°F) / 3hrs + WQ. Following a solution anneal, the elongation will increase and the UTS will be slightly reduced but the major difference in tensile properties will be the reduction in 0.2% proof stress. Even following a full solution anneal heat treatment, the weld metal will meet the requirements of the appropriate base material. Requirements are now being seen which specify tensile properties at moderately elevated temperatures, eg 120 - 160°C (250-320°F). The graph on the next page, Figure 3, shows the general trend for the reductions in strength to be expected on testing at temperatures up to ~160°C (320°F).©Metrode Products Limited Page 10 Website Special Issue – 02/03Figure 3:Hot Tensile Properties for duplex and superduplex weld metals1000900Duplex 0.2% proof Duplex UTS Superduplex 0.2% proof Superduplex UTSStrength, MPa800700600500400050100150200250Temperature, oC5.2TOUGHNESSCVN toughness versus temperature curves describe a shallow sloping relationship, free from the pronounced ductile-brittle transition characteristics of CMn weld metals. Consequently CVN values show low scatter and overall, reflect a more consistent pattern of weld toughness than achieved from CMn weld metal. See Figures 4 and 5.Figure 4: 22%Cr type standard duplex stainless steel butt weld CVN toughness©Metrode Products LimitedPage 11Website Special Issue – 02/03Figure 5:25%Cr type superduplex stainless steel butt weld CVN toughnessWeld metal oxygen content, in the form of oxide/silicate micro-inclusions, strongly influences toughness. As oxygen increases, toughness is reduced. Gas shielded TIG, PAW and MIG processes promote lower weld metal oxygen levels than flux shielded MMA, FCAW and SAW processes. CVN absorbed energy (joules), for standard 10 x 10mm (0.4 x 0.4in) test specimens, and lateral expansion values show a close relationship up to the 100J level: Lateral Expansion (mm/in) ≈ Charpy Energy (J) 100Since lateral expansion values are not significantly affected by CVN specimen size, they can be used as a useful indicator of potential full-size CVN performance. Correction factors, based on the sub-size test specimen ligament cross-sectional area, provide a useful conversion to potential 10 x 10mm (0.4 x 0.4in) impact values, eg:Specimen size, mm (in)Ligament Area relationship Typical test data, J (ft-lb) Values corrected for 10 x 10 specimen, J (ftlb) J / cm2 (ft-lb/in2)10 x 10 (0.4 x 0.4)10 x 7.5 (0.4 x 0.3)10 x 5 (0.4 x 0.2)10 x 3.3 (0.4 x 0.1)1 95 (70) 95 (70) 119 (546)0.75 56 (41) 75 (55) 93 (430)0.5 41 (30) 82 (60) 103 (469)0.33 27 (20) 82 (60) 102 (469)Analysis of weld metal CVN values and Crack Tip Opening Displacement (CTOD) fracture toughness suggests that 40J (29ft-lb) average, 27J (20ft-lb) minimum single values at the minimum design temperature are sufficient to avoid the risk of brittle fracture. A corresponding minimum CTOD value of 0.1mm (~0.004in) is considered appropriate. Post-weld solution anneal (~1150°C/2100°F) + water quench heat treatment significantly improves weld toughness performance.©Metrode Products LimitedPage 12Website Special Issue – 02/035.3 5.3.1HARDNESS NACENACE requirements define maximum hardness levels for parent material to secure reliable resistance to stress corrosion cracking (SCC) in H2S-bearing ('sour') media. The following table shows the maximum hardness allowed as defined in NACE MR0175-97 (note the most recent revision of MR0175 should be referred to).Grade Duplex UNS S31803 eg SAF 2205 Condition UNS S32750 eg SAF 2507 Superduplex UNS S32760 eg Zeron 100Sol. Ann. + Cold Worked 232°C max. 0.002MPa H2S max. 1100MPa YS max. 36 max.Sol. Ann 232°C. 0.01MPa H2S max. 32 max.Sol. Ann. + Cold Worked 120g/l Cl0.02MPa H2S 34 max.Hardness; HRC5.3.2Weld Metal & HAZNACE hardness limits are used in fabrication specifications covering weldments. The weld root zone is subject to strain hardening induced by thermal contraction stresses. Each weld deposition strain ≡ hardening event. Root weld metal hardness directly relates to the number of weld beads in the joint. For example, 8in (219mm) diameter x 18.3mm (0.75in) wall thickness Zeron 100 superduplex stainless steel pipe TIG welded in the ASME 5G position using Zeron 100X filler wire and completed in 30 passes shows weld metal and HAZ root hardnesses higher than the corresponding cap hardnesses (Figure 6).Figure 6: Zeron 100 butt weld Rockwell C hardness valuesVickers Hardness (HV) is more applicable for the examination of specific weld zones, eg HAZ. (HV 10kg hardness indentation ≈ 1/10 size of HRC 150kg.) If HV is used, care should be taken in correlating to HRC and it is recommended the new Welding Institute (UK) HV/HRC correlation (Figure 7) is used rather than ASTM E140 which was developed for CMn steels.©Metrode Products LimitedPage 13Website Special Issue – 02/03Figure 7:TWI HV/HRC comparisonHardness, HRCHardness, HV The TWI HV/HRC correlation curve, based on statistical interpretation of hardness measurements from a wide range of 22%Cr duplex and 25%Cr superduplex weldments, is more realistic for equating hardness values derived by the two test methods. The limitations of the previous ASTM E140 CMn steel correlation curve are highlighted, particularly with respect to meeting NACE MR0175 HRC hardness requirements for 'sour' service applications.5.4 CORROSIONThe corrosion performance of duplex and superduplex weld metals is often assessed during procedure qualification using the ASTM G48A test. Typical acceptance criteria include: nil pitting, maximum test specimen weight loss of 20mg or 45g/m2 (~0.001lb/ft2)of surface tested. Accurate, meaningful, weight loss determination demands careful attention to test specimen preparation: polishing (eg 1200 grit) of all edges and surfaces not under test. To obtain uniform results, some specifications allow pickling and repassivation – eg 20% HNO3 + 5%HF, 60°C (140°F), 5 minutes as in NORSOK M-601 Rev 2. Ar/1-2%N2 gas shielding (+ pure argon purge) enhances weld metal nitrogen level, to boost pitting resistance, and may be essential practice where: the specified G48A test temperature exceeds the argon shielded ER329N root weld critical pitting limit (~25°C/77°F) and Zeron 100X filler metal usage is prohibited. nitrogen losses from argon shielded Zeron 100X TIG root bead weld metal jeopardises satisfactory G48A test performance at ~40°C (104°F). restoration of pitting resistance where early removal of backing gas protection causes root surface oxidation and susceptibility to attack.With multi-pass TIG welding, Ar + N2 usage should be restricted to initial root runs to avoid excessive nitrogen build-up, and the associated risk of weld porosity.©Metrode Products Limited Page 14 Website Special Issue – 02/03Pitting attack of specimen surfaces not under test, eg edge 'endgrain' micro-structure, is generally not considered a relevant part of acceptance criteria, though may cause problems meeting weight loss limits, where applicable.Figure 8: Pitting diagram5.5MICROSTRUCTURE & FERRITE CONTENTThe properties of duplex and superduplex stainless steel are dependent on the duplex ferritic-austenitic microstructure. Round-robin tests have shown point counting (ASTM E562) of weld joints (weld metal & HAZ) to have very low reproducibility from one laboratory to another. For this reason, it is recommended that, for weld metals, ferrite content be measured in FN (ferrite number) using suitably calibrated magnetic instruments. Despite the better reproducibility of FN measurements and IIW recommendations, procedure specifications still tend to be written around point counting with a ferrite content of about 25-65% normally being specified. Once the filler and hence weld metal composition has been selected, the cooling rate during welding is the factor that primarily controls the ferrite content. Slower cooling rates reduce the ferrite content – hence high heat inputs and preheating reduce the ferrite content. The WRC diagram can be used as a convenient method for estimating the potential ferrite content, in FN, from the analysis. There is always likely to be some discrepancy between calculated and measured ferrite values. There is a move towards acceptance criteria being based on actual corrosion and mechanical properties rather than weld metal microstructure. The 'Position Statement' from IIW in Appendix 6 helps to clarify the position in the case of dispute. Other useful references include: Gooch, T G & Woollin, P: 'Metallurgical examination during weld procedure qualification for ferritic-austenitic stainless steels'; Stainless Steel World 1999 conference, November 1999, The Hague. Kotecki, D J: 'Standards and industrial methods for ferrite measurement'; 1998 Welding Journal, May 49-52.Page 15 Website Special Issue – 02/03-©Metrode Products Limited6 – IIW Position Statement on Ferrite©Metrode Products LimitedPage 16Website Special Issue – 02/03©Metrode Products LimitedPage 17Website Special Issue – 02/037Project ReferencesDUPLEX & SUPERDUPLEX FERRITIC-AUSTENITIC STAINLESS STEELS APPLICATIONSPROJECT REFERENCESMetrode filler materials for welding duplex and superduplex stainless steels have featured extensively in the fabrication of vessels, flowlines and pipework systems for the offshore oil/gas industry, which has increasingly turned to these materials for improved long term performance with a wide range of projects including: AMERADA HESS / Scott Project (UK) MARATHON OIL / East Brae Project (UK) WOODSIDE / Goodwyn A Project (Australia) BP / Forties Project (UK) LASMO / Kadanawari Project (Pakistan) STATOIL / Sleipner Project (Norway) ARCO Alaska / Point McIntyre (USA) CONOCO / Heidrun Project (Norway) PHILLIPS / Judy-Joanne Project (Norway) SHELL / FPSO Project (UK) SHELL / Pelican Project (UK) BP / ETAPS Project (UK) PHILLIPS / Ekofisk II (Norway) PETRONAS Project (Malaysia) SAMSUNG OFFSHORE YARDS (Korea) ONGC / Bombay High Project (India) KHIC (Korea) BP / Foinaven Project (UK) BP / Schiehallion FPSO Project (UK) SHELL / Kingfisher Project (UK) STATOIL / Norne Project (Norway) STATOIL / Gullfacks Project (Norway) WOODSIDE / Laminaria Project (Australia) ELF / N'Kossa Project (Congo) ELF / Girassol Project (Angola) SHELL / Odidi Project (Nigeria) ELF / Grande Paroisse (France) TERRA NOVA / FPSO (Canada) Process pipework, manifold system Manifold system Seawater system Seawater Riser Pipework Flowlines Process pipework and heat exchangers Pipeline Process pipework Process pipework, sub-sea manifolds Production ship process pipework Process pipework, risers, vessels Process pipework, sub-sea manifolds Process pipework Process pipework Process pipework Castings Castings Process pipework Process pipework Sub-sea pipeline Process vessels Sub-sea pipeline Separator & scrubber vessels Flowlines Bundles and Valves Flowlines Heat exchangers Process module pipework©Metrode Products LimitedPage 18Website Special Issue – 02/038 - Links to Appendices - Click and follow the link to the requested file. Use the Bookmark Tag on the file to return to the the main profile. 8a – Data Sheets Data Sheet for 22%Cr Duplex Stainless Steels – B-60 Data Sheet Zeron 100 Superduplex Stainless Steels – Data Sheet for 2507 Superduplex Stainless Steels – B-62 Data Sheet for Copper-containing Superduplex – B-63 8b – Weld Procedures 8c - Guidelines for welding Zeron 100 8d - Application Studies ER329N Sub Arc Wire used for Separator Vessels Supercore 2205P used for custom designed Pump Supercore 2205P and 2205XKS used for York Millennium Bridge Zeron 100X and 2507XKS used for topside modules Zeron 100XKS used for centrifuges Zeron 100X MIG used for motor covers Supercore 2205P used for gas coolers B-61©Metrode Products LimitedPage 19Website Special Issue – 02/03。
2205双相不锈钢标准
2205 双相不锈钢是一种具有优异的耐腐蚀性和高强度的不锈钢材料,被广泛应用于化工、海洋工程、石油和天然气等领域。
以下是2205 双相不锈钢的一些标准:
1. 化学成分:2205 双相不锈钢的化学成分应该符合相关的标准,通常包括铬、镍、钼、氮等元素的含量。
2. 力学性能:2205 双相不锈钢的力学性能应该符合相关的标准,包括屈服强度、抗拉强度、伸长率等指标。
3. 耐腐蚀性:2205 双相不锈钢的耐腐蚀性应该符合相关的标准,包括在各种介质中的耐腐蚀性、抗点蚀性、抗晶间腐蚀性等指标。
4. 金相组织:2205 双相不锈钢的金相组织应该符合相关的标准,包括相比例、晶粒大小、夹杂物等指标。
5. 制造工艺:2205 双相不锈钢的制造工艺应该符合相关的标准,包括冶炼、铸造、锻造、轧制等工艺过程。
2205 双相不锈钢的标准应该包括化学成分、力学性能、耐腐蚀性、金相组织和制造工艺等方面的指标,以确保其具有优异的性能和可靠性。
2205双相不锈钢的制造规定1.2205双相不锈钢的制造,检验,验收应符合《压力容器安全技术监察规程》、GB150-2011《钢制压力容器》、GB151-2011《列管式换热器》的规定,且应满足本规定和施工图的要求。
2.材料:2205双相不锈钢的材料(包括复合板材料)应满足《2205双相不锈钢采购技术要求》的规定。
3.冷成型:成型后变形率超过10%的封头以及拼板后成型的封头,成型后应对封头进行固溶处理,固溶处理的温度为1090℃。
注:变形率ε=(1.5δ/2R f)x(1-R f/R0)x100%式中:ε=钢板变形率,%δ=钢板名义厚度,mm;R f=钢板弯曲后的中线半径,mm;R0=钢板弯曲前的中线半径,mm;对于平板R0=∝,mm;4.热成型:所有热成型加工,在成型后均应进行固溶处理。
注:对于复合板设备,其热处理要求应根据基层材料的厚度,按ASME要求惊醒消除应力热处理。
5.固溶处理后试板的检验要求:5.1 冲击试验;5.2 微组织检验;5.3 硬度及铁素体成分检验;5.4 腐蚀检验5.5 所有上述试验的结果应满足第9条的规定。
6.切割热切割方法仅限于使用等离子弧切割,切割后用机加工方法或精磨去除所有的热影响材料的方法。
7.焊接7.1推荐使用钨极惰性气体保护焊(TIG),焊接材料如下:钨极惰性气体保护焊(TIG)——Sandvik 22.8.3L,Avesta 2205或者Metrode ER329X 填充焊丝。
注:对于复合板设备,其基层之间的焊接材料按施工图。
在确保焊接工艺可行和进行焊接工艺评定后,其他焊接工艺可以使用,任何情况下,焊接材料都应符合<2205双相不锈钢采购技术要求>中关于化学成分的要求。
7.2用外坡口时,焊缝应使用钨电极惰性气体保护焊的方法打底。
打底的最小高度为5mm。
当采用内坡口时,焊缝最后一道焊层应使用钨极惰性气体保护焊。
其最小高度为5mm。
7.3 所有的内部角焊缝应使用钨极惰性气体保护焊。
2205双相钢技术要求1.范围本技术条件适用于2205双相不锈钢材料在国内或国外的订货、检验和验收。
1.1本技术条件适用于2205双相不锈材料中钢板、薄钢板、钢带、钢棒、管件、法兰、锻件等材料。
也适用于2205双相不锈钢与碳钢复合钢板、2205双相不锈钢与碳钢锻件复合钢板等材料。
1.2材料应完全符合ASTM/ASME最新版本中有关条款,还应符合本技术条件的相应附加条款。
2.引用标准2.1 ASTM产品标准ASTM A182/ASME SA182M 锻制合金钢管道法兰、管配件、阀门和零件ASTM A240/ASME SA240M 压力容器用耐热及铬镍不锈钢板、薄板和钢带ASTM A264/ASME SA264M 不锈铬镍复合钢板、薄板和钢带ASTM A350/ASME SA350M 要求缺口韧性试验的管道部件用碳钢和低合金钢锻件ASTM A450/ASME SA450M 碳钢、铁素体合金钢和奥氏合金管子通用要求ASTM A479/ASME SA479M 锅炉和压力容器用不锈钢棒材和型材ASTM A480/ASME SA480M 轧制不锈钢耐热板、薄板和钢带的通用要求ASTM A484/ASTM SA484M 不锈钢棒材、钢胚及锻件通用要求ASTM A789/ASME SA789M 无缝和焊接铁素体/奥氏体不锈钢管(T)ASTM A790/ASME SA790M 无缝和焊接铁素体/奥氏体不锈钢管(P)ASTM A815/ASME SA815M 铁素体、铁素体/奥氏体及马氏体不锈钢管配2.2检验标准ASTM A262 不锈钢晶间腐蚀敏感性试验的推荐方法ASTM A370 钢制品力学性能试验方法和定义ASTM A751 钢制品化学分析方法、实验操作和术语ASTM E18 金属材料的洛氏硬度试验方法ASTM E10 金属材料布氏硬度试验ASTM E381 钢制品宏观侵蚀试验方法ASTM E45 确定夹杂物的实用规程ASTM A923 测定奥氏体/铁素体双相不锈钢有害金属化合物的试验方法ASTM E562 铁素体含量百分比测定ASTM G36 氯化物应力腐蚀开裂试验ASTM G48 不锈钢在铁的氯化物中抗孔蚀及缝隙腐蚀的试验方法4.检验双相不锈钢除应满足ASTM/ASME标准对有关产品(板、管、锻件、法兰、管件)的要求及以下材料的化学成份、机械性能、金相、耐腐蚀性能等还应满足本规定的如下要求:4.1化学成分4.1.1 2205双相钢的化学成分应符合A240/SA240、A789/SA789、A790/SA790、A182/SA182〈2205双相不锈钢的化学成分〉的要求,同时对有害元素按照有关标准进行控制。
中华人民共和国国家标准GB/T×××××——××××铁素体/奥氏体无缝不锈钢管2004年9月前言由于双相不锈钢兼有铁素体不锈钢较高强度及耐氯化物应力腐蚀和奥氏体不锈钢优良韧性及焊接性能的优点,双相不锈钢管的发展迅速,应用越来越广泛,适用于石油工业、化工工业、天然气工业、造纸工业、化肥工业、制盐工业、能源环保工业、食品工业、海水环境等领域。
我国双相不锈钢管的研制开发已有三十余年的历史,而至今尚无该类钢管的专业标准,为适应目前市场经济的发展,进一步满足用户的要求,在原五钢公司企标Q/HY AD103-91的基础上,结合钢材使用用途和实际生产工艺及国内已成熟开发的双相不锈钢钢号,并参照ASTM A789/A789M、ASTM A790/A790M和其他国外先进标准及多家客户的订货技术条件制订而成。
铁素体/奥氏体双相不锈钢无缝钢管1.范围本标准规定了铁素体/奥氏体双相不锈钢无缝钢管的分类、代号、尺寸、外形、技术要求、试验方法、检验规则、包装、标志及质量证明书。
本标准适用于耐一般腐蚀,特别是应力腐蚀的铁素体/奥氏体双相不锈钢的无缝钢管,这类钢管在长时间高温条件下使用对脆性表现敏感。
2.规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后所有的修改单(不包含勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本;凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T222 钢的化学分析用试样取样法及成品化学成分允许偏差GB/T223.11 钢铁及合金化学分析方法过硫酸铵氧化容量法测定铬量GB/T223.16 钢铁及合金化学分析方法变色酸光度法测定钛量GB/T223.19 钢铁及合金化学分析方法新亚铜灵——三氯甲烷萃取光度法测定铜量GB/T223.25 钢铁及合金化学分析方法丁二酮肟重量法测定镍量GB/T223.28 钢铁及合金化学分析方法α—安息香肟重量法测定钼量GB/T223.36 钢铁及合金化学分析方法蒸馏分离—中和滴定法测定氮量GB/T223.40 钢铁及合金化学分析方法离子交换分离—氯磺酚硫光度法测定铌量GB/T223.60 钢铁及合金化学分析方法高氯酸脱水重量法测定硅含量GB/T223.62 钢铁及合金化学分析方法乙酸丁酯萃取光度法测定磷量GB/T223.63 钢铁及合金化学分析方法重碘酸钠(钾)光度法测定锰量GB/T223.68 钢铁及合金化学分析方法管式炉内燃烧后碘酸钾滴定法测定硫含量GB/T223.69 钢铁及合金化学分析方法管式炉内燃烧后气体容量法测定碳含量GB/T223.××钢铁及合金化学分析方法测定钨含量GB/T228 金属材料室温拉伸试验方法GB/T241 金属管液压试验方法GB/T242 金属管扩口试验方法GB/T246 金属管压扁试验方法GB/T230 金属洛氏硬度试验方法GB/T231.1 金属布氏硬度试验方法GB/T2102 钢管的验收、包装、标志和质量证明书GB/T2975 钢及钢产品力学性能试验取样位置及试样制备GB/T4334.5 不锈钢硫酸—硫酸铜腐蚀试验方法GB/T4334.7 不锈钢三氯化铁腐蚀试验方法GB/T4338 金属材料高温拉伸试验GB/T5777 无缝钢管超声波探伤检验方法GB/T7735 钢管涡流探伤方法GB/T11170 不锈钢的光电发射光谱分析方法GB/T17395 无缝钢管尺寸、外形、重量及允许偏差GB/T6401 铁素体奥氏体双相不锈钢α相面积含量金相测定法3.订货内容:按本标准订购钢管的合同或订单应包括下列内容:a)标准编号b)产品名称c)钢的牌号d)尺寸规格(外径×壁厚,单位为毫米)e)订购的数量(重量或支数、米数)f)选择性要求g)其他特殊要求4.尺寸、外形及重量4.1外径和壁厚1钢管的外径和壁厚分别为12~219和0.9~14(单位:毫米),根据需方要求,经供需双方协商,可供应其它外径和壁厚的钢管。
双相不锈钢分类、牌号及标准双相不锈钢一般可分为四类:第一类低合金型,代表牌号UNSS32304,钢中不含钼,PREN:24-25,耐应力腐蚀方面可代替AISI 304或是316使用。
第二类中合金型,代表牌号UNSS31803,PREN:32-33耐蚀性能介于AISI316L和6%MO+N奥氏体不锈钢之间。
第三类高合金型,一般含25%Cr,还含有钼和氮,有的还含有铜和钨,标准牌号有UNSS32550,PREN:38-39耐蚀性能高于22%Cr双相不锈钢。
第四类超级双相不锈钢型,含高钼和氮,标准牌号有UNSS32750,有的也含钨和铜,PREN>40可使用于苛刻的介质条件,具有良好的耐蚀与力学综合性能,可与超级奥氏体不锈钢相媲美。
(注:PREN:孔蚀抗力当量值)化学成分双相钢的最主要合金元素是Cr、Ni、Mo和N。
其中Cr、Mo为增加铁素体含量,而Ni、N为奥氏体稳定元素。
有些钢种还有Mn、Cu、W等元素。
Cr、Ni、Mo能改进抗腐蚀性。
在含氯化物的环境中其抗点蚀及裂缝腐蚀的性能特别好。
1.化学成分(%)表1牌号 C Cr Ni Mo N P S SAF2205 0.030 21.0-23 4.5-6.5 2.5-3.5 0.08-0.2 0.030 0.030 SA2507 0.030 24.0-26 6.0-8.0 3.0-5.0 0.32 0.035 0.020 2.机械性能双相钢机械性能取决于产品形式及最终热处理,下表列出了规定的极限表2项目牌号试验温度℃RP0.2N/mm2RM0.2N/mm2A5%SAF2205 室温450 620 25 100 360150 335200 310250 295300 285SA2507 室温550 800 1000 46 100 450200 400在-50℃-280℃温度范围同,双相不锈钢具有很好的机械性能,当双相钢长期承受300℃以上高温时,其微观组织会发生变化并导致韧性下降,然而,韧性的降低并不一定对处于工作温度的材料性能产生影响。
双相不锈钢执行标准一、化学成分双相不锈钢的化学成分应符合以下要求:1.铬(Cr)含量:≥18%,且≤25%。
2.镍(Ni)含量:≥4.5%,且≤7.5%。
3.钼(Mo)含量:≥3.0%,且≤6.0%。
4.氮(N)含量:≥0.1%,且≤0.3%。
5.钛(Ti)含量:≤0.1%。
6.铝(Al)含量:≤0.1%。
7.碳(C)含量:≤0.2%。
8.磷(P)含量:≤0.03%。
9.硫(S)含量:≤0.02%。
二、力学性能双相不锈钢应满足以下力学性能要求:1.抗拉强度:≥520 MPa。
2.屈服强度:≥290 MPa。
3.断后伸长率:≥25%。
4.断面收缩率:≥40%。
5.冲击功:≥88 J。
6.硬度范围:HRB 89~115。
三、耐腐蚀性能双相不锈钢应具有较好的耐腐蚀性能,特别是耐氯离子腐蚀性能。
在不同浓度和温度的氯化物溶液中,应满足以下耐腐蚀性能要求:1.20%浓度的氯化物溶液,耐应力腐蚀破裂性能应满足NACE要求。
2.在全浸、差压和套压试验条件下,耐应力腐蚀破裂性能应满足ASTM G48-92标准要求。
3.在氯化物点蚀实验条件下,耐点蚀性能应满足ASTM G48-92标准要求。
4.在腐蚀疲劳试验条件下,耐腐蚀疲劳性能应满足ASTM G21-92标准要求。
5.在高温高湿试验条件下,耐腐蚀性能应满足ASTM G67-95标准要求。
6.在海水全浸、差压和套压试验条件下,耐腐蚀性能应满足ISO 9227标准要求。
7.在高温高压水试验条件下,耐腐蚀性能应满足ASTM G67-95标准要求。
8.在常温至高温各种温度的氢氧化物溶液中,耐全面腐蚀性能应满足ASTMG109-96标准要求。
9.在5%硫酸试验条件下,耐局部腐蚀性能应满足ASTM G48-92标准要求。
10.在高温高浓度氯离子试验条件下,耐局部腐蚀性能应满足ASTM G48-92标准要求。
11.在高温高浓度氯离子试验条件下,耐晶间腐蚀性能应满足ASTM G26-97标准要求。