采用FLUENT软件研究旋流煤粉燃烧器燃烧特性
- 格式:pdf
- 大小:681.50 KB
- 文档页数:9
FLUENT燃烧简介FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
1.1 FLUENT燃烧模拟方法概要燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
FLUENT可以模拟宽广范围内的燃烧问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在模拟燃烧中的应用可如下图所示:图 1 FLUENT模拟过程中所需的物理模型1.1.1 气相燃烧模型一般的有限速率形式(Magnussen模型)守恒标量的PDF模型(单或二组分混合分数)层流火焰面模型(Laminar flamelet model)Zimount 模型1.1.2 离散相模型煤燃烧与喷雾燃烧1.1.3 热辐射模型DTRM,P-1,Rosseland 和Discrete Ordinates 模型1.1.4 污染物模型NOx模型,烟(Smoot)模型2.1气相燃烧模型·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:有限速率燃烧模型---预混、部分预混和扩散燃烧混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧反应进度方法(Zimont模型)---预混燃烧混合物分数和反应进度方法的结合---部分预混燃烧2.2.1 有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。
求解积分的输运方程,得到每种组分的时均质量分数值,如下:-----(1)其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:-----(2)-----(3)计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。
有限速率模型的有缺点:优点:适用于预混、部分预混和扩散燃烧,简单直观;缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。
fluent中的heat release rate-概述说明以及解释1.引言1.1 概述热释放速率在燃烧领域中扮演着至关重要的角色,它是描述燃烧过程中能量释放速率的重要参数。
热释放速率的准确模拟可以帮助我们更好地理解燃烧现象,并优化工程设计。
Fluent是一款流体力学仿真软件,可以用来模拟各种流体现象,包括燃烧过程。
本文将重点探讨在Fluent中如何模拟热释放速率,以及其在燃烧领域中的应用和意义。
通过深入研究和分析,我们可以更好地利用Fluent软件进行燃烧仿真,并为工程实践提供更好的支持和指导。
1.2文章结构1.2 文章结构本文分为引言、正文和结论三部分。
在引言部分,首先对文章的主题进行了概述,介绍了研究的背景和意义。
接着对文章的结构进行了概述,简要说明了各部分的内容和逻辑关系。
最后阐明了本文研究的目的,指明了对Fluent中的heat release rate进行深入探讨的意义。
正文部分主要分为三个小节。
首先介绍了Fluent软件的基本情况,包括其特点、应用领域和优势。
然后重点讨论了燃烧模拟中的heat release rate的重要性,分析了其在燃烧过程中的作用和意义。
最后详细介绍了在Fluent中进行heat release rate模拟的方法和步骤,包括模型选择、边界条件设定和求解器设置等方面。
结论部分对全文进行了总结,强调了对Fluent中heat release rate 研究的重要性和必要性。
同时展望了未来在该领域的研究方向和发展前景。
最后,通过对全文的回顾和思考,对本文的研究成果进行了总结,并提出了对读者的建议和思考。
1.3 目的本文旨在探讨在使用Fluent软件进行热释放速率模拟时的方法和技巧。
通过深入分析Fluent中的热释放速率模拟方法,我们可以更好地了解热释放速率在燃烧模拟中的重要性和应用价值。
同时,本文旨在为研究人员和工程师提供一些有用的指导和建议,以便他们在实际工程项目中更好地应用Fluent软件进行热释放速率模拟。
Fluent软件的燃烧模型介绍(精)Fluent软件的燃烧模型介绍Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适⽤于各种复杂情况下的燃烧问题,包括固体⽕箭发动机和液体⽕箭发动机中的燃烧过程、燃⽓轮机中的燃烧室、民⽤锅炉、⼯业熔炉及加热器等。
燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之⼀。
下⾯对Fluent软件的燃烧模型作⼀简单介绍:⼀、⽓相燃烧模型·有限速率模型这种模型求解反应物和⽣成物输运组分⽅程,并由⽤户来定义化学反应机理。
反应率作为源项在组分输运⽅程中通过阿累纽斯⽅程或涡耗散模型。
有限速率模型适⽤于预混燃烧、局部预混燃烧和⾮预混燃烧。
应⽤领域:该模型可以模拟⼤多数⽓相燃烧问题,在航空航天领域的燃烧计算中有⼴泛的应⽤。
PDF模型该模型不求解单个组分输运⽅程,但求解混合组分分布的输运⽅程。
各组分浓度由混合组分分布求得。
PDF模型尤其适合于湍流扩散⽕焰的模拟和类似的反应过程。
在该模型中,⽤概率密度函数PDF来考虑湍流效应。
该模型不要求⽤户显式地定义反应机理,⽽是通过⽕焰⾯⽅法(即混即燃模型或化学平衡计算来处理,因此⽐有限速率模型有更多的优势。
应⽤领域:该模型应⽤于⾮预混燃烧(湍流扩散⽕焰,可以⽤来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体⽕箭发动机中的复杂燃烧问题。
⾮平衡反应模型层流⽕焰模型是混合组分/PDF模型的进⼀步发展,从⽽⽤来模拟⾮平衡⽕焰燃烧。
在模拟富油⼀侧的⽕焰时,典型的平衡⽕焰假设失效。
该模型可以模拟形成Nox的中间产物。
应⽤领域:该模型可以模拟⽕箭发动机的燃烧问题和RAMJET及SCRAMJET 的燃烧问题。
预混燃烧模型该模型专⽤于燃烧系统或纯预混的反应系统。
在此类问题中,充分混合的反应物和反应产物被⽕焰⾯隔开。
通过求解反应过程变量来预测⽕焰⾯的位置。
湍流效应可以通过层流和湍流⽕焰速度的关系来考虑。
应⽤领域:该模型可以⽤来模拟飞机加⼒燃烧室中的复杂流场模拟、⽓轮机、天然⽓燃炉等。
第六章,FLUENT中的燃烧模拟6.1 燃烧模拟的重要性●面向实际装置(如锅炉、内燃机、火箭发动机、火灾等)●面向实际现象(如点火、熄火、燃烧污染物生成等)6.2 FLUENT燃烧模拟方法概要●FLUENT可以模拟宽广范围内的燃烧(反应流)问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在燃烧模拟中的应用可如下图所示:●气相燃烧模型一般的有限速率形式(Magnussen 模型)守恒标量的PDF模型(单或二组分混合物分数)层流火焰面模型(Laminar flamelet model)Zimont 模型●离散相模型煤燃烧与喷雾燃烧●热辐射模型DTRM, P-1, Rosseland 和Discrete Ordinates模型●污染物模型NO x 模型,烟(Soot)模型6.3 气相燃烧模型6.3.1 燃烧的化学动力学模拟实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。
通常的化学反应机理包含了几十种组分和几百个基元反应,而且这些组分之间的反应时间尺度相差很大(10-9~102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。
在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:● 有限速率燃烧模型——>预混、部分预混和扩散燃烧● 混合物分数方法(平衡化学的PDF 模型和非平衡化学的层流火焰面模型)——>扩散燃烧● 反应进度方法(Zimont 模型)——>预混燃烧● 混合物分数和反应进度方法的结合——>部分预混燃烧6.3.2一般的有限速率模型● 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 ● 求解组分的输运方程,得到每种组分的时均质量分数值,如下:6-1其中组分j 的反应源项为所有K 个反应中,组分j 的净生成速率:6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的方法求解。
FLUENT燃烧简介FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
1.1 FLUENT燃烧模拟方法概要燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
FLUENT可以模拟宽广范围内的燃烧问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在模拟燃烧中的应用可如下图所示:图 1 FLUENT模拟过程中所需的物理模型1.1.1 气相燃烧模型一般的有限速率形式(Magnussen模型)守恒标量的PDF模型(单或二组分混合分数)层流火焰面模型(Laminar flamelet model)Zimount 模型1.1.2 离散相模型煤燃烧与喷雾燃烧1.1.3 热辐射模型DTRM,P-1,Rosseland 和Discrete Ordinates 模型1.1.4 污染物模型NOx模型,烟(Smoot)模型2.1气相燃烧模型·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:有限速率燃烧模型---预混、部分预混和扩散燃烧混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧反应进度方法(Zimont模型)---预混燃烧混合物分数和反应进度方法的结合---部分预混燃烧2.2.1 有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。
求解积分的输运方程,得到每种组分的时均质量分数值,如下:-----(1)其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:-----(2)-----(3)计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。
有限速率模型的有缺点:优点:适用于预混、部分预混和扩散燃烧,简单直观;缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。
译者:wyxpuma时间有限,错漏之处在所难免.如有发现可站内 message 我: )使用非预混燃烧模型 Using the Non-Premixed Combustion Model 概要 先决条件 问题描述 使用 prePDF 的准备工作 Step 1: Define the Preliminary Adiabatic System in prePDF Step 2: Compute and Review the Adiabatic System prePDF Look-Up Tables Step 3: Create and Compute the Non-Adiabatic prePDF System Preparation for FLUENT Calculation Step 4: Grid Step 5: Models: Continuous (Gas) Phase Step 6: Models: Discrete Phase Step 7: Materials: Continuous Phase Step 8: Materials: Discrete Phase Step 9: Boundary Conditions Step 10: Solution Step 11: Postprocessing Step 12: Energy Balances and Particle Reporting SummaryIntroduction 概要对煤粉燃烧的模拟包括对连续气相的模拟及其对煤颗粒分散相的相互作用 的模拟.煤颗粒穿过气相时,会进行脱挥发分和焦炭的燃烧,从而成为进行气相 反应的燃料的源.对反应的模拟可通过组分传输模型(the species transport model)或非预混燃烧模型(the non-premixed combustion model)进行模拟. 在此实例指南中, 你将使用非预混燃烧模型模拟一个简化的燃煤炉体内的化学反 应. 在此实例指南中,你将学习: 使用 prePDF 预处理器为煤粉燃料(的燃烧)准备一个 PDF 表 为非预混燃烧化学反应模型定义 FLUENT 的输入参数 为煤颗粒定义一个离散相 求解一个包含反应离散相的煤颗粒的数值模型非预混燃烧模型是采用这样一种建模方法, 即求解一个或两个守恒标量以及混合 分数的的传输方程.多化学组分时,包括根和中间产物,可以采用这种方法被考译者:wyxpuma时间有限,错漏之处在所难免.如有发现可站内 message 我: )虑进来,并且他们的浓度能够通过预测出的混合分数分布计算出来.通过化学数 据库,可以得出组分的正确数据.湍流和化学反应的相互作用可通过使用β或双 δ的概率密度函数 (PDF) 来模拟. 关于非预混燃烧的模型详见 the User's GuidePrerequisitesThis tutorial assumes that you are familiar with the menu structure in FLUENT, and that you have solved Tutorial 1 or its equivalent. Some steps in the setup and solution procedure will not be shown explicitly.问题描述(Problem Description )本例程考虑的煤粉燃烧系统时一个简单的二维管道,截面为 10m×1m,如图 13.1 所示.因为管道对称,图中只显示了宽度的一半.该二维管道的入口分成 两股来流.靠近管道中心的高速来流速度为 50m/s,跨度为 0.125m.另一股来流 速度为 15m/s,跨度为 0.375m.两股来流都是 1500K 的空气.靠近中心高速流股 进入炉膛的煤颗粒,其质量流率为 0.1kg/s(煤颗粒的总流率为 0.2kg/s).管 道的壁温为 1200K 的常温. 基于入口尺寸和平均入口速度的雷诺数约为 100,000. 因此,流动为湍流. 关于煤组成和粒度分布的详细信息将在 step 5(Models: Continuous (Gas) Phase)和 Step 8( Materials: Discrete Phase)中给出.Figure 13.1: 2D Furnace with Pulverized Coal Combustion译者:wyxpuma时间有限,错漏之处在所难免.如有发现可站内 message 我: )对 prePDF 的准备(Preparation for prePDF )1. 启动 prePDF.当你使用非预混燃烧模型,你要先使用前处理器—prePDF-生成一个 PDF 文件. 该 PDF 文件包含了关于各组分浓度,温度与混合分数值之间的联系的信息,并被 FLUENT 在求解过程中用来获得这些标量(组分浓度,温度等) .Step 1: 在 prePDF 中定义初步的绝热系统 (Define the Preliminary Adiabatic System in prePDF )1. 定义 prePDF 模型类别.你可以定义单一燃料流或者燃料流加上另一个流股.激活第二个流股可以让你明了 两个混合分数.对于煤颗粒的燃烧,采用两个流股的方法可以让你明确地将挥发分 (第二个流股)流股同焦炭流股(燃料流)分开.在该例程中,我们将不采用两个 流股的方法,而采用单一混合分数法.SetupCase...(a)译者:wyxpuma时间有限,错漏之处在所难免.如有发现可站内 message 我: )在 Heat transfer options, 保持默认设置 Adiabatic.该例程中讨论的煤粉燃烧器是一个非绝热系统, 在气相与煤颗粒相间, 以及燃 烧器壁面上,都有热量传递.因此,必须在 prePDF 中考虑非 绝热系统.由于非绝热系统较之绝热系统在计算时要耗费更多的时间,因此你 可在启动 prePDF 时先考虑系统为绝热系统. 根据对绝热系统的 PDF/化学 平衡的计算结果,你将确定大致的系统参数,这将使得在非绝热系统下的 计算更具效率.而且,绝热系统的计算将提供绝热火焰温度,混合分数的 化学当量以及各单独组分对化学反应系统的重要性的信息. 这种首先在绝 热系统中计算的方法将被用于所有的考虑在非绝热条件下的 PDF 计算.(b) 在 Chemistry models, 保持默认设置 Equilibrium Chemistry. 对大多数基于 PDF 的数值模拟,推荐 使用 Equilibrium Chemistry 选项. Stoichiometric Reaction ( 混合即完全反应 ) 选项计算量小,但不准确; Laminar Flamelets 选项能够考虑空气拉伸的非平衡现象,例如超平衡基浓度和亚平衡温度. 这对于 NOx 的预测非常重要,但在此例中不必考虑. (c) 保持默认设置 PDF models. 一般的,推荐使用β函数的 PDF 积分,因为他比δ函数的 PDF 积分方法更准确.(d) 在 Empirically Defined Streams, 选择 Fuel stream 选项. 这将允许你采用 empirical 输入选项来定义燃料流股(即根据煤的 ultimate analysis 定义) Empirical 输入选项允许你指定燃料中 H,C,N 和 O 的元素组成 (DAF) 低位发热量和比热. , 当元素分析和热值已知时, 这种指定方法是很有效的. (e) 点击 Apply ,关闭面板 2. 定义系统中的化学组分指定系统中包含哪些组分依赖于燃料类型和燃烧系统. 关于指定组分的指南在FLUENT User's Guide 中有介绍.在这里,你将假定该平衡系统中包含 13 种组分: C, C(s), CH , CO, CO , H, H ,H O, N, N , O, O , and OH.之所以包含 C, H, O, 和 N 是因为我们采用``empirical''输入方法 对燃料进行定义的,因此要用到元素组分.! 当使用 empirical input 选项时,你应当将 C and C(S) 都选入系统SetupSpeciesDefine...译者:wyxpuma时间有限,错漏之处在所难免.如有发现可站内 message 我: )(a) 将 Maximum # of Species 设为 13. 使用上,下箭头来设置最大组分数目,或在数 字框中直接键入数字然后摁<ENTER>. (b) 在 Defined Species 列表中选择最上面的组分(初始标志为 UNDEFINED). (c) 在 Database Species 下拉表单中,使用滚动条拖动表单,并选择 C. 此时 Defined Species 表单中的最顶部组分将显示为 C . (d) 在 Defined Species 列表中选择第二个组分 (或在 Species # 选项中将数目增大为 2). (e) 在 Database Species 下拉 表 单 中 , 使 用 滚 动 条 拖 动 表 单 , 并 选 择 下 一 个 组 分 ( C(S)). (f) 重复 步骤 (d) 和 (e),直到 13 个组分都被定义 (g) 点击 Apply,关闭面板 Note:在其他燃烧系统中,你也许想添加其他化学组分,但你不要添加慢反应的化学组分, 例如 NOx..3. 确定燃料组分输入.本例中考虑的燃料是已知的,根据工业分析,知道含 28%的挥发分,64%的焦炭和 8%的灰分.你要根据这些信息,以及以下给出的元素分析结果,在 prePDF 中定义 煤的组成.燃料流的组成(焦炭和挥发分)可计算如下:译者:wyxpuma时间有限,错漏之处在所难免.如有发现可站内 message 我: )首先将工业分析数据(干燥基)转化为可燃基(干燥无灰基).工业分析 Wt % Wt % Proximate Analysis (dry) Volatiles Char (C(s)) Ash 28 64 8 (DAF) 30.4 69.6 -煤的元素分析如下表:Element Wt % (DAF) C H O N S 89.3 5.0 3.4 1.5 0.8为简单起见,煤中的硫分可并入氮的质量分数,因此最终数据如下:Element Wt % (DAF) C H O N S 89.3 5.0 3.4 2.3 -我们可根据工业分析和元素分析的数据得出挥发分的元素组成如下: can combine Wethe proximate and ultimate analysis data to yield the following elemental composition of the volatile stream: (译者注:这里不是挥发分流股的元素组成,而是整个燃料流股的元素组成,因为该模型采用单混合分数模型,而且表中数据也显示是单流股的摩 尔组成)译者:wyxpuma时间有限,错漏之处在所难免.如有发现可站内 message 我: )Element Wt % Moles Mole Fraction C H O N Total 89.3 5.0 3.4 2.3 7.44 5 0.21 0.16 12.81 0.581 0.390 0.016 0.013你将用到上表中最后一列中的数据.prePDF 将使用这些信息以及煤的热值来定义 燃料中的组分. 煤的低位热值为(DAF) : LCV= 35.3 MJ/kg煤的热容和密度分别为 1000 J/kg-K 和 1 kg/m4. 输入燃料和氧化剂的组分SetupSpeciesComposition...(a) 激活氧化剂流股组分的输入框氧化剂(空气)的组成为 21%的 O2 和 79% 的 N2译者:wyxpuma时间有限,错漏之处在所难免.如有发现可站内 message 我: )i. 在 Stream 下, 选择 Oxidiser. ii. 在 Specify Composition In, 保持默认选项 Mole Fractions. iii. 在 Defined Species 选项中选择 O2 并在 Species Fraction 中输入 0.21. iv. 在 Defined Species 选项中选择 N2 并在 Species Fraction 中输入 0.79 (b) 激活燃料流股组分的输入框 Note: 因为燃料流股已经选择了 empirical 输入选项,您将被提示输入 C,H,O 和 N 的原子摩尔分数,以及燃料的热值和热容.译者:wyxpuma时间有限,错漏之处在所难免.如有发现可站内 message 我: )i. 在 Stream 下, 选择 Fuel. ii. 在 Specify Composition In 中,保持默认选项 Mole Fractions. iii. 在 Defined Species 列表中选择 C 并在 Atom Fraction 中键入 0.581. iv. 在 Defined Species 列表中选择 H 并在 Atom Fraction 中键入 0.390. v. 在 Defined Species 列表中选择 N 并在 Atom Fraction 中键入 0.016. vi. 在 Defined Species 列表中选择 O 并在 Atom Fraction 中键入 0.013. vii. 在 Lower Caloric Value 中键入 3.53e+07 J/kg 在 Specific Heat 中键入 1000 J/kg-K . viii. 点击 Apply ,关闭面板. 5. 定义固体碳的密度.译者:wyxpuma时间有限,错漏之处在所难免.如有发现可站内 message 我: )这里,假定固定碳密度为 1300 kg/m3SetupSpeciesDensity...(a) 在 Defined Species 中选择 C(S) . (b) 将 Density 设为 1300. (c) 点击 Apply ,关闭面板. Note:在计算燃料的混合密度时,prePDF 会用到这个信息.你应当定义固定焦炭的密度, 这个值可能和 FLUENT 中定义的煤的密度不一致, FLUENT 中定义的是包含灰 的煤粒的显密度.6. 定义系统操作条件.在化学平衡计算中需要用到系统压力和入口流温度. 煤燃烧情况下, 燃料流股 的入口温度应当是开始脱挥发分的温度.氧化剂流股的入口温度应当对应于空气入 口温度.在本例程中,煤脱挥发分的温度设置为 400 K,空气入口温度为 1500K,系 统压力为 1 大气压.SetupOperating Conditions...(a)在Fuel和Oxidiser中分别将温度设为400 K 和1500 K。
2005 Fluent 中国用户大会论文集采用FLUENT软件研究旋流煤粉燃烧器燃烧特性由长福(清华大学热能工程系,北京 100084)摘要:本文FLUENT软件研究了实际电站锅炉单个双调风旋流燃烧器附近区域的煤粉燃烧过程。
并分别研究了内二次风旋流强度,外二次风风率,一次风风率和三次风风率等因素对燃烧性能的影响。
各工况计算结果表明,总体上在燃烧器出口处形成了高温区和高煤粉浓度区,燃烧器出口一定距离后的炉内温度呈逐渐上升趋势,炉膛温度分布均匀。
中心高温区出现迟的工况,后期分级燃烧充分。
表明该燃烧器具有高效稳燃和变工况运行稳定的性能。
关键词:旋流燃烧器;数值计算;燃烧性能引 言当前国内使用的电站锅炉,80%是四角切圆煤粉燃烧锅炉,不到10%采用旋流燃烧锅炉[1]。
和四角切圆煤粉锅炉相比,旋流燃烧器锅炉是一种新型的锅炉,结构复杂得多。
已有较多学者采用数值模拟方法研究旋流燃烧器燃烧性能的例子[1-4],这些例子的计算结果都详细预报了由于测量困难而不能充分获得的炉膛内部的温度场,速度场,燃烧产物各组分的浓度分布和污染物的分布,其中文献[2]和[3]还与实验数据比较,比较结果表明,模拟结果与锅炉热态试验数据吻合情况较好,为数值模拟的更广应用提供了依据。
简图如图1燃烧器中心通一股直流的三次风,风量较小。
针对该燃烧器的结构,本文研究了内二次风的旋流强度,二次风的配比,一次风和中心风的风率对燃烧性能的影响。
作者:由长福(1969),男(汉族),黑龙江,副教授,博士,清华大学热能工程系1 计算方法1.1 计算对象和网格生成计算域为单个旋流燃烧器附近的区域,大致为两个燃烧器之间的水冷壁和炉膛。
根据旋流燃烧器出口附近的流场特性,采用二维轴对称结构模拟该区域。
在计算区域的出口采用了倾斜一定角度的斜面以避免由于回流产生的压力计算不准确。
由于要计算旋转流动,为了得到较好的收敛结果,对燃烧器喉部壁面附近、水冷壁附近进行了网格细分。
FLUENT软件的燃烧模型介绍Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
下面对Fluent软件的燃烧模型作一简单介绍:一、气相燃烧模型·有限速率模型这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。
反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。
有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。
应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。
∙PDF模型该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。
各组分浓度由混合组分分布求得。
PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。
在该模型中,用概率密度函数PDF来考虑湍流效应。
该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型)或化学平衡计算来处理,因此比有限速率模型有更多的优势。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
∙非平衡反应模型层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。
在模拟富油一侧的火焰时,典型的平衡火焰假设失效。
该模型可以模拟形成Nox的中间产物。
应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET的燃烧问题。
∙预混燃烧模型该模型专用于燃烧系统或纯预混的反应系统。
在此类问题中,充分混合的反应物和反应产物被火焰面隔开。
通过求解反应过程变量来预测火焰面的位置。
湍流效应可以通过层流和湍流火焰速度的关系来考虑。
应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。
Fluent软件的燃烧模型介绍Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
下面对Fluent软件的燃烧模型作一简单介绍:一、气相燃烧模型·有限速率模型这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。
反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。
有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。
应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。
PDF模型该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。
各组分浓度由混合组分分布求得。
PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。
在该模型中,用概率密度函数PDF来考虑湍流效应。
该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型或化学平衡计算来处理,因此比有限速率模型有更多的优势。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰,可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
非平衡反应模型层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。
在模拟富油一侧的火焰时,典型的平衡火焰假设失效。
该模型可以模拟形成Nox的中间产物。
应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET 的燃烧问题。
预混燃烧模型该模型专用于燃烧系统或纯预混的反应系统。
在此类问题中,充分混合的反应物和反应产物被火焰面隔开。
通过求解反应过程变量来预测火焰面的位置。
湍流效应可以通过层流和湍流火焰速度的关系来考虑。
应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。
射流喷嘴旋流强度对燃烧室回流和燃烧特性的影响研究刘耘州;熊燕;张环;刘艳;张哲巅;肖云汉【摘要】随着燃气轮机参数的提高和稳定低排放运行工况的拓宽,对燃烧的要求也越来越高.柔和燃烧作为一种有潜力的燃烧技术,具有温度均匀、燃烧稳定和污染物排放低等优点,而如何在燃烧室内组织流动是实现柔和燃烧的关键.采用高速射流引射掺混的方式可以较好的满足柔和燃烧产生所需的条件.预混射流喷嘴结构和布置对流场和燃烧特性有重要影响,如何选择射流喷嘴结构值得进一步研究.本文通过实验和数值模拟相结合的方式,研究了柔和燃烧器中预混射流喷嘴的旋流强度对燃烧器流动结构和燃烧排放的影响.结果表明,旋流能增强燃料/空气的掺混,低旋流作用下能使喷嘴出口掺混不均匀度ISMD下降0.15左右;但是喷嘴旋流对燃烧室的烟气回流有减弱的作用,使回流区向喷嘴和中轴线靠近;同时,旋流会造成温度场和火焰面不均匀分布,略微拓宽燃烧工况范围并略微增加火焰的稳定性.实验结果表明喷嘴旋流进气角从0°变化到45°时,NOx排放随旋流角的增大而增加.【期刊名称】《燃气轮机技术》【年(卷),期】2018(031)003【总页数】9页(P13-21)【关键词】射流喷嘴;柔和燃烧;数值模拟;流动结构;NOx排放【作者】刘耘州;熊燕;张环;刘艳;张哲巅;肖云汉【作者单位】中国科学院先进能源动力重点实验室(工程热物理研究所),北京100190;中国科学院大学,北京100049;中国科学院先进能源动力重点实验室(工程热物理研究所),北京100190;中国科学院大学,北京100049;中国科学院能源动力研究中心,江苏连云港222069;中国科学院先进能源动力重点实验室(工程热物理研究所),北京100190;中国科学院大学,北京100049;中国科学院先进能源动力重点实验室(工程热物理研究所),北京100190;中国科学院能源动力研究中心,江苏连云港222069;中国科学院先进能源动力重点实验室(工程热物理研究所),北京100190;中国科学院大学,北京100049;中国科学院能源动力研究中心,江苏连云港222069;中国科学院先进能源动力重点实验室(工程热物理研究所),北京100190;中国科学院大学,北京100049;中国科学院能源动力研究中心,江苏连云港222069【正文语种】中文【中图分类】TK472燃气轮机作为现如今效率最高的热-功转换发电设备,它的制造和研发水平代表了一个国家的重工业水平[1],被誉为“工业皇冠上的明珠”。
第六章,FLUENT中的燃烧模拟6.1 燃烧模拟的重要性●面向实际装置(如锅炉、内燃机、火箭发动机、火灾等)●面向实际现象(如点火、熄火、燃烧污染物生成等)6.2 FLUENT燃烧模拟方法概要●FLUENT可以模拟宽广范围内的燃烧(反应流)问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在燃烧模拟中的应用可如下图所示:●气相燃烧模型一般的有限速率形式(Magnussen 模型)守恒标量的PDF模型(单或二组分混合物分数)层流火焰面模型(Laminar flamelet model)Zimont 模型●离散相模型煤燃烧与喷雾燃烧●热辐射模型DTRM, P-1, Rosseland 和Discrete Ordinates模型●污染物模型NO x 模型,烟(Soot)模型6.3 气相燃烧模型6.3.1 燃烧的化学动力学模拟实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。
通常的化学反应机理包含了几十种组分和几百个基元反应,而且这些组分之间的反应时间尺度相差很大(10-9~102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。
在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:● 有限速率燃烧模型——>预混、部分预混和扩散燃烧● 混合物分数方法(平衡化学的PDF 模型和非平衡化学的层流火焰面模型)——>扩散燃烧● 反应进度方法(Zimont 模型)——>预混燃烧● 混合物分数和反应进度方法的结合——>部分预混燃烧6.3.2一般的有限速率模型● 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 ● 求解组分的输运方程,得到每种组分的时均质量分数值,如下:6-1其中组分j 的反应源项为所有K 个反应中,组分j 的净生成速率:6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的方法求解。
基于Fluent 的预混燃烧分析郭军华1高海宇23(1.上海捷新动力电池系统有限公司,上海200000; 2.同济大学汽车学院,上海201804)摘要:随着能源稀缺和环境恶化状况日趋严重,合理选择发动机燃料,合理组织燃料的燃烧,对提高发动 机的动力性、经济性具有十分重要的意义。
本文分析甲烷-空气预燃混合气及氢气-空气预燃混合气在高温燃 烧器内燃烧时的燃烧压力、温度云图和产物分布图等,阐述燃空当量比、初始温度和初始压力对它们的影响,并 利用已有试验数据进行了验证。
关键词:高温燃烧器有限元校核F l u e n t 燃烧模拟汽车工业的发展,使石油等能源的消耗量急剧增多, 带来了世界能源的严峻形势[1]。
此外,汽车尾气中的C0、 C02、叽等对大气环境带来了巨大污染,引发并加剧了雾霾、 温室效应等[^。
本文研制的高温燃烧器原理类似于定容燃 烧弹,是一种发动机燃烧模拟试验装置。
该装置是一种介 于理论分析和实际应用之间的良好研宄载体。
它可以结合 发动机试验、模拟计算等手段,对燃烧过程进行全面的研 宄分析。
它的主要功能是模拟发动机活塞在上止点附近时 气缸中的燃烧,特点是结构比较简易,可以方便改变热力 参数(包括空燃比、压力和温度)、点火参数(火花塞位置、 点火能量)等。
通过改变某一参数,可以研宄该参数对燃 烧过程的影响,方便模拟不同发动机喷油或点火时缸内的 气体状态。
本文选用Fluent软件的燃烧模块,模拟高温燃 烧器内部的燃烧情况。
1甲烷-空气混合气的预混燃烧模拟1.1建立燃烧模型(1)在对高温燃烧器进行燃烧模拟前,利用ICEM CFD 进行网格划分。
本文将高温燃烧气的燃烧空间简化为一个 圆柱体,然后利用ICEM CFD 15.0对高温燃烧器的燃烧空 间进行髙质量的网格划分。
图1导入燃烧室模型(2) 模型设置。
开启能量方程;Viscous粘性模型选择大涡模拟,然后选择次网格模型为默认设置,壁面普朗 特数和P D F 普朗特数为默认设置0.85,模型种类选择部分 预混燃烧模型,预混选项为默认设置C 方程;在边界物质中, CH4处输入1,其余保持默认设置;计算并显示P D F 表格。
2005 Fluent 中国用户大会论文集采用FLUENT软件研究旋流煤粉燃烧器燃烧特性由长福(清华大学热能工程系,北京 100084)摘要:本文FLUENT软件研究了实际电站锅炉单个双调风旋流燃烧器附近区域的煤粉燃烧过程。
并分别研究了内二次风旋流强度,外二次风风率,一次风风率和三次风风率等因素对燃烧性能的影响。
各工况计算结果表明,总体上在燃烧器出口处形成了高温区和高煤粉浓度区,燃烧器出口一定距离后的炉内温度呈逐渐上升趋势,炉膛温度分布均匀。
中心高温区出现迟的工况,后期分级燃烧充分。
表明该燃烧器具有高效稳燃和变工况运行稳定的性能。
关键词:旋流燃烧器;数值计算;燃烧性能引 言当前国内使用的电站锅炉,80%是四角切圆煤粉燃烧锅炉,不到10%采用旋流燃烧锅炉[1]。
和四角切圆煤粉锅炉相比,旋流燃烧器锅炉是一种新型的锅炉,结构复杂得多。
已有较多学者采用数值模拟方法研究旋流燃烧器燃烧性能的例子[1-4],这些例子的计算结果都详细预报了由于测量困难而不能充分获得的炉膛内部的温度场,速度场,燃烧产物各组分的浓度分布和污染物的分布,其中文献[2]和[3]还与实验数据比较,比较结果表明,模拟结果与锅炉热态试验数据吻合情况较好,为数值模拟的更广应用提供了依据。
简图如图1燃烧器中心通一股直流的三次风,风量较小。
针对该燃烧器的结构,本文研究了内二次风的旋流强度,二次风的配比,一次风和中心风的风率对燃烧性能的影响。
作者:由长福(1969),男(汉族),黑龙江,副教授,博士,清华大学热能工程系1 计算方法1.1 计算对象和网格生成计算域为单个旋流燃烧器附近的区域,大致为两个燃烧器之间的水冷壁和炉膛。
根据旋流燃烧器出口附近的流场特性,采用二维轴对称结构模拟该区域。
在计算区域的出口采用了倾斜一定角度的斜面以避免由于回流产生的压力计算不准确。
由于要计算旋转流动,为了得到较好的收敛结果,对燃烧器喉部壁面附近、水冷壁附近进行了网格细分。
计算区域和网格划分采用GAMBIT 生成,如图2所示。
1.2 数学模型和边界条件使用FLUENT 为计算平台。
气相湍流模型采用的是可实现κ-ε模型(Realizable κ-ε模型[1])。
Realizable κ-ε模型能较好地模拟旋流的原因是湍流粘性系数μT 和ε方程考虑了角变形率即旋涡流动的影响[5]。
采用了混合分数概率密度函数(PDF)模型模拟煤粉燃烧。
煤粉挥发份的释放采用了单倍速率模型;煤粉颗粒的跟踪采用随机轨道模型;辐射模型采用P1模型。
煤粉颗粒以surface 方式从一次风口喷入炉膛,速度与一次风同。
煤粉颗粒的粒径范围为70~200μm ,取10组不同粒径的煤粉颗粒,粒径分布满足Rosin-Rammler 分布公式。
各次风口的速度边界条件采用方便定义旋转速度的Components 方式。
水冷壁热边界条件定水冷壁面温度为5500C 。
计算域的上边界采用壁面应力为零的壁面边界条件,热边界条件热流为零。
出口采用表压力为0的压力边界条件。
1.3工况设计和煤质特性分别计算各影响因素的不同工况来考察燃烧器变工况运行的性能,进而得到较优的燃烧工况,各计算工况见表1。
计算所用的富兴煤是低硫高热值的烟煤,燃煤的工业分析和元素分析的干燥无灰基数据见表2,干燥无灰基数据将用于PDF 模型的计算。
图2 燃烧器出口计算域及网格划分表1、影响因素计算工况Case1 Case2 Case3 Case4 内二次风旋流强度Ω0.5 1.0 1.45 1.85内二次风风率30%, 外二次风风率57%, 一次风率10%, 三次风率3%外二次风风率(%)52.2 57 65.3 69.6内二次风旋流强度Ω=1.45, 一次风率10%, 三次风率3%一次风风率(%)10 16 20内二次风Ω=1.45, 内二次风风率30%, 外二次风风率57%, 三次风率3%三次风风率(%) 1 2 3 4 内二次风Ω=1.45, 内二次风风率30%, 外二次风风率57%, 一次风率10%表2 煤质工业分析和元素分析干燥无灰基数据V daf % C daf%H daf%O daf%N daf%S daf Q net.daf% MJ/kg30.4 82.633 4.716 10.598 1.383 0.669 31.8562 计算结果分析2.1 旋流燃烧器燃烧性能总体分析图3给出了燃烧器出口区域和炉膛温度,碳浓度和氧气浓度的计算结果,计算工况为内二次风率30%,内二次风旋流强度1.0,外二次风率57%,一次风率1%,三次风率2%。
从图a中可以看出,燃烧器出口有一局部高温区,该高温区起始于燃烧器一次风出口与二次风出口交汇处,随后径向向外扩展,这是由于受到内二次风旋转速度的影响。
该高温区温度高达16000C。
从图b中可以看出,在该高温区也是高煤粉浓度区,同时从图c中看出,氧气在该区域消耗迅速。
可以得出在燃烧器一二次风口交汇区域形成了高温,高煤粉浓度和高氧浓度的三高区。
随着射流向外发展,外二次风迅速补充进燃气,从图b中也可以看出碳浓度在三高区后的区域内浓度也很高,使得分级燃烧继续进行,炉膛温度呈逐逐渐上升趋势,最高温度达到17500C,且分布较为均匀。
从图b中可以看出,水冷壁附近碳浓度很低,几乎没有煤粉颗粒进入该区域。
图c中水冷壁附近呈氧化性气氛,提高了灰分的熔化温度。
这说明该旋流燃烧器能减轻结渣问题。
a 温度场分布(K)b 碳浓度分布c 氧气浓度分布图3. 燃烧器出口区域和炉膛温度、碳浓度和氧气浓度分布图2.2 内二次风旋流强度对燃烧性能的影响对双调风旋流燃烧器冷态流场影响因素的研究表明,内二次风旋流强度的大小对回流区的大小和回流量有重要影响。
旋流强度大能卷吸的回流量多,形成的回流区的长度和宽度也大[6.7]。
图4给出了内二次风旋流强度对炉膛轴线处温度场、碳浓度和氧浓度分布的影响。
图中x 表示中心轴线上的坐标,D 表示燃烧器出口直径。
从图a 中可以看出,随着内二次风旋流强度的增大,中心高温回流区的出现提早。
这是因为内二次风旋流强度大,能够回流更多的高温烟气,煤粉气流能被更快的加热到着火温度,从而提前燃烧,产生高温区。
但是燃气射流充分发展后,旋流强度小的工况最终的炉膛温度最高,内二次风旋流强度0.5时最终的炉膛温度比旋流强度为1.85时高500C ,这说明内二次风旋流强度小时后期分级燃烧充分,但是前期燃烧有所削弱。
同时从图a 中还可以看到,任意一工况,达到炉内最终温度的位置是一致的,这表明内二次风旋流强度小时从低温区过渡到中心高温区的时间短,能迅速达到炉内最高温度。
从图b 的碳浓度和图c 的氧气浓度分布看,碳浓度和氧气浓度的高低与中心高温区出现的早晚对应。
内二次风旋流强度为1.85和1.45的工况,前期燃烧剧烈,煤粉浓度基本聚集于轴线温度迅速上升的区域,此区域外煤粉浓度稀少。
内二次风旋流强度小的工况,碳浓度在中心高温区外在轴向方向仍有较大宽度的分布,分级燃烧充分,氧气消耗充分。
2.3 外二次风风率对燃烧性能的影响通过对冷态流场的研究,直流外二次风风率的大小影响一次风和旋流内二次风的前期混和 [8]。
图5给出了外二次风风率对炉膛轴线温度场、碳浓度和氧浓度分布的影响。
从图a 中可以看出随着外二次风风率的增大,中心高温回流区的出现推迟,这是因为外二次风风率增大,外二次风轴向速度增大,则外二次风旋流强度减小,同时影响内二次风旋流强度,综合旋流强度亦减小,根据3.2的分析,中心高温区的出现将推迟。
但外二次风风率低时炉内最终温度比风率高时要高,外二次风风率52.2%时比69.6%时约高700C 。
这可能是因为外二次风风率大时,煤粉颗粒被迅速吹到炉膛深部,在炉内停留时间短,未充分燃烧所致。
2.4 一次风风率对燃烧性能的影响煤粉空气混合物中的一次风风率大小对煤粉着火热有重要影响,从而会影响着火快慢。
图6给出了一次风风率对燃烧器区域及炉膛轴线温度场、碳浓度和氧浓度分布的影响。
从图a 中可以看出,随着一次风风率的增加,中心高温区的出现提前。
一次风风率为10%时,一次风风量较低,煤粉着火燃烧初期得不到足够的氧气,化学反应速度减慢,未能放出足够热量使得迅速出现中心高温区。
一次风风率20%的工况,后期燃烧不如一次风风率为10%的工况充分,炉膛最终温度不如一次风率为10%的高,这表明一次风风率为20%的工况一次风风量有过剩。
Te m p e r a t u r e (K )x/D0.0000.0010.0020.0030.004M a s s f r a c t i o n o f C (s )x/Da 对温度场的影响b 对碳浓度分布的影响0.000.050.100.150.200.25M a s s f r a c t i o n o f O 2x/Dc 对氧气浓度分布的影响图4. 内二次风旋流强度对轴线温度场、碳浓度场和氧气浓度场分布图T em p e r a t u r e (K )x/DM a s s f r a c t i o n o f C (s )x/Da 对温度场的影响b 对碳浓度分布的影响0.000.050.100.150.200.25M a s s f r a c t i o n o f O 2x/Dc 对氧气浓度分布的影响图5. 外二次风风率对轴线温度场、碳浓度场和氧气浓度场分布图2.5三次风风率对燃烧性能的影响三次风风速的大小回流区的结构有重要影响。
图7给出了三次风风率对燃烧器区域及炉膛轴线温度场、碳浓度和氧浓度分布的影响。
从图a 中可以看出,随着三次风率的提高,中心高温区的出现推迟。
这是因为三次风率高,三次风风速大,射流刚性强,推迟回流区的形成和高温烟气的回流所以煤粉燃烧推后。
三次风风率为4%时,炉膛区域温度最高。
从图c 中可以看出,该工况时,氧气浓度在炉膛区域渐进降低,分级燃烧效果明显。
三次风风率的影响有和前面影响因素一样的结论,中心高温区出现迟的工况达到炉膛最终温度高,速度快。
T e m pe r a t u r e (K )x/DM a s s f r a c t i o n o f C (s )x/Da 对温度场的影响b 对碳浓度分布的影响0.000.050.100.150.200.25M a s s fr a c t i o n o f O 2x/Dc 对氧气浓度分布的影响图6. 一次风风率对轴线温度场、碳浓度场和氧气浓度场分布图T e m p e r a t u r e (K )x/DM a s s f r a c t i o n o f C (s )x/Da 对温度场的影响b 对碳浓度分布的影响0.000.050.100.150.200.25M a s s f r a c t i o n o f O 2x/Dc 对氧气浓度分布的影响图7. 三次风风率对轴线温度场、碳浓度场和氧气浓度场分布图结束语本文通过对新型双调风旋流燃烧器单个燃烧器附近的炉膛区域的煤粉燃烧过程进行数值计算,研究了该燃烧器的燃烧性能,并考察了内二次风旋流强度,外二次风,一次风和三次风风率对燃烧器燃烧性能的影响,得出了这些影响因素的一些基本规律。