电基本振子
- 格式:doc
- 大小:246.00 KB
- 文档页数:5
微波天线与技术课程报告汇总《微波技术与天线》课程考察报告姓名:专业班级:学号:指导老师:许焱平绪论1.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。
2.微波的定义:把波长从1m 到0.1mm 范围内的电磁波称为微波。
微波波段对应的频率范围为: 300MHz ~3000GHz 。
在整个电磁波谱中,微波介于超短波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽1000倍。
一般情况下,微波又可划分为分米波、厘米波和毫米波和亚毫米四个波段。
3.微波具有如下主要特点:(1)似光性;(2)穿透性;(3)宽频带特性;(4)热效应特性;(5)散射特性;(6)抗低频干扰特性;(7)视距传输特性;(8)分布参数的不确定性;(9)电磁兼容和电磁环境污染。
4.微波技术的主要应用:(1)在雷达上的应用;(2)在通讯方面的应用;(3)在科学研究方面的应用;(4)在生物医学方面的应用;(5)微波能的应用。
f λ31081051010(m)(Hz)3103231063109-13101210-43101510-73101810-10无线电波宇宙射线射频目录绪论 (1)目录 (2)一、均匀传输线理论 (3)二、规则金属波导 (4)三、微波集成传输线……………………5四、微波网络基础 (5)五、微波元器件 (6)六、天线辐射与接收的基本理论 (7)七、电波传播概论 (8)八、线天线 (9)九、面天线 (10)十、微波应用系统 (11)心得体会 (12)本课程我们共学习了十章,主要学习了均匀传输线理论、规则金属波导、微波集成传输线、微波网络基础、微波元器件、天线辐射与接收理论、电波传播概论、线天线、面天线、微波应用系统。
微波技术与天线公式电基本振子的辐射功率22240⎪⎭⎫⎝⎛=λπL I p r电基本振子的辐射电阻2280⎪⎭⎫⎝⎛=λπL R r对称振子电流分布|)|(sin )(z l k I z I m -= 对称振子方向函数()θθϕθsin )cos()cos cos(|,f |kl kl -=半波对称振子归一化方向函数θθπϕθsin )cos 2cos(),(=F 对称振子方向系数⎰⎰===πϕπθθθϕθϕπ2022sin ),(4d F d D 半波对称振子D=1.64推论:rP r E D 60||22max =2max60r DP E r=),(60ϕθF rDP E r=天线效率lr rin r A R R R P P +==η 天线在最大辐射方向的增益系数D G A η=接收天线有效接收面积πλ42D A e =在各天线元为相似元的情况下,天线的方向函数可以近似为单元因子与阵因子的乘积:|),(||),(||),(|1ϕθϕθϕθa f f f ∙=均匀直线阵)2sin()2sin(),(ψψϕθnf a = 为整数,m m n f a ,2),(max πψϕθ==二元天线阵θξψθψcos ,1)(kd me f j a +=+=理想地面上的对称半波振子∆∆=∆cos )sin 2cos()(1πf 理想地面上的水平半波振子21)sin (cos 1)cos()sin cos cos()(ϕϕ∆--∆=∆kl kl f理想地面接地振子∆-∆=∆cos )cos()sin cos()(kl kl f微波频率300MHz —3000GHz 传输线方程的解'''',)()(''Z U I e I e I z I e U e U z U z r z i zr z i =-=+=--γγγγ 传输线特性阻抗Cj G Lj R Z ωω++=传播常数βαωωγj C j G L j R +=++=))(( 相移常数Pλπβ2=相速度βωε==rlightp c v 当线长度为l 时,长线始端输入阻抗ljZ Z ljZ Z Z l Z L L in ββtan tan )(000++=4/λ变换性)'()4/'(20z Z z Z Z in in ∙+=λ 2/λ重复性)'()2/'(z Z z Z in in =+λ反射系数'200)'(z L L eZ Z Z Z z γ-+-=Γ 终端反射系数0Z Z Z Z L L L +-=Γ 对于无耗传输线)'2('2)'(z j L z j L L e e z βϕβ--Γ=Γ=Γ驻波系数LL Γ-Γ+=11ρ11+-=ΓρρL 终端短路线上任意一点输入阻抗:)'tan()'(0z jZ z Z in β= 终端开路线上任意一点输入阻抗:)'(cot -)'(0z jZ z Z in β= 波导波长21⎪⎪⎭⎫ ⎝⎛-=c g λλλλ波导尺寸为真空的工作波长,λλλb a a 2,2><<,截止波长a c 2=λ 阻抗参数⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡212212211121II Z Z Z Z U U转移参数⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡222221121111IU A A A A I US 参数与A 参数的关系:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++-+-+++++++++-+-=2221121121121122222112112221121122211211211222112det 2a a a a a a a a a a a a a a a a A a a a a a a a a S L L in S S S S Γ-Γ+=Γ22211211111,+-=ΓL L L Z Z11,111211222+-=ΓΓ-Γ+=Γg g g gg out Z Z S S S S电压传输系数21S T = 插入相移)arg(21S =θ 插入驻波比111111S S -+=ρ 插入衰减2211log10S L =。
微波技术与天线实验报告学院:信电学院班级:通信2班姓名:学号:2014年4月29日利用matlab绘制电基本振子E面方向图和空间立体方向图一、实验目的1、复习Matlab的使用。
2、利用Matlab绘制电基本振子E面方向图。
3、利用Matlab绘制电基本振子空间立体方向图。
二、实验原理电基本振子(Electric Short Dipole)又称电流元,它是指一段理想的高频电流直导线,其长度l远小于波长λ,其半径a远小于l,同时振子沿线的电流I 处处等幅同相。
用这样的电流元可以构成实际的更复杂的天线,因而电基本振子的辐射特性是研究更复杂天线辐射特性的基础。
三、实验设备仿真软件matlab7.0计算机、四、实验内容及步骤1、根据电基本振子方向函数利用Matlab编程,并画出其E方向图。
源程序如下:sita=meshgrid(eps:pi/180:pi);fai=meshgrid(eps:2*pi/180:2*pi)';f=abs(sin(sita));fmax=max(max(f));a=linspace(0,2*pi);f=sin(a);subplot(1,1,1),polar(a,abs(f)); title('电基本振子E平面');运行结果如图1(电基本振子E方向图)。
2、利用Matlab绘制电基本振子空间立体图。
代码如下:sita=meshgrid(eps:pi/180:pi);fai=meshgrid(eps:2*pi/180:2*pi)';f=abs(sin(sita));2 2fmax=max(max(f));[x,y,z]=sph2cart(fai,pi/2-sita,f/fmax);subplot(1,1,1),mesh(x,y,z);axis([-1 1 -1 1 -1 1]);title('电基本振子空间立体方向图');运行结果如图2(电基本振子空间立体方向图)。
第一章1.天线的定义:用来辐射和接收无线电波的装置2.天线的作用:3.天线基本辐射单元:电基本振子、磁基本振子、惠更斯元4.电基本振子又称电流元,其辐射场是球面波(等相位面的形状),辐射的是线极化波,传输的波的模式是横电磁波(TEM 波,沿传播方向电场、磁场分量为0)5.媒质波阻抗η 自由空间(120ηπ=Ω) 电基本振子E H θηϕ= 磁基本振子E H ϕθη=-6. 磁基本振子又称磁流元、磁偶极子7. 电基本振子归一化方向函数(,)sin F θϕθ=理想电源归一化方向函数(,)1F θϕ=8.方向图:E 面 H 面9. 电基本振子E 面方向函数()sin E F θθ=,H 面()1H F ϕ=磁基本振子E 面方向函数()1E F θ=,H 面()sin H F ϕϕ=10.方向系数:在同一距离及相同辐射功率条件下,某天线在最大辐射方向上的辐射功率密度(场强的平方)和无方向性天线(点源)的辐射功率密度(场强的平方)之比11.电基本振子D=1.5 半波振子D=1.6412.增益系数:在同一距离及相同输入功率条件下,某天线在最大辐射方向上的辐射功率密度(场强的平方)和无方向性天线(点源)的辐射功率密度(场强的平方)之比13.天线效率:物理意义(表述了天线能量转换的有效程度)14. A G D η=15.天线极化可分为:线极化、圆极化、椭圆极化16.有效长度17.输入阻抗18.频带宽度19.有效接收面积是衡量接收天线接收无线电波能力的重要指标。
20.对称振子中间馈电,极化方式为线极化,辐射场为球面波。
计算输入阻抗采用“等值传输线法”,最终等效成具有一平均特性阻抗的有耗传输线。
对称振子天线振子越粗,平均特性阻抗越小。
21.末端效应:由于对称振子末端具有较大的端面电容,末端电流实际不为零。
22.采用天线阵是为了加强天线的定向辐射能力。
23.方向图乘积定理P2624.水平线天线镜像一定时负镜像;垂直对称线天线正镜像垂直驻波单导线半波正垂直驻波单导线全波负25.无限大理想导电反射面对天线电性能的影响主要有两个方面:对方向性的影响;对阻抗特性的影响26.沿导电平面方向,正镜像始终是最大辐射,负镜像始终是零辐射。
第二章 基本振子的辐射1、基本电振子(Electric Short Dipole )1.1基本振子的辐射场基本电振子又称作元天线或电流元,或基本振子,它是一个长为的无穷小直导线,其上电流为均匀分布I 。
如果建立如图2-1所示坐标系,由电磁场理论很容易求得其矢量位A 为00ˆ()4ˆˆ4j R ll j r z e A z I z R e z Idz z A r ββμπμπ−−−dz ′′===∫ (2.1)图2-1 (a) 基本振子及坐标系 (b) 基本振子及场分量取向在球坐标系中,A 的表示为ˆˆˆr A rA A A θϕθϕ=++ ,利用球坐标中矢量各分量与直角坐标系中矢量各分量的关系矩阵 sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A θϕθϕθϕθθϕθϕθϕϕ⎡⎤⎡⎡⎤⎤⎢⎥⎢⎢⎥=−⎥⎢⎥⎢⎢⎥⎥⎢⎥⎢⎢⎥−⎣⎦⎥⎣⎦⎣⎦(2.2) 因,可得 0x y A A ==cos sin 0r z z A A A A A θϕθθ⎧=⎪=−⎨⎪=⎩ (2.3) 由00A E j A j ωωμε∇∇=−+ i 和01H A μ=∇× ,可得基本振子的电磁场各分量为 02021sin 1411sin 14()1cos 120j r j r j rr r Idz H j e r j r Idz E j e r j r j r Idz E e j r r E H H βϕβθβϕθβθπββηθπββηθβπ−−−⎧⎛⎞=+⎪⎜⎟⎝⎠⎪⎪⎡⎤⎪=++⎪⎢⎥⎨⎣⎪⎛⎞⎪=+⎜⎟⎪⎝⎠⎪===⎪⎩⎦ (2.4) 式中,E 和H 分别为电场强度和磁场强度;下标、r θ、ϕ表示球坐标系中的各分量。
自由空间媒质的介电常数为129018.854/10/3610F m F επ−−=×≈× m ;磁导率为70410/H m μπ−=×;相位常数2/βπλ=;λ为自由空间中的波长;0η=为媒质中的波阻抗,在自由空间中0120ηπ=欧;θ为天线轴与矢量之间的夹角。
微波技术与天线考试重点复习归纳第⼀章1.均匀传输线(规则导波系统):截⾯尺⼨、形状、媒质分布、材料及边界条件均不变的导波系统。
2.均匀传输线⽅程,也称电报⽅程。
3.⽆⾊散波:对均匀⽆耗传输线, 由于β与ω成线性关系, 所以导⾏波的相速v p 与频率⽆关, 称为⽆⾊散波。
⾊散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为⾊散特性。
11010010110cos()sin()tan()()tan()cos()sin()in U z jI Z z Z jZ z Z z Z U Z jZ z I z jz Z ββββββ++==++02p rv fλπλβε===任意相距λ/2处的阻抗相同, 称为λ/2重复性z1 终端负载221021101()j z j zj zj zZ Z A ez eeZ Z A eββββ----Γ===Γ+ 1101110j Z Z eZ Z φ-Γ==Γ+ 终端反射系数均匀⽆耗传输线上, 任意点反射系数Γ(z)⼤⼩均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性4.00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ111ρρ-Γ=+ 1111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波⽐其倒数称为⾏波系数, ⽤K 表⽰5.⾏波状态就是⽆反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。
综上所述, 对⽆耗传输线的⾏波状态有以下结论: ①沿线电压和电流振幅不变, 驻波⽐ρ=1;②电压和电流在任意点上都同相; ③传输线上各点阻抗均等于传输线特性阻抗6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e-j2βz此时传输线上任意⼀点z 处的输⼊阻抗为0()tan in Z Z jZ zβ=①沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为⽆功功率, 即⽆能量传输; ②在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最⼤且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最⼤且等于2|A 1|, ⽽电流为零, 称这些位置为电压波腹点。