设计--直流电机综合测控系统设计
- 格式:docx
- 大小:1.73 MB
- 文档页数:24
基于PLC的直流电机控制系统设计摘要:本文提出了一种利用可编程逻辑控制器件(plc)对他励直流电机进行速度控制的方法。
该方法使plc工作在dc/dc斩波模式,通过将固定直流电压转变为可变直流电压提供给电机电枢。
pang-pang控制是依据参考速度来导通或关断直流电机的电源。
这种方法简单、迅速而且有效,能够在0至100%范围内调整电机转速。
该系统能够广泛应用于不同的工业应用场合。
关键词:直流电机可编程逻辑器件速度控制中图分类号:tm921.5 文献标识码:a 文章编号:1007-9416(2013)01-0010-021 引言直流电机的速度控制相对于交流电机来说更加的简单,成本也更低。
但是由于有换向器的存在,直流电机不太适用于转速要求较高的场合,而且也有维修成本。
固定交流电压通过可控整流器得到可变直流电压输出,而固定直流电压可以通过斩波器得到可变直流电压输出[1]。
由于以上两者能提供连续可变的直流电压,使得其在工业控制中的到广泛应用。
可编程逻辑器件(plc)是一种工业计算控制单元,它能够在各种处理过程和工况环境下执行离散或连续的控制[2]。
工业过程控制时plc应用最为广泛的场合。
本文利用plc工作在dc/dc斩波器模式下,提出一种基于plc的直流电机速度控制系统。
该系统避免了功率管的时间导数dv/dt或者di/dt。
该系统能广泛应用于各种环境下。
2 直流电机的经典斩波控制方法直流斩波器是用来改变电枢电压的一种器件,它连接在固定直流电压源与直流电机之间。
斩波器能提供电机的制动反馈能量,并能把能量反馈到电源[3,4]。
他励直流电机的斩波控制电路如图1所示。
电机电流是否连续取决于占空比和电枢电感。
图2所示为电机电流连续和不连续时的波形。
其中有三种可能的工作模式,下面将逐一介绍。
模式一:功率管t导通,在0<t<t1时电源给电机供电,ia=i1,此时电压方程为(1)转矩方程为(2)模式二:功率管t关断,在t1<t<t2时二极管续流,ia=i2,系统方程有(3)(4)模式三:t2<t<t电机处于惯性滑行阶段(5)(6)3 控制系统设计基于plc的直流电机控制系统框图如图3所示。
0 前言在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用,无论在工业农业生产、交通运输、国防航空航天、医疗卫生、商务与办公设备,还是在日常生活中的家用电器,都在大量地使用着各式各样的电动机。
据资料统计,现在有的90%以上的动力源来自于电动机,电动机与人们的生活息息相关,密不可分。
随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。
直流电动机具有优良的调速特性,调速平滑、方便,调速范围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转,能满足生产过程自动化系统各种不同的特殊运行要求。
直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。
直流电机的数字控制是直流电动机控制的发展趋势,用单片机的数字控制的发展趋势,用单片机进行控制是实现电动机数字控制的最常用的手段。
由于电网相控变流器供电的直流电机调速系统能够引起电网波形畸变、降低电网功率因数,除此之外,该系统还有体积大、价格高、电压电流脉动频率低、有噪声等缺点。
而采用直流电动机的PWM调速控制系统可以克服电网相控调速系统的上述诸多缺点。
电动机的控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、电动控制技术、微机应用技术的最新发展成果。
正是这些技术的进步使电机控制技术在近20多年内发生了翻天覆地的变化,其中电动机的控制部分已由模拟控制逐渐让位于以单片机为主的微处理器控制,形成数字和模拟的混合控制系统和纯数字控制的应用,并曾向全数字化控制方向快速发展。
电动机的驱动部分所用的功率器件经历了几次更新换代,目前开关速度更快、控制更容易的全控型功率器件MOSFET和IGBT成为主流。
功率器件控制条件的变化和微电子技术的使用也使新型的电动控制方法能够得到实现,脉宽调制控制方法(PWM和SPWM),变频技术在直流调速和交流调速中获得广泛的应用。
电子信息与电气工程系课程设计报告设计题目:直流伺服电机控制系统设计系别:电子信息与电气工程系年级专业:学号:学生姓名:2006级自动化专业《计算机控制技术》课程设计任务书摘要随着集成电路技术的飞速发展,微控制器在伺服控制系统普遍应用,这种数字伺服系统的性能可以大大超过模拟伺服系统。
数字伺服系统可以实现高精度的位置控制、速度跟踪,可以随意地改变控制方式。
单片机和DSP在伺服电机控制中得到了广泛地应用,用单片机作为控制器的数字伺服控制系统,有体积小、可靠性高、经济性好等明显优点。
本设计研究的直流伺服电机控制系统即以单片机作为核心部件,主要是单片机为控制核心通过软硬件结合的方式对直流伺服电机转速实现开环控制。
对于伺服电机的闭环控制,采用PID控制,利用MATLAB软件对单位阶跃输入响应的PID 校正动态模拟仿真,研究PID控制作用以及PID各参数值对控制系统的影响,通过试凑法得到最佳PID参数。
同时能更深度地掌握在自动控制领域应用极为广泛的MATLAB软件。
关键词:单片机直流伺服电机 PID MATLAB目录1.引言 ...................................................... 错误!未定义书签。
2.单片机控制系统硬件组成.................................... 错误!未定义书签。
微控制器................................................ 错误!未定义书签。
DAC0808转换器.......................................... 错误!未定义书签。
运算放大器............................................... 错误!未定义书签。
按键输入和显示模块....................................... 错误!未定义书签。
电气测量综合控制系统设计-学生版作者: 日期:1•技术数据系统用线性集成电路运算放大器作为调节器的转速、电流无静差直流控制系 统,主电路由晶闸管可控整流电路供电的 V-M 系统,各设计具体参数如下: 设计1:某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基 本数据如下直流电动机:额定电压 U N =220V ,额定电流I N =13°A ,额定转速 n N "500r.m in ,电动机电势系数C^0.132Vmin ・r ,允许过载倍数■ =1-5。
晶闸管装置放大系数:Ks =40电枢回路总电阻:R".5「 时间常T | = 0.03s,T m = 0.18s 滤波时间常数T on =T oi =0.0035s电流反馈系数:1 =0-062V 「A设计要求: 1)稳态指标:无静差;2)动态指标:电流超调量 门乞5% ;空载起动到额定转速时的转速超调量 c n % ::: 10%设计2:某双闭环直流调速系统,采用晶闸管三相桥式全控整流电路供电,基本 数据如下:直流电动机 U N =220V , I N =136A ,n N =1460r/mi n ,电枢电阻 R a =0.2 Q 允 许过载倍数入=1.5晶闸管装置T s =0.00167s 放大系数K s =40;平波电抗器:电阻R p =0.1门、电感L p =4mH ;电枢回路总电阻 R=0.5Q ;电枢回路总电感 L=15mH ;电动机轴上的总飞轮惯量GD 2=22.5N m 2;电流调节器最大给定值U im =10.2V ,转速调节器最大给定值U nm"=10.5V ; 电流滤波时间常数T °i =0.002s,转速滤波时间常数T on =0.01s=设计要求:转速反馈系数: :--0.008V min r1)稳态指标:转速无静差;2)动态指标:电流超调量「乞5% ;空载启动到额定转速的转速超调量二n -10%。
课程设计--直流电机调速控制系统设计指导教师评定成绩:审定成绩:**********课程设计报告设计题目:直流电机调速控制系统设计学校:********************学生姓名:**********专业:********************班级:***********学号:**************指导教师:*****************8设计时间:2013 年12 月目录引言 (3)一、直流电动机的工作原理 (4)二、直流电动机的结构 (5)三、直流电动机的分类 (6)四、电动机的机械特性 (7)五、他励直流电动机起动 (10)六、他励直流电动机的调速方法 (11)七、PWM调制电路 (14)八、H桥驱动电路 (14)九、直流电动机调速控制系统设计 (15)十、心得体会 (22)附录参考文献 (23)课程设计任务书 (23)引言现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。
直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。
改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。
PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。
直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。
随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展,到目前为止,已经出现了多种PWM控制技术。
基于c8051的直流无刷电机控制系统的设计
设计一个基于c8051的直流无刷电机控制系统,可以按照以下步骤进行:
1. 选择合适的c8051单片机芯片,建议选择具备PWM输出和
高速计数器功能的型号。
2. 设计电机驱动电路,包括功率电路和驱动电路。
功率电路通常由MOSFET H桥组成,负责将电机驱动电压转换为驱动电流。
驱动电路负责根据单片机控制信号控制MOSFET开关,
控制电机的起停和运动方向。
3. 编写单片机的控制程序。
需要实现以下功能:
- 设定电机转速或转矩的目标值;
- 读取电机的实际转速或转矩;
- 根据目标值和实际值进行比较,计算出控制电压;
- 生成PWM信号,控制电机驱动电路。
4. 调试和测试控制系统。
连接电机和单片机,进行测试和调试,确保系统正常工作。
5. 优化系统性能。
可以根据需要进行性能优化,例如增加闭环控制、采用磁编码器等。
以上步骤仅供参考,根据实际需求和资源可以进行适当调整和修改。
希望能对你有所帮助!。
南通纺织职业技术学院毕业论文设计基于ATMEGA8直流电机测速系统设计高瑶班级:09电子信息专业:电子信息工程技术教学系:机电系指导老师:邱宏完成时间2018年9月至2018年12月目录摘要 (2)一引言 (3)1、直流电机的应用与特点 (4)2、文章的选题意义 (4)3、文章的主要内容 (4)二任务分析与方案确定 (5)1、设计的目标任务 (5)2、设计的总体方案 (5)三硬件电路设计 (6)1、电源电路 (6)2、单片机电路 (7)3、显示电路 (9)4、整体电路 (11)四软件设计 (13)1、软件设计方案 (13)2、功能模块子程序 (14)五软硬件系统调试 (21)1、硬件调试 (21)2、软件调试 (22)小结 (24)六参考文献 (26)基于ATMEGA8的直流电机调速系统的设计摘要:文章介绍了一种直流电机测速系统的设计过程,首先明确设计任务、提出了电路设计的总体方案,接着介绍硬件电路主要功能模块的作用、电路结构原理、及关键元件的选型与参数;然后是系统的软件设计,分析了软件所要实现的功能、并画出软件的方案流程图,给出了几个软件功能模块的子程序;最后是系统的调试部分,包括硬件软件调试的一般过程,并且结合本设计的具体,对开发过程中出现的一些问题现象及调试解决的过程进行了阐述。
关键词:直流电机测速ATMEGA8 MAX7219一引言1.直流电机的应用与特点直流伺服电机常常用于实现精密调速和位置控制随动系统中,在工业、国防和民用等领域内到广泛应用,特别是火炮稳定系统、舰载平台、雷达天线、机器人控制等场合。
直流电机由于具有速度控制容易, 启动、制动性能良好,平滑调速范围宽等特点, 在冶金、机械制造、轻工等工业部门中得到广泛应用。
早期直流电动机的控制均以模拟电路为基础, 控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难, 阻碍了直流电动机控制技术的发展和应用范围的推广。
随着单片机技术的日新月异,使许多控制功能及算法可以采用软件技术来完成,不但为直流电动机的控制提供了更大的灵活性,而且使系统能达到更高的性能, 从而大大降低了系统成本,有效地提高了工作效率。
无刷直流电动机控制系统设计方案第1章概述 (1)1.1 无刷直流电动机的发展概况 (1)1.2 无刷直流永磁电动机和有刷直流永磁电动机的比较 (2)1.3 无刷直流电动机的结构及基本工作原理 (3)1.4 无刷直流电动机的运行特性 (6)1.4.1 机械特性 (6)1.4.2 调节特性 (6)1.4.3 工作特性 (7)1.5 无刷直流电动机的使用和研究动向 (8)第2章无刷直流电动机控制系统设计方案 (10)2.1 无刷直流电动机系统的组成 (10)2.2 无刷直流电动机控制系统设计方案 (12)2.2.1 设计方案比较 (12)2.2.2 无刷直流电动机控制系统组成框图 (13)第3章无刷直流电动机硬件设计 (15)3.1 逆变主电路设计 (15)3.1.1 功率开关主电路图 (15)3.1.2 逆变开关元件选择和计算 (15)3.2 逆变开关管驱动电路设计 (17)3.2.1 IR2110功能介绍 (17)3.2.2 自举电路原理 (19)3.3 单片机的选择 (20)3.3.1 PIC单片机特点 (20)3.3.2 PIC16F72单片机管脚排列及功能定义 (22)3.3.3 PIC16F72单片机的功能特性 (22)3.3.4 PWM信号在PIC单片机中的处理 (23)3.3.5 时钟电路 (23)3.3.6 复位电路 (24)3.4 人机接口电路 (24)3.4.1 转把和刹车 (24)3.4.2 显示电路 (25)3.5 门阵列可编程器件GAL16V8 (27)3.5.1 GAL16V8图及引脚功能 (27)3.6 传感器选择 (28)3.7 周边保护电路 (30)3.7.1 电流采样及过电流保护 (30)3.7.2 LM358双运放大电路 (31)3.7.3 欠电压保护 (32)3.8 电源电路 (32)第4章无刷直流电动机软件设计 (33)4.1 直流无刷电机控制器程序的设计概况 (33)4.2 系统各部分功能在软件中的实现 (33)4.3 软件流程图 (34)结束语 (36)致谢 (37)参考文献 (38)附录1 (39)附录2 (51)第1章概述1.1 无刷直流电动机的发展概况无刷直流电动机是在有刷直流电动机的基础上发展起来的,这一渊源关系从其名称中就可以看出来。
实验报告直流电机闭环调速控制系统设计和实现班级:姓名:学号:时间:指导老师:2012年6月一、实验目的1.了解闭环调速控制系统的构成。
2.熟悉PID 控制规律,并且用算法实现。
二、实验设备PC 机一台,TD-ACC+实验系统一套,i386EX 系统板一块三、实验原理根据上述系统方框图,硬件线路图可设计如下,图中画“○”的线需用户自行接好。
上图中,控制机算机的“DOUT0”表示386EX 的I/O 管脚P1.4,输出PWM 脉冲经驱动后控制直流电机,“IRQ7”表示386EX 内部主片8259 的7 号中断,用作测速中断。
实验中,用系统的数字量输出端口“DOUT0”来模拟产生 PMW 脉宽调制信号,构成系统的控制量,经驱动电路驱动后控制电机运转。
霍尔测速元件输出的脉冲信号记录电机转速构成反馈量。
在参数给定情况下,经PID 运算,电机可在控制量作用下,按给定转速闭环运转。
系统定时器定时1ms,作为系统采样基准时钟;测速中断用于测量电机转速。
直流电机闭环调速控制系统实验的参考程序流程图如下:四、实验步骤1.参照图 6.1-3 的流程图,编写实验程序,编译、链接。
2.按图6.1-2 接线,检查无误后开启设备电源,将编译链接好的程序装载到控制机中。
3.打开专用图形界面,运行程序,观察电机转速,分析其响应特性。
4.若不满意,改变参数:积分分离值Iband、比例系数KPP、积分系数KII、微分系数 KDD 的值后再观察其响应特性,选择一组较好的控制参数并记录下来。
5.注意:在程序调试过程中,有可能随时停止程序运行,此时DOUT0 的状态应保持上次的状态。
当DOUT0 为1 时,直流电机将停止转动;当DOUT0 为0 时,直流电机将全速转动,如果长时间让直流电机全速转动,可能会导致电机单元出现故障,所以在停止程序运行时,最好将连接DOUT0的排线拔掉或按系统复位键.五、心得体会此次实验是直流电机闭环调速控制系统的设计和实现,通过这次实验,让我了解了闭环调速控制系统的基本构成。
目录1. 综述 (2)2. 研究背景 (3)3. 电机速度控制系统的设计及模拟仿真 (3)3.1系统工作原理 (4)3.2 PWM脉宽调制信号产生电路描述 (5)3.2.1可控的加减计数器CNTA (6)3.2.2 5位二进制计数器CNTB (9)3.2.3 数字比较器LPM-COMPARE (11)3.2.4 PWM脉宽调制信号产生电路 (12)4.运行控制逻辑电路描述 (14)4.1 2选1多路选择器MUX21A (14)4.2 工作/停止控制和正/反转方向控制电路 (17)5. 直流电机PWM调速系统仿真 (18)5.1建立工程项目PWM (18)5.2 正/反转控制仿真 (19)5.3启/停控制仿真 (20)5.4加/减速仿真 (21)5.5仿真结果分析 (22)6. 设计总结 (23)简易直流电机PWM综合控制系统设计1.综述直流电动机具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求。
电动机调速系统采用微机实现数字化控制,是电气传动发展的主要方向之一。
采用微机控制后,整个调速系统实现全数字化,结构简单,可靠性高,操作维护方便,电动机稳态运转时转速精度可达到较高水平,静动态各项指标均能较好地满足工业生产中高性能电气传动的要求。
由于CPLD/FPGA性能优越,具有较佳的性能价格比,所以在工业过程及设备控制中得到日益广泛的应用。
PWM 调速系统与可控整流式调速系统相比有下列优点:由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。
本文所介绍的系统是一个基于VHDL 的PWM 调速系统。
由于PLD 具有连续连接结构,易于预测延时,使电路仿真会更加准确,且编程方便,速度快,集成度高,价格低,从而使系统研制周期大大缩短,产品的性能价格比提高。
CPLD/FPGA芯片采用流行的VHDL 语言编程,并在Quartus II设计平台上实现了全部编程设计。
2.研究背景电机作为机电能的转换装置,其应用范围己遍及国民经济的各个领域。
近些年来,随着现代电力电子技术、控制技术和计算机技术的发展,电机的控制技术也得到了进一步的发展,电机应用已由过去简单的起停控制、提供动力为目的应用,上升到对其速度、位置、转矩等进行精确的控制,使被驱动的机械运动符合预想的要求。
采用功率器件进行控制,将预定的控制方案、规划指令转变成期望的机械运动,这种新型控制技术己经不是传统的“电机控制”、“电气传动”而是“运动控制”。
运动控制使被控机械运动实现精确的位置控制、速度控制、加速度控制、转矩或力的控制,以及这些被控机械量的综合控制。
3.电机速度控制系统的设计及模拟仿真如图1所示,基于FPGA的直流电机PWM控制电路主要由四部分组成:控制命令输入模块、控制命令处理模块、控制命令输出模块、电源模块。
键盘电路、时钟电路是系统的控制命令输入模块,向FPGA芯片发送命令,FPGA芯片是系统控制命令的处理模块,负责接收、处理输入命令并向控制命令输出模块发出PWM信号,是系统的控制核心。
控制命令输出模块由H型桥式直流电机驱动电路组成,它负责接收由FPGA芯片发出的PWM信号,从而控制直流电机的正反转、加速以及在线调速。
电源模块负责给整个电路供电,保证电路能够正常的运行。
图1 FPGA直流电机PWM 控制电路3.1系统工作原理在图1中所示的FPGA是根据设计要求设计好的一个芯片。
START是电机的开启端,U_D控制电机加速与减速,EN1用于设定电机转速的初值,Z_F是电机的方向端口,选择电机运行的方向。
CLK2和CLK0是外部时钟端,其主要作用是向FPGA控制系统提供时钟脉冲,控制电机进行运转。
通过键盘设置PWM信号的占空比。
当U_D=1时, 表明键U_D按下,输入CLK2使电机转速加快;当U/D =0,表明键U_D松开,输入CLK2使电机转速变慢,这样就可以实现电机的加速与减速。
Z_F键是电机运转的方向按键,当把Z_F键按下时,Z_F=1,电机正转;反之Z/F =0时,电机反转。
START是电机的开启键,当START=1,允许电机工作;当START=0时,电机停止转动。
H桥电路由大功率晶体管组成,PWM输出波形通过由两个二选一电路组成的方向控制电路送到H 桥, 经功率放大以后对直流电机实现四象限运行。
并由EN1信号控制是否允许变速。
以上是在网上查询的关于直流电机的简易结构描述,我们电脑QuartusⅡ做的是FPGA内部逻辑组成。
控制逻辑VHDL描述新建文件夹,以文件名PWM保存。
3.2PWM脉宽调制信号产生电路描述图2 PWM脉宽调制信号产生电路PWM脉宽调制信号产生电路由可控的加减计数器CNTA、5位二进制计数器CNTB、数字比较器LPM_COMPARE三部分组成。
可控的加减计数器做细分计数器,确定脉冲宽度。
当U/D=1时,输入CLK2,使设定值计数器的输出值增加,PWM的占空比增加,电机转速加快;当U/D =0,输入CLK2,使设定值计数器的输出值减小,PWM的占空比减小,电机转速变慢。
5位二进制计数器在CLK0的作用下,锯齿波计数器输出周期性线性增加的锯齿波。
当计数值小于设定值时,数字比较器输出高电平;当计数值大于设定值时,数字比较器输出低电平,由此产生周期性的PWM波形。
3.2.1可控的加减计数器CNTA新建VHDL File文本,输入如下程序:LIBRARY IEEE;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNTA ISPORT(CLK:IN STD_LOGIC;U_D:IN STD_LOGIC;CQ:OUT STD_LOGIC_VECTOR(4 DOWNTO 0));END CNTA;ARCHITECTURE behav OF CNTA ISSIGNAL CQI:STD_LOGIC_VECTOR(4 DOWNTO 0);BEGINPROCESS(CLK)BEGINIF CLK'EVENT AND CLK='1'THENIF U_D='1' THENIF CQI<=31 THEN CQI<="11111";ELSE CQI<=CQI+1; END IF;ELSIF CQI=0 THEN CQI<="00000";ELSE CQI<=CQI-1;END IF;END IF;END PROCESS;CQ<=CQI;END behav;保存该文件并以文件名CNTA.vhd存盘,新建工程CNTA,编译CNTA.vhd。
如下图新建波形编辑图图3 新建vwf向波形编辑器拖入信号节点,并设置好仿真激励波形,以CNTA.vwf存盘。
仿真得如仿真波形输出报告。
图4 仿真波形输出报告可控的加减计数器CNTA中的端口U_D控制计数器的方向,EN1是计数器的使能端,控制计数器初值的变化。
U_D=1时,加减计数器CNTA在脉冲CLK2的作用下,每来一个脉冲,计数器CNTA加1,U_D=0时,每来一个脉冲,计数器CNTA减1。
使能端EN1设定计数器值的初值,当EN1由1变为0的时候,无论U_D如何表化,计数器的值都不会发生变化,这样就完成了计数器的设定值。
选择File—Create/Update—Create Symbol Files for Current File,生成Symbol供顶层文件调用。
图5 CNTA Symbol图6 CNTA RTL3.2.2 5位二进制计数器CNTB如下图新建VHDL File格式文本图7选择编译文件类型输入如下程序LIBRARY IEEE;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNTB ISPORT(CLK: IN BIT;Q:BUFFER INTEGER RANGE 31 DOWNTO 0);END;ARCHITECTURE BHV OF CNTB ISBEGINPROCESS(CLK)BEGINIF CLK'EVENT AND CLK='1' THENQ<=Q+1;END IF;END PROCESS;END BHV;保存该文件并以文件名CNTB.vhd存盘,新建工程CNTB,编译CNTB.vhd。
新建波形编辑器,向波形编辑器拖入信号节点,并设置好仿真激励波形,以CNTB.vwf存盘。
仿真得如仿真波形输出报告。
图8 5位二进制计数器仿真波形CNTB是一个简单的5位二进制计数器,它的工作原理和CNTA的原理很相似,我们只是在CNTA的时钟端加了一个使能端U_D控制其加减的方向。
而CNTB的时钟端没有加使能端,所以每来一个脉冲计数器加1,因为CNTB是一个5位的二进值计数器,所以当计数器的值当大于32时,计数器又重新从0开始记数,从而产生周期性的线性增加的锯齿波。
选择File—Create/Update—Create Symbol Files for Current File,生成Symbol供顶层文件调用。
图9 CNTB Symbol图10 CNTB RTL3.2.3 数字比较器LPM-COMPARE选择Tools—Mega Plug-In Manager命令,按如下图示定制新的宏功能模块。
图11 LPM宏功能模块设定图12设5位数据比较器3.2.4 PWM脉宽调制信号产生电路如下图新建原理图编辑窗图13选择编辑类型调用上述生成的Symbol和软件自带的常用端口,在编辑窗里连出图2所示的PWM脉宽调制信号产生电路。
并新建成工程PWMmktz.新建波形编辑窗口,拖入信号节点。
设置好仿真激励波形,以PWMmktz.vwf存盘。
仿真得如仿真波形输出报告。
图14 数字比较器的仿真波形数字比较器是产生PWM波形的核心组成部件,可控的加减计数器CNTA和5位二进制计数器CNTB同时加数字比较器LPM-COMPARE两端作为两路输入信号,当计数器CNTB输出值小于细分计数器CNTA输出的规定值时, 比较器输出高电平; 当CNTB输出值大于细分计数器CNTA输出的规定值时, 比较器输出低电平。
改变细分计数器的设定值, 就可以改变PWM输出信号的占空比。