非周期信号频谱分析---三
- 格式:ppt
- 大小:894.00 KB
- 文档页数:65
实验四 非周期信号频域分析1 实验目的(1) 掌握傅里叶变换的分析方法及其物理意义。
(2) 掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质。
(3) 学习掌握利用MA TLAB 语言编写计算CTFT 的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 的若干重要性质。
2 实验原理及方法2.1连续时间信号傅里叶变换——CTFT傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。
傅里叶变换和其逆变换定义如下:⎰∞∞--=dt e t x j X t j ωω)()( 4-1 ⎰∞∞-=ωωπωd e j X t x t j )(21)( 4-2连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。
任意非周期信号,如果满足狄里克利条件,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号e j ωt 的线性组合构成的,每个频率所对应的周期复指数信号e j ωt 称为频率分量,其相对幅度为对应频率的|X(j ω)|之值,其相位为对应频率的X(j ω)的相位。
X(j ω)通常为关于ω的复函数,可以按照复数的极坐标表示方法表示为:X(j ω)=| X(j ω)|e j ∠ X(j ω)其中,| X(j ω)|称为x(t)的幅度谱, ∠X(j ω)称为x(t)的相位谱。
给定一个连续时间非周期信号x(t),它的频谱是连续且非周期的。
对于连续时间周期信号,也可以用傅里叶变换来表示其频谱,其特点是,连续时间周期信号的傅里叶变换是由冲激序列构成的,是离散的——这是连续时间周期信号的傅里叶变换的基本特征。
2.2 用MA TLAB 实现CTFT 及其逆变换2.2.1 用MATLAB 实现CTFT 的计算MA TLAB 进行傅里叶变换有两种方法,一种利用符号运算的方法计算,另一种是数值计算,本实验采用数值计算的方法。
严格来说,用数值计算的方法计算连续时间信号的傅里叶变换需要有个限定条件,即信号是时限信号,也就是当时间|t|大于某个给定时间时其值衰减为零或接近于零,这个条件与前面提到的为什么不能用无限多个谐波分量来合成周期信号的道理是一样的。
离散非周期信号的频谱频谱是任何信号的一个非常重要的特性,它决定了信号中能量的分布。
离散非周期信号的频谱研究一直是信号处理的重要领域之一。
本文将介绍离散非周期信号的频谱特性和分析方法,并以实际应用为例进行说明。
一、离散非周期信号的频谱特性频谱是一种信号分析方法,可用来确定信号中能量的分布,以便更好地描述信号的特性。
离散非周期信号指的是,信号永远不能重复,有时也叫离散调制信号。
离散非周期信号特别适合用傅立叶变换分析,其频谱具有特殊的结构,表现为频率峰峰值(频域谱线中的峰值)的带状构造。
这种带状结构是由信号的离散性造成的,因此,它决定了信号的能量集中在一定频率和其附近的带宽中。
理论上,对于离散非周期信号,频率峰值带状结构可以无限放大,这说明了离散非周期信号具有较大的带宽,因此,有关离散非周期信号频谱的研究非常有价值。
二、离散非周期信号的频谱分析方法离散非周期频谱分析通常采用傅立叶变换。
傅立叶变换可以将时域上的离散信号转换为频域上的离散信号,从而可以研究离散非周期信号的频谱特性。
傅立叶变换的另一个优点是,它可以将时域的正弦信号转换为频域的峰峰值形式。
另外,通过幅度谱和相位谱,可以更清楚地分析信号的频率特性,从而可以更轻松地分析信号中能量的分布情况。
三、实际应用离散非周期信号频谱的实际应用十分广泛,在通信、声学和多媒体中都有应用。
例如,图像处理的最终结果是一个离散非周期信号,它的傅立叶变换可以帮助我们更加准确地确定图像中能量的分布。
同样,在语音信号处理中,人类语音的本质也是一个离散非周期信号,可以利用傅立叶变换更加准确地分析语音特性,从而提高语音识别和合成的效果。
最后,离散非周期信号频谱在多媒体中也有重要作用,可以用来更准确地表示多媒体信号,帮助我们更好地处理多媒体信号。
综上所述,离散非周期信号的频谱分析是信号处理的重要内容,它的研究与实际应用都有很多价值。
不仅可以用来理论研究,还可以用来实际应用,并在各种领域中得到广泛应用。
一,实验目的四,心得体会了解信号频谱和信号频域,掌握其特性。
一,实验原理实验主要分为四个部分,分别分析了连续和离散信号的周期、非周期情况下特性。
1.连续周期信号的频谱分析首先手算出信号的傅里叶级数,得出信号波形,然后通过代码画出信号波形图。
2.连续非周期信号的频谱分析先由非周期信号的时域信号得到它的频谱X(w),再通过MATLAB求出其傅里叶变换并绘出图形。
X=fourier(x)x=ifourier(x)①符号运算法syms t②数值积分法quad(fun,a,b)③数值近似法3.离散周期信号的频谱分析X=fft(x)4.离散非周期信号的频谱分析可以化为两个相乘的矩阵,从而由MATLAB实现。
三,实验内容(1)已知x(t)是如图周期矩形脉冲信号。
1).计算该信号的傅里叶级数。
2).利用MATLAB绘出由前N次谐波合成的信号波形,观察随着N的变化合成信号波形的变化规律。
3).利用MATLAB绘出周期矩形脉冲信号的频谱,观察参数T和τ变化时对频谱波形的影响。
思考下列问题:①什么是吉伯斯现象?产生吉伯斯现象的原因是什么?②以周期矩形脉冲信号为例,说明周期信号的频谱有什么特点。
③周期矩形脉冲信号参数τ/T的变化,其频谱结构(如频谱包络形状、过零点、频谱间隔等)如何变化?(2)已知x(t)是如图所示矩形脉冲信号。
1).求该信号的傅里叶变幻。
2). 利用MATLAB绘出周期矩形脉冲信号的频谱,观察参数T和τ变化时对频谱波形的影响。
3). 让矩形脉冲宽度始终等于一,改变矩形脉冲宽度,观察矩形脉冲信号时域波形和频谱随矩形脉冲宽度的变化趋势。
①比较矩形脉冲信号和周期矩形脉冲信号的频谱,两者之间有何异同。
②让矩形脉冲的面积始终等于一,改变矩形脉冲的宽度,观察矩形脉冲信号时域波形和频谱波形随矩形脉冲宽度的变化趋势。
(1)已知x(t)是如图所示的周期矩形脉冲信号①,计算该信号的傅里叶级数答:由图中x(t)波形可知信号为通过计算,可以知道所以x(t)的傅里叶级数为。