原子物理学(第九章)
- 格式:ppt
- 大小:3.96 MB
- 文档页数:95
原子物理学的课件
原子物理学是一个基础性学科,它主要研究原子及其组成部分的结
构和性质。
本文旨在为学习原子物理学的学生提供一份详细的课件,
帮助他们更好地理解原子物理学的知识和原理。
一、原子物理学的定义
原子物理学是物理学的一个分支,它主要研究原子的内部结构和性质,以及原子与辐射之间的相互作用。
二、原子的基本结构
原子由电子、质子和中子组成。
电子带有负电荷,质子带有正电荷,中子没有电荷。
电子绕着原子核运动,形成电子云。
三、原子能级
原子能级是指原子中电子的能量状态。
电子在不同的能级上具有不
同的能量。
原子能级分为基态和激发态两种状态。
四、原子光谱
原子光谱是指原子在吸收或发射光线时所产生的谱线。
各种元素都
有其特定的光谱,可以用来识别和分析物质。
五、原子核与放射性
原子核是由质子和中子组成的,质子数决定了元素的特性。
放射性
是一种原子核的性质,一些原子核不稳定,会自发地发射放射线。
六、应用
原子物理学在许多领域都有着广泛的应用,例如核能、半导体、医学等。
七、结论
原子物理学是一门非常重要的学科,它对于现代科技的发展有着重要的影响。
希望通过本课件,学生们可以更好地掌握原子物理学的基本知识和原理,为今后的学习和应用打下坚实的基础。
第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
7.2 原子的3d 次壳层按泡利原理一共可以填多少电子?为什么?答:电子的状态可用四个量子s l m m l n ,,,来描写。
根据泡利原理,在原子中不能有两个电子处在同一状态,即不能有两个电子具有完全相同的四个量子数。
3d 此壳层上的电子,其主量子数n 和角量子数l 都相同。
因此,该次壳层上的任意两个电子,它们的轨道磁量子数和自旋磁量子数不能同时相等,至少要有一个不相等。
对于一个给定的l m l ,可以取12;,....,2,1,0+±±±=l l m l 共有个值;对每个给定的s l m m ,的取值是2121-或,共2个值;因此,对每一个次壳层l ,最多可以容纳)(122+l 个电子。
3d 次壳层的2=l ,所以3d 次壳层上可以容纳10个电子,而不违背泡利原理。
7.4 原子中能够有下列量子数相同的最大电子数是多少?n l n m l n )3(;,)2(;,,)1(。
答:(1)m l n ,,相同时,s m 还可以取两个值:21,21-==s s m m ;所以此时最大电子数为2个。
(2)l n ,相同时,l m 还可以取两12+l 个值,而每一个s m 还可取两个值,所以l n ,相同的最大电子数为)12(2+l 个。
(3)n 相同时,在(2)基础上,l 还可取n 个值。
因此n 相同的最大电子数是:212)12(2n l N n l =+=∑-=7.5 从实验得到的等电子体系K Ⅰ、Ca Ⅱ……等的莫塞莱图解,怎样知道从钾Z=19开始不填s d 43而填次壳层,又从钪Z=21开始填s d 43而不填次壳层?解:由图7—1所示的莫塞莱图可见,S D 2243和相交于Z=20与21之间。
当Z=19和20时,S 24的谱项值大于D 23的值,由于能量同谱项值有hcT E -=的关系,可见从钾Z=19起到钙Z=20的S 24能级低于D 23能级,所以钾和钙从第19个电子开始不是填s d 43而填次壳层。
第九章 分子结构和光谱9.1 r HB 分子的远红外吸收光谱是一些194.16~-=∆厘米v 等间隔的光谱线。
试求r HB 分子的转动惯量及原子核间的距离。
已知H 和r B 的原子量分别为1.008和79.92。
解:远红外光谱是由分子的转动能级跃迁产生的,谱线间隔都等于2B 。
即B v2~=∆ (1)而 Ic h B 28/π= (2)由(1)、(2)两式可得:米米千克1021247221042.1)(10302.3~828--⨯=+⋅==⋅⨯=∆==Br H Br H m m m m I I r c vh BC h I μππ 9.2 HCl 分子有一个近红外光谱带,其相邻的几条谱线的波数是:-1厘米49.2821,56.2843,09.2865,25.2906,78.2925。
H 和Cl 的原子量分别是1.008和35.46。
试求这个谱带的基线波数0~v 和这种分子的转动惯量。
解:由谱线的波数之差可见:除09.286525.2906-之外,其他相邻谱线之差近乎相等。
而2906.25和2865.09之差相当于其他相邻谱线之差的二倍。
显然这是一个振动转动谱带。
上述两谱线之间有一空位,此空位即是只有振动跃迁是的基线波数0~v 。
给出五条谱线中,显然,头两条属于R 分支,其波数按大小顺序分别记为12~,~R R v v ;后三条属于P 分支,其波数按大小顺序分别写作3,2,1~~~P P P v v v 。
R 分支的谱线波数近似地由下述公式决定: ⋯⋯=+= ,2,1','2~~0J BJ v v R P 分支的谱线波数近似地由下述公式决定: ⋯⋯=-= ,2,1','2~~0J BJ v v P 因此有:(Ⅰ)⎩⎨⎧⋯⋯-=⋯⋯+=)()(22~~12~~0101B v v B v v P R (1)-(2) 式,得:29.104~~11=-=P R v v B(Ⅱ) ⎩⎨⎧⋯⋯-=⋯⋯+=)()(44~~34~~0202B v v B v v P R (3)-(4) 式,得:28.108~~22=-=P R v v B 285.10228.1029.10=+=∴B 转动惯量为: 24721072.28米千克⋅⨯≈=-Bch I π 由(Ⅰ)、 (Ⅱ),得基线波数为:112112028851717.2885)~~~~(41~--==+++=米厘米P P R R v v v v v 9.3 Cl 原子的两同位素3735Cl Cl 和分别与H 化合成两种分子3735HCl HCl 和。
原子物理学原子物理学是研究原子结构与性质的学科,其中包括原子的精细结构以及电子自旋。
原子的精细结构是指在原子核外的电子轨道上,电子与核之间相互作用所形成的能级结构。
而电子的自旋则是描述电子自身特性的一个重要属性。
在20世纪初,德国物理学家约瑟夫·约鲁斯顿(Johannes Stark)和其他科学家们发现,原子光谱线可以分为许多非常接近的细分的谱线。
这些细分的谱线不能通过经典物理学的原子模型来解释,因此科学家们意识到原子内部存在一些新的结构性质。
为了解释这些细分的谱线,物理学家尼尔斯·玻尔(Niels Bohr)提出了著名的玻尔模型。
根据这个模型,电子绕核运动只允许存在一些特定的能级,每个能级对应着不同的能量。
电子可以通过吸收或发射一定能量的光子来跃迁到不同的能级。
这个模型成功地解释了氢原子光谱的细分现象。
然而,随着实验技术的发展,科学家们发现一些无法用玻尔模型解释的现象。
例如,一个能级上只能存在一定数量的电子,并且每个电子的状态是互不相同的。
为了解释这些现象,瑞士物理学家沃尔夫冈·保罗(Wolfgang Pauli)于1925年提出了保里不相容原理。
这个原理指出,一个原子的每个能级最多只能容纳两个电子,且这两个电子的自旋量子数必须相反。
电子的自旋是描述其内禀角动量的一个属性。
在量子力学中,自旋被描述为一个量子数,可以取两个可能值:+1/2和-1/2、这意味着一个能级上最多可以容纳两个电子,其中一个电子的自旋为+1/2,另一个电子的自旋为-1/2除了保里不相容原理外,电子自旋还参与了原子物理学中的其他一些重要现象。
例如,电子自旋与原子间的电子-电子相互作用密切相关。
在原子光谱的解释中,原子的精细结构可以通过考虑电子的自旋和轨道角动量相互作用得到。
总结来说,原子的精细结构和电子自旋是原子物理学中关键的概念。
通过对这些概念的研究和理解,科学家们能够更好地解释和预测原子性质及其与其他粒子的相互作用。
《原子核物理》课程教学大纲课程性质:专业基础课教学对象:核工程与核技术辐射化工专业本科学生学时学分:54学时 3学分编写单位:核工程与技术学院编写人:杜纪富审定人:编写时间:2011年5月一、课程说明1、课程简介本课程是原子物理学课程的姊妹篇,它以阐述原子及原子核的结构、特性为中心。
主要内容包括核结构模型、原子核的放射性、α衰变、β衰变、γ衰变、核反应及核能和放射性的应用等。
2、课程教学目标本课程是近代物理学中的一个重要领域。
通过该门课程的学习,使学生了解和掌握原子核的基本性质和结构、放射性现象及一般规律、原子核反应、射线与物质的相互作用、离子加速器、原子能的利用、核技术及应用、粒子物理的一些简单理论,为学生将来继续学习核工程与核技术的课程奠定理论基础和实验技术能力。
3、预修课程与后续课程大学物理、量子力学、原子物理学4、教学手段及教学方法建议原子核物理学是现代物理学的重要内容,作为应用物理专业的学生,原子核物理学的基础知识理论成为必要的学习内容。
因此本门课程首先把基础知识和基本技能教给学生,使得学生扎实地学好,然后再介绍相关现代科学技术的重要成果。
本课程以讲授为主,然后在课程中会介绍与核辐射相关的案例以及实验等。
5、考核方式平时成绩占30%(考勤、课堂表现和作业),闭卷考试成绩占70%。
6、指定教材杨福家等著,原子核物理(第一版)复旦大学出版社,19937、教学参考书[1] 卢希庭主编,原子核物理,原子能出版社,2000年[2] 王炎森、史福庭,原子核物理学,原子能出版社, 1998年8、教学环节及学时安排表1 课程学时分配表9、教学大纲修订说明二、教学内容第一章原子核物理(8学时)教学目标1、了解原子核物理的研究对象及其发展历史2、理解原子核是由核子(中子和质子)组成的,原子核半径的两种含义。
3、理解原子核的结合能及其与质量的关系。
4、了解原子核的自旋、磁矩、电四极矩、宇称的定义。
本章重点1、原子核半径的两种含义以及结合能与质量的关系。
基础化学第九章原子结构习题答案基础化学第九章原子结构习题答案1.原子核外电子运动有什么特征?答:原子核外电子运动遵守量子力学规律,具有波粒二象性,不能同时准确测定电子的位置和动量,在核外空间出现的概率遵从统计规律。
2.什么是波函数和原子轨道?答:波函数是人为定义的一个用来描述电子在原子核外空间运动的波动性质的直角坐标系函数ψ(x,y,z)或球极坐标系函数ψ(r,θ,φ)。
为了表述方便,习惯上把波函数称为原子轨道,二者含义相同。
“原子轨道”只是借用了经典力学描述宏观物体运动状态时所用的“轨道”的说法,并无电子沿固定路径运动的含义。
3.概率、概率密度和电子云有何关系?答:概率密度|ψ|2指波函数ψ(r,θ,φ)表示的特定核外电子在核外空间(r,θ,φ)这一点周围单位体积内电子出现的概率,电子在核外空间某一区域出现的概率等于概率密度与该区域体积的乘积。
电子云是用统计的方法对电子出现的概率密度ψ2的形象化表示,可认为是电子运动行为的统计结果,就是用小黑点分布的疏密程度形象化地表现电子在核外空间出现的概率密度相对大小的图形。
4.4个量子数的物理意义是什么?它们的合理组合方式有什么规律?答:主量子数n表示电子在核外空间出现概率最大的区域离核的远近,是决定电子能量的主要因素。
n可取任意正整数,即n=1、2、3、……,角量子数l决定原子轨道(或电子云)的形状,并在多电子原子中,配合主量子数n一起决定电子的能量,l的每一个取值对应一个亚层。
l取值受主量子数n的限制,可取小于n 的正整数和零,即l=0、1、2、3……(n-1) ,共n个数值。
磁量子数m决定原子轨道和电子云在空间的伸展方向,其取值受角量子数l的限制,可取包括0、±1、±2、±3……直至±l,每一个l对应有2l+1个不同的m取值。
自旋量子数m s描述核外电子“自旋”运动的方向,自旋量子数取值只有+1/2和-1/2。