最新第三讲 必胜策略问题复习课程
- 格式:doc
- 大小:71.00 KB
- 文档页数:7
第三讲数学游戏中的必胜策略知识要点:做数学游,如果你掌握了一些策略,就一定能取。
“数”游就是两个人按照一定的流数,并将所的数逐步累加,先到定数的一方;“ 数”游与“ 数”游似,只是先到定数的一方失。
然,里藏着数学奥秘。
例题精选:例1.甲乙二人流数。
从 1 起,每人每次可一个数或两个数。
能得 20 就。
先和同学玩一玩个游。
如果由你先数,你能保?点:可以从 20 往前想,如果想,自己不要19 和 18。
因 19,方 20 一个数就了; 18,方两个数19、 20 就了。
,要想(到20)必到 17。
同理,要想到17,就要争取到14;要想到 14,就要争取到11;要想到 11,就要争取到8;要想到 8,就要争取到5;要想到 5,就要争取到2;因此,先到 2。
方 3,自己 4、5;方 3、4,自己 5。
就又到了 5。
依次方法下去,就一定会了。
例2.甲乙二人流数。
从 1 起,每人每次最多可以 3 个数。
能得 30 就。
点:是游“ 30”。
仍可以采用从后往前想的方法。
要想到 30,就要争取到 26;要想到 26,就要争取到 22;⋯⋯因此,先到 2。
再看方数情况依次 6、 10、14、18、22、26、 30 就可。
例3.按照例 1 的数方法,如果先“ 20”的一方失,怎保?点:就是“ 数游”。
20 就要 19,并且依次 16、13、 10、7、4、1。
因此,要先“ 1”,再根据方数情况依次 4、 7、 10、13、16、19,就把 20 了方。
根据上面三个例,你什么律?例4.按照例 1 的数方法,如果先“ 30”的一方,怎保?点:因每次最多两个数,所以要到“ 30”就要一次 27、24、 21、18、15、 12、9、6、3。
而先数的一方最多只能到“ 2”,因此,可以方先数,再看方数情况依次到3、 6、 9⋯⋯例5.甲乙二人流在方格中移棋子。
如下:(1)只能向右移;(2)每次只能移一格或两格;(3)占最后一格的。
小学奥数精讲:对策问题之必胜策略知识点总结:一取余制胜(取棋子,报数游戏)1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)有余则先,拿掉余数,之后总与对手凑成1+n即可无余则后,总与对手凑成1+n即可2. 每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。
所以想赢的关键就在于能不能取到倒数第二枚棋子。
问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。
(总数-1)÷(1+n),之后同1中做法。
二.抢占制胜点(倒推法)1. 能一步到棋子的位置均是不能走的地方即负位2. 处处为别人着想。
自己不能走的地方逼别人走进去即可,即确定制胜点。
三.对称法1. 同等情况下,模仿对方步骤可以达到制胜目的。
2. 不同等情况下,创造对等局面方可制胜。
1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。
规定谁取走最后一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16 (4)有余数,先拿必胜,甲必胜。
(1)甲先拿4个;(2)乙拿a个,甲就拿6-a个2.甲乙两人轮流报数,报出的数只能是1~7的自然数。
同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。
请问必胜的策略是什么?分析:80÷(1+7)=10无余数,后拿必胜。
甲拿a个,乙就拿8-a个必胜3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。
规定将棋子移到最后一格者谁赢。
甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124 (7)有余,先走必胜。
(1)甲先走7格(2)乙走a格,甲就拿8-a个必胜4.5张扑克牌,每人每次只能拿1张到4张。
谁取最后一张谁输。
必胜的策略是什么?分析:先拿4张,留给别人1张就行。
5.现有1000根火柴,甲乙两人轮流去拿,每人每次最少拿1根,最多拿7根,谁取最后一根谁输。
第三讲必胜策略问题第三讲数学游戏中的必胜策略知识要点:做数学游戏时,如果你掌握了一些策略,就一定能取胜。
“抢数”游戏就是两个人按照一定的规则轮流报数,并将所报的数逐步累加,先报到规定数的一方获胜;“让数”游戏与“抢数”游戏类似,只是先报到规定数的一方失败。
虽然简单,这里隐藏着数学奥秘。
例题精选:例1.甲乙二人轮流报数。
从1起,每人每次可报一个数或连续报两个数。
谁能报得20谁就获胜。
先和同学玩一玩这个游戏。
如果由你先报数,你能保证获胜吗?点拨:可以从20往前想,如果想获胜,自己不要报19和18。
因为报19,对方报20这一个数就获胜了;报18,对方连续报两个数19、20就获胜了。
这样,要想获胜(抢到20)必须抢到17。
同理,要想抢到17,就要争取抢到14;要想抢到14,就要争取抢到11;要想抢到11,就要争取抢到8;要想抢到8,就要争取抢到5;要想抢到5,就要争取抢到2;因此,先抢到2。
对方报3,自己报4、5;对方报3、4,自己报5。
这样就又抢到了5。
依次方法继续下去,就一定会获胜了。
例2.甲乙二人轮流报数。
从1起,每人每次最多可以连续报3个数。
谁能报得30谁就获胜。
点拨:这是传统游戏“抢30”。
仍可以采用从后往前想的方法。
要想抢到30,就要争取抢到26;要想抢到26,就要争取抢到22;……因此,先抢到2。
再看对方报数情况依次抢6、10、14、18、22、26、30就可获胜。
例3.按照例1的报数方法,如果先报“20”的一方失败,怎样保证获胜?点拨:这就是“让数游戏”。
让20就要抢19,并且依次抢16、13、10、7、4、1。
因此,要先报“1”,再根据对方报数情况依次抢4、7、10、13、16、19,这样就把20让给了对方。
根据上面三个例题,你发现什么规律?例4.按照例1的报数方法,如果先报“30”的一方获胜,怎样保证获胜?点拨:因为每次最多报两个数,所以要抢到“30”就要一次抢27、24、21、18、15、12、9、6、3。
第三讲 游戏与对策一、基本前提游戏双方足够聪明,目的都是获胜。
二、方法:倒推三、游戏类型(一)拿火柴棍/抢数如:桌子上放着10根火柴,二人轮流每次取走1—2根,规定谁取走最后一根火柴谁获胜。
你知道必胜的方法吗?分析:如果从开始分析,“局面”太大,有太多种取法要讨论。
所以我们尝试从结果倒推。
如上图,要必胜,也就是要让自己拿到10号火柴,那就应给对方留下8,9,10三根火柴供他取,这样对方不管取一根还是两根,自己都能拿到最后的10号火柴。
照这样分析,自己应该拿到7号火柴(这样就是给对方留下了8,9,10号三根)就必胜。
同理分析,要想取7号,就应该取4号,要想取4号,就应该取1号。
那么,本题的制胜点就是1,4,7,10号火柴,对于足够聪明的人来说,拿到第一个制胜点1号火柴,一定能拿到其余的制胜点。
所以本题要必胜,就要抢先取1根,然后对方取a 根,自己就取3-a 根,这样保证自己能取到每一个制胜点,最终取到10号火柴。
总结一下,同学们应该能看出,这里面有周期现象(只是周期是从后往前排布的),周期是几呢?是可取的最大限度2再加1等于3,制胜点是哪些呢?是每个周期的最后一根。
掌握此规律,就不难总结出这类题的解题方法了:解题方法:(1)找周期:周期等于可拿最大限度+1(2)总数÷周期1 桌子上放着60根火柴,聪明昊、神奇涛二人轮流每次取走1—3根,规定谁取走最后一根火柴谁获胜。
你知道必胜的方法吗?解析: 周期为 3+1=4(根)60÷4=15(组) (整除,应该抢后)制胜点:4,8,12 (60)做法:1、让对方先取2、对方取a 根,自己就取4-a 根2 有一种抢数游戏,是两个人从自然数1开始轮流报数,规定每次至少报几个数与至多报几个数(都是自然数),最后谁报到规定的“某个数字”为胜。
如“抢50”,规定每次必须报1或2个1 2 3 4 5 6 7 8 9 10有余数:抢先拿余数整除(余数为0):抢后自然数,从1开始,谁抢报到50为胜。
初中奥数精讲:对策问题之必胜策略引言初中奥数竞赛是一项对学生逻辑思维和数学能力的全面考验。
在这个竞争激烈的领域中,掌握一些必胜策略是至关重要的。
本文将介绍一些适用于初中奥数竞赛的必胜策略。
必胜策略策略一:提前备战在奥数竞赛中,知识的广度和深度非常重要。
因此,提前备战是必不可少的。
学生应该提前了解各种题型的特点,并研究相应的解题方法。
此外,积极参加模拟考试和训练营等活动,提高解题速度和抗压能力。
策略二:审题准确在解答奥数竞赛题目时,审题准确是成功的关键。
学生应该仔细阅读题目,理解题目要求,并找出隐藏的关键信息。
只有完全理解了题目,才能制定出正确的解题思路和方法。
策略三:追求简洁在奥数竞赛中,简洁而有效的解题方法往往更受青睐。
学生应该寻找和研究那些能够简化问题、减少计算量的方法和技巧。
同时,学会合理使用符号和函数,以简化复杂的计算过程。
策略四:充分练练是提高奥数竞赛成绩的必备环节。
学生应该定期进行练,并及时总结和复错题。
通过大量的练,不仅可以提高解题技巧,还可以增强对各类数学题的适应能力。
策略五:合理安排时间奥数竞赛的时间通常是有限的。
学生应该在解题过程中合理安排时间,掌握对不同题型的解答所需时间。
在考试中,可以根据题目的难易程度和自己的掌握情况,有序地安排解题顺序,以避免在某一道题上花费过多时间。
结论初中奥数竞赛中的对策问题对于学生来说是一个重要的挑战。
然而,通过采用适当的必胜策略,学生可以提高解题能力,取得更好的成绩。
希望本文介绍的必胜策略可以对初中奥数竞赛的学生们有所帮助。
第3讲 出奇制胜课前活动 超市购物买一买博士给了艾迪100元,买羊肉用了26元,买牛肉用了24元,加加还想买零食,艾迪算了算自己剩下的钱:1002624−−,小朋友们请帮艾迪算一算,并看看有没有更快速的计算方法吧!例1 情况紧急,请小朋友们帮消防队员快速统计一下超市里还有多少人没有出来.(1)3422317−− (2)76111712−−− (3)567281121−−−例2例3 请帮消防员快速打开被封死的门,救出被困住的人吧!(1)83(2319)−+ (2)94(2418)−+ (3)365(4865)−+例4 怎样才能更快速地解决面前的困难呢?(1)692(3217)−+ (2)300(6486)−+(3)594584294−−− (4)365(481265)−++例5 怎样算才能更加快速呢?(1)11121314+++= (2)2628303133++++=课后巩固题1、计算下面各题(1)872812−− (2)1773624−− (3)1142723−−2、计算下面各题(1)2531832−− (2)198132641−−− (3)2234674−−3、计算下面各题(1)137(3728)−+ (2)546(2946)−+ (3)394(4418)−+4、计算下面各题(1)2892753−− (2)447(3617)−+ (3)123152335+−+5、计算下面各题(1)32333435+++ (2)4749515850+++−6、计算下面各题(1)568(2468)(1924)+−+− (2)173(2317)(1736)−−−+7、下面是艾迪做的,请你帮艾迪检查一下,把错误的地方圈起来,并帮他改一下吧!8、9、挑战题1、计算下面各题(1)464749525950++++− (2)748582757780++++−2、快速计算(1)9999999999+++=(2)12233344445555666778+++++++=3、计算下面各题(1)342(3442)(2834)28+−+−− (2)736(148336)(264148)+−+−4、计算下面各题−−−−−+(1)283(18324)72(13472)234−−−−+(2)462(26219924)(19924)教师扩展题1、计算++++−+ 1241291061412375001132、计算+++++825743874259446561543、计算−+−−−++ 356(1449)(8628)(5156)72。
必胜策略题解题方法
必胜策略题?听起来就超刺激!那到底咋解呢?嘿,咱先得分析局势呀!就像打仗一样,得先搞清楚战场情况。
把问题里的各种条件都摸透,这一步可重要啦!要是不仔细分析,那不是瞎蒙嘛?那能行吗?
接着呢,找关键节点。
这就好比在迷宫里找出口,关键节点就是那个能让你走向胜利的关键位置。
你不找到它,咋能赢呢?
然后就是制定策略啦!根据分析出的情况和找到的关键节点,制定出最牛的策略。
这就跟下棋似的,走一步想三步,甚至更多步。
你不提前想好,等会儿可就抓瞎啦!
那解题过程安全稳定不?当然啦!只要你认真分析、仔细找关键节点、好好制定策略,那就没啥问题。
就像盖房子,基础打牢了,还怕房子不结实?
这种解题方法在好多场景都能用呢!比如玩游戏的时候,那可是让你大杀四方的法宝。
还有在解决实际问题的时候,也能让你轻松搞定。
优势那可多了去了,能让你思路清晰,快速找到解决办法。
不像无头苍蝇一样乱撞,多棒呀!
比如说玩围棋吧,你要是会用这种必胜策略题的解题方法,那就能在棋盘上步步为营,把对手打得落花流水。
你想想,那多爽呀!
所以呀,必胜策略题解题方法超厉害,能让你在各种情况下都更有胜算,赶紧用起来吧!。
第三讲数学游戏中的必胜策略
知识要点:做数学游戏时,如果你掌握了一些策略,就一定能取胜。
“抢数”游戏就是两个人按照一定的规则轮流报数,并将所报的数逐步累加,先报到规定数的一方获胜;“让数”游戏与“抢数”游戏类似,只是先报到规定数的一方失败。
虽然简单,这里隐藏着数学奥秘。
例题精选:
例1.甲乙二人轮流报数。
从1起,每人每次可报一个数或连续报两个数。
谁能报得20谁就获胜。
先和同学玩一玩这个游戏。
如果由你先报数,你能保证获胜吗?
点拨:可以从20往前想,如果想获胜,自己不要报19和18。
因为报19,对方报20这一个数就获胜了;报18,对方连续报两个数19、20就获胜了。
这样,要想获胜(抢到20)必须抢到17。
同理,要想抢到17,就要争取抢到14;
要想抢到14,就要争取抢到11;
要想抢到11,就要争取抢到8;
要想抢到8,就要争取抢到5;
要想抢到5,就要争取抢到2;
因此,先抢到2。
对方报3,自己报4、5;对方报3、4,自己报5。
这样就又抢到了5。
依次方法继续下去,就一定会获胜了。
例2.甲乙二人轮流报数。
从1起,每人每次最多可以连续报3个数。
谁能报得30谁就获胜。
点拨:这是传统游戏“抢30”。
仍可以采用从后往前想的方法。
要想抢到30,就要争取抢到26;
要想抢到26,就要争取抢到22;
……
因此,先抢到2。
再看对方报数情况依次抢6、10、14、18、22、26、30就可获胜。
例3.按照例1的报数方法,如果先报“20”的一方失败,怎样保证获胜?
点拨:这就是“让数游戏”。
让20就要抢19,并且依次抢16、13、10、7、4、1。
因此,要先报“1”,再根据对方报数情况依次抢4、7、10、13、16、19,这样就把20让给了对方。
根据上面三个例题,你发现什么规律?
例4.按照例1的报数方法,如果先报“30”的一方获胜,怎样保证获胜?
点拨:因为每次最多报两个数,所以要抢到“30”就要一次抢27、24、21、18、15、12、9、6、3。
而先报数的一方最多只能报到“2”,因此,可以让对方先报数,再看对方报数情况依次抢到3、6、9……
例5.甲乙二人轮流在方格中移动棋子。
规则如下:
(1)只能向右边移动;
(2)每次只能移动一格或两格;
(3)占领最后一格的获胜。
怎样才能获胜?
15个格。
我们还按照从后往前想的方法,以此把需要占领的格做上标记。
况,依次占领做标记的方格。
课堂练习与课后作业:
1.甲乙二人轮流报数。
从1起,每人每次可报一个数或连续报两个数。
谁能报得50谁就获胜。
先和同学玩一玩这个游戏。
如果由你先报数,你能保证获胜吗?
2.甲乙二人轮流报数。
从1起,每人每次最多可以连续报4个数。
谁能报得100谁就获胜。
怎样保证获胜?
3.甲乙二人轮流报数。
从1起,每人每次最多可以连续报3个数。
谁报得30谁就失败。
怎样保证获胜?
4.棋盒中有100枚棋子,甲乙二人轮流从中取出棋子,每次最多可以取5枚,最少也要取1枚。
取得最后一枚棋子的一方获胜,怎样取能必胜?
5.甲乙二人轮流在方格中移动棋子。
规则如下:
(1)只能向右边移动;
(2)每次只能移动1至3格;
(3)占领最后一格的获胜。
怎样才能获胜?
6甲乙二人轮流在方格中移动棋子。
规则如下:
(1)每次只能向右边或下边中的一个方向移动;
(2)每次只能移动一格或两格;
(3)占领最后一格的获胜。
和同学玩玩这个游戏,从中发现怎样才能获胜吧。
自己先向右移动一格,再看对方移动情况,依次占领有标记的格。
思考题:在一个3×3的方格纸中,甲乙两人轮流(甲先)往方格纸中填写1、2、3、4、5、6、7、8、10九个数中的一个,数不能重复.最后甲的得分是不计中间行的上下两行六个数之和,乙的得分是不计中间列的左右两列六个数之和,得分多者为胜.请你为甲找出一种必胜的策略。
由于最后甲的得分是不记中间行的上下两行六个数的和,乙的得分是不记中间列的左右两列六个数的和,因此,四个角部位置的数字是甲乙共用的,而中间位置的数字甲乙双方都不记数,那么决定甲乙大小的分别只有两个位置,我们只需要重点考虑(b+h)与(d+f)的大校
所以我们采用两种策略:
1.把最大的数填入自己的方格里。
对于甲,就是要把最大的数填入b处或h处;对于乙,
就是要把最大数填入d处或f处。
2.把最小的数填入对方的方格里。
对于甲,就是要把最小的数填入d处或f处;对于乙,
就是要把最小数填入b处或h处。
例如:第一步,甲先在属于甲方的第一行中间位置,即b处,填10,甲方即可以获得
胜利。
如果乙在属于乙的第一列中间位置,即d处,填余下的最大数字9,那么甲随即在属于甲的第三行中间位置,即h处,填余下的最大数字8,这时候,不管f处是什么数,甲都胜;
如果乙在属于甲的第三行中间位置,即h处,填余下的最小数字1,那么甲将余下的数字中最大的数9填到公共格或者最中间的格,这样:
如果乙将余下的数字中最大的数8填到属于乙的第一列中间位置,即d 处,则甲随后在
属于乙的第三列中间位置,即f 处,填余下的最小数字2,甲胜;
如果乙将余下的最小数字填到公共格,则甲仍然将余下的数字中最大的数填到公共
格……,这样,最后在还剩下属于乙的两个位置时,还剩下4,5,6三数,现在轮到乙先填,
乙只好选余下的最大数6填到自己的格子里,甲将余下最小的数4填到属于乙的格子,甲方
10+1>乙方4+6,甲胜。
英语不规则动词整
理
英语不规则动词记忆表1.AAA
2.ABB--动词原形 过去式 过去分词 beat[bi:t] beat[bi:t] beaten['bi:tn] 打败。