1统计学及其基本概念
- 格式:ppt
- 大小:1.53 MB
- 文档页数:75
以下是统计学中的一些基本概念和知识,供参考:
统计学基本概念
总体与样本:总体是研究对象全体的集合,样本是从总体中抽取的一部分元素的集合。
变量:用来描述数据的名称或符号。
数值变量与分类变量:数值变量是可度量的数据,如身高、体重等;分类变量是定性数据,如性别、血型等。
参数与统计量:参数是描述总体特征的指标,如总体均值、总体方差等;统计量是从样本中计算出来的指标,如样本均值、样本方差等。
描述性统计
频数分布表:将数据分为若干个组,统计每个组内的数据个数。
直方图:用直条矩形面积代表各组频数,矩形的面积总和代表频数的总和。
平均数:描述数据集中趋势的指标,计算方法有算术平均数、几何平均数、调和平均数等。
标准差:描述数据离散程度的指标,表示数据分布的宽窄程度。
概率与概率分布
概率:描述随机事件发生的可能性大小的数值。
概率分布:描述随机变量取值的概率规律的函数。
常见的概率分布有二项分布、泊松分布、正态分布等。
参数估计与假设检验
点估计:用单一的数值估计未知参数的值。
区间估计:用一定的置信水平估计未知参数的范围。
假设检验:根据样本数据对未知参数进行检验,判断假设是否成立。
常见的假设检验方法有t检验、卡方检验、F检验等。
相关分析与回归分析
相关分析:描述两个变量之间的线性关系的强度和方向。
回归分析:基于自变量和因变量之间的相关关系建立数学模型,用于预测因变量的值。
常见的回归分析方法有线性回归、逻辑回归等。
统计学是一门研究收集、分析、解释和展示数据的学科。
它涵盖了数据收集、数据处理、数据分析和数据解释等方面的知识和方法。
以下是统计学中的一些基本概念和含义:1. 总体与样本:在统计学中,总体(population)指的是我们感兴趣的全体个体或对象的集合。
样本(sample)则是从总体中选取出来的一部分个体或对象的集合。
通过对样本进行观察和分析,可以推断出关于总体的特征。
2. 参数与统计量:参数(parameter)是描述总体特征的数值指标,例如总体的平均值、标准差等。
统计量(statistic)是从样本中计算得到的数值指标,用于估计总体参数。
3. 数据类型:统计学中的数据可以分为两种主要类型:定性数据(qualitative data)和定量数据(quantitative data)。
定性数据是以分类或描述性方式呈现的数据,如性别、颜色等。
定量数据是以数值形式呈现的数据,如身高、年龄等。
4. 描述统计学与推论统计学:描述统计学(descriptive statistics)是通过对数据进行整理、概括和可视化,来描述和总结数据的特征。
推论统计学(inferential statistics)则是基于样本数据,通过推断和估计总体特征,以及进行假设检验和置信区间的建立。
5. 数据收集与抽样:数据收集是指获取数据的过程,可以通过实地调查、问卷调查、实验等方法进行。
抽样是从总体中选择出样本的过程,以确保样本代表总体,并使统计推断成为可能。
6. 统计分析方法:统计学提供了一系列分析方法,如描述性统计、频率分布、概率论、假设检验、回归分析、方差分析等。
这些方法用于处理和分析数据,从中得出结论或作出决策。
统计学在各个领域中具有广泛的应用,包括科学研究、经济学、社会学、医学、市场营销等。
通过统计学的方法和技术,我们能够更好地理解和利用数据,从中发现规律、做出预测,并支持决策和问题解决。
一、名词解释1、定性数据是指只能用文字或数字代码来表现事物的品质特征或属性特征的数据,具体又分为定类数据与定序数据。
(定类数据是对事物进行分类的结果,表现为类别,由定类尺度计量而成。
定序数据是对事物按照一定的排序进行分类的结果,表现为有顺序的类别,由定序尺度计量而成。
)2、定量数据是指用数值来表现事物数量特征的数据,具体又分为定距数据与定比数据两种。
(定距数据是一种不仅能反映事物所属的类别和顺序,还能反映事物类别或顺序之间数量差距的数据,由定距尺度计量而成。
定比数据是一种不仅能体现事物之间数量差距,还能通过对比运算,即计算两个测度值之间的比值来体现相对程度的数据,由定比尺度计量而成。
)3、长期趋势是指时间数列中指标值在较长一段时间内,由于受普遍的、持续的、决定性的基本因素的作用,使发展水平沿着一个方向持续向上或向下发展或持续不变的基本态势。
4、季节变动是指数列中各期指标值随着季节交替而出现周期性的、有规则的重复变动,这里的时间通常指一年。
5、循环变动是指时间数列中各项指标值随着时间变动发生周期性的重复变化,但循环变动所需的时间更长,重复变动的规律性、变动周期和时间也不像季节变动来得稳定、可以预测。
6不规则变动是由未能得到解释的一些短期波动所组成的,常指时间数列由于受偶然因素或意外条件影响,在一段时间内(通常指短期内)呈现不规则的或自然不可预测的变动。
7、相关关系,也称统计相关,是指现象之间存在的非确定性的数量依存关系。
8、点估计也称定值估计,就是以样本观测数据为依据,对总体参数做出确定值的估计,也就是用一个样本的具体统计值去估计总体的未知参数。
9、区间估计,就是指用一个具有一定可靠程度的区间范围来估计总体参数,即对于未知的总体参数9,想办法找出两个数值Qi和他(B i v他),使B处于区间(0|, 9)内的概率为1- a,即n ( 9iv 9V 9)=1- a区间(9i, 9)为总体参数的估计区间或置信区间,91为估计下限或置信下限,9为估计上限或置信上限。
第一章概述重点第一节统计的含义和特点1、统计概念:统计是人们正确运用统计理论和方法采集数据、整理数据、分析数据和由数据得出结论的实际操作过程,是人们从数据上对客观世界的一种认识活动和结果。
2、统计学的研究对象:大量社会经济现象总体的数量方面3、社会经济统计的特点:数量性、总体性、具体性、社会性4、统计工作过程:统计设计阶段、统计调查阶段、统计整理阶段、统计分析阶段、统计数据提供与管理阶段5、统计职能:信息、咨询、监督6、统计研究的具体方法:大量观察法、统计分组法、综合指标法、统计推断法第二节统计中常用的基本概念1、统计总体及总体单位的概念:统计总体是根据研究目的确定的所要研究的对象的全体,它是由客观存在的、具有某种共同性质的许多个体所构成的整体。
构成总体的个体则称为总体单位。
2、统计总体的特点:同质性、大量性、差异性3、统计标志概念及分类:标志是说明总体单位属性或特征的名称。
按其性质不同可分为品质标志和数量标志。
品质标志的具体表现用文字表示;数量标志的具体表现用数值来表示。
4、统计指标概念、六要素及种类:统计指标是各种说明总体综合数量特征和数量关系的数字资料。
六要素:时间限制、空间限制、指标名称、计量单位、计算方法、指标数值。
种类:数量指标(又分为总体单位总量和总体标志总量)、质量指标5、标志与指标的区别与联系:区别:(1)标志是表明总体单位特征的;指标是表明总体特征的(2)标志可以用数量表示为数量标志,也可以用文字表示为品质标志;指标都是用数量表示联系:(1)统计指标的基础是总体单位及其标志值,总体单位及数量标志值的汇总与综合(2)由于统计研究目的和任务不同,确定的总体和总体单位不同,标志与指标也不同6、变异的概念及种类:变异是标志的具体表现在总体个单位间的差异。
种类:品质变异和数量变异7、变量的概念及种类:变量是可变的数量标志和所有的统计指标。
种类:按变量值是否连续分为离散变量(只能用整数表示)和连续变量(可用小数表示);按性质不同可以分为确定性变量和随机变量。
统计学基础知识统计学是一门研究收集、分析、解释和展示数据的学科。
它提供了一种方法,能够更好地理解和应用各种数据。
统计学在各个领域都有重要的应用,不论是在科学研究、商业决策还是社会科学中,都离不开统计学的支持。
本文将介绍统计学的基础知识,包括统计学的定义、常见的统计术语以及常用的统计方法。
一、统计学的定义统计学是一门研究如何收集、整理、分析和解释数据以及从数据中得出结论的学科。
它包括描述性统计和推论统计两个方面。
描述性统计用来总结和描述数据的特征,如平均数、中位数、频率分布等;推论统计则用来根据样本数据推断总体的特征,如置信区间、假设检验等。
二、常见的统计术语1. 总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分。
通过对样本进行统计分析,可以得到对总体的推断。
2. 变量:研究对象的属性或特征,可以是数量型(如身高、年龄)或质量型(如性别、颜色)。
3. 数据类型:数据可以分为定性和定量两种类型。
定性数据用来描述特征或分类,如性别、颜色;定量数据用来表示数量或程度,如身高、温度。
4. 频数和频率:频数是指数据中某个取值出现的次数,频率是指某个取值出现的频率,即频数除以总数。
5. 中心趋势:用来描述数据的集中程度,包括平均数、中位数和众数。
平均数是所有观测值的总和除以观测值的个数,中位数是将观测值按大小排序后的中间值,众数是出现次数最多的值。
6. 离散程度:用来描述数据的离散程度,包括极差、方差和标准差。
极差是最大观测值与最小观测值之差,方差是观测值与平均数之差的平方和的平均数,标准差是方差的平方根。
三、常用的统计方法1. 描述性统计:描述性统计用来总结和描述数据的特征。
常见的描述性统计方法包括计数、百分比、平均数、中位数、众数、极差、方差和标准差。
2. 概率分布:概率分布描述了随机变量的取值及其对应的概率。
常见的概率分布包括正态分布、泊松分布和二项分布等。
3. 推论统计:推论统计用来从样本数据中推断总体的特征,并进行统计推断。
统计学的基本概念和原理统计学是一门研究数据收集、分析和解释的学科。
通过运用数学和统计方法,统计学帮助我们理解和描述数据,揭示数据之间的关系,并从数据中获取有关现象和问题的信息。
本文将介绍统计学的基本概念和原理,帮助读者了解其核心内容。
一、统计学的定义和作用统计学可以被定义为一种通过数据的收集、整理、分析和解释来研究和描述现象的科学方法。
它对于我们理解和解释现实生活中的问题和现象至关重要。
统计学通过量化和总结数据,帮助我们从海量信息中提取有意义的结论。
二、统计学的基本概念1. 总体和样本:在统计学中,总体是指我们要研究的整体群体,而样本则是从总体中抽取出的一部分个体。
通过从样本中收集数据并进行分析,我们可以对整体总体进行推断。
2. 变量:变量是指在研究中可能会发生变化的属性或特征。
变量可以分为定性变量和定量变量。
定性变量是具有类别或标签的变量,例如性别、颜色等。
定量变量则是可以进行数值化衡量的变量,例如年龄、身高等。
3. 观测和测量:观测和测量是指对变量进行数据收集的过程。
观测是指直接观察并记录数据,例如观察某人的行为。
测量是指使用测量工具对变量进行量化,例如使用尺子测量身高。
4. 描述统计学和推论统计学:描述统计学是指通过对数据进行整理、总结和描述,来了解数据的特征和结构。
推论统计学是指通过从样本推断总体特征的过程,通过利用样本的信息来推断总体的参数。
三、统计学的原理1. 概率:概率是统计学中一个重要的概念,它描述了事件发生的可能性。
概率可以帮助我们理解和预测事件的结果,并在统计推断中起到重要的作用。
2. 样本的代表性:在统计学中,样本的代表性是指样本能够准确地反映总体的特征。
为了保证样本的代表性,我们需要进行随机抽样,并确保样本的大小足够大。
3. 统计推断:统计推断是指通过从样本中获得的信息,对总体进行统计学上的推断。
统计推断的核心方法是利用概率和抽样理论来进行参数估计和假设检验。
4. 假设检验:假设检验是统计学中的一种方法,用于检验关于总体参数的假设是否成立。
统计学中的基本概念及其应用统计学是一个跨学科的领域,它涵盖了数学、计算机科学、物理学、生物学等各个领域。
统计学是一门应用性极强的学科,它的研究对象是数据及其背后的规律。
数据是现代社会中不可或缺的一部分,实践上,我们需要从数据中获得有用的信息,进而作出各种决策。
而统计学的作用就是帮助我们从数据中提取出有用信息,并对这些信息进行有效的分析和解释。
一. 基本概念1.1 样本和总体在统计学中,我们常常需要研究某一特定群体的某些属性,例如身高、体重、薪资等等。
这个群体可以是一个国家的居民,一所学校的学生,一家公司的员工,或者某一个地区的客户。
我们将研究对象称为总体。
而为了研究总体,我们需要采集可行的样本,即从总体中随机抽取一部分观察对象,这些被选中的对象组成了我们的样本。
样本应该是总体的一个代表,这样在分析样本数据的时候,我们才能够得到对于整个总体的合理推断。
1.2 参数和统计量在样本数据的分析中,我们通常需要对样本数据的某些特征进行度量,例如平均数、标准差等等。
这些度量称为统计量。
统计量主要分为两种:描绘位置的统计量和描绘变异性的统计量。
描绘位置的统计量包括平均数、中位数、众数等等;描绘变异性的统计量包括标准差、方差等等。
参数是总体特征的度量,例如总体均值、总体方差等等,而统计量是样本特征的度量。
在某些情况下,我们可以直接得到总体参数的值;在其他情况下,我们需要通过样本统计量来估计总体参数的值。
二. 统计学的应用2.1 假设检验假设检验是统计学中最基本的方法之一,它用于检验一个假设是否符合实际情况。
在假设检验中,我们提出一个假设,然后利用样本数据对这个假设进行检验。
假设检验通常分为以下步骤:提出假设、选择检验方法、计算检验统计量、设定显著水平、进行统计推断及结论。
假设检验广泛应用于社会科学、生物医学、工程学等领域。
例如,我们可以用假设检验来评估一种新药物是否有效、评估一个广告是否能够提高产品销售量。
2.2 线性回归线性回归是统计学中一个重要的应用领域,它用于建立一个解释变量与一个或多个响应变量之间的关系。
统计学的基本概念与原理统计学是一门关于收集、整理、分析和解释数据的学科。
它在各个领域都起着不可或缺的作用,包括科学研究、经济分析、社会调查等等。
统计学的基本概念和原理是建立在数据采集和推断的基础上的,下面将介绍统计学的一些核心概念和原理。
一、总体与样本在统计学中,我们常常遇到研究对象的总体和样本的概念。
总体是指我们所关注的整体,而样本是总体的一个子集。
通过对样本的研究和分析,我们可以推断出总体的一些特征和规律。
二、变量与观测值统计学中的变量是指我们所研究的对象的某种特征或属性,它可以是数值型的,也可以是分类型的。
观测值则是在实际调查或实验中获得的具体数据。
三、描述统计学与推论统计学描述统计学是对数据进行整理、概括和描述的过程,包括计算各种统计指标、绘制图表等。
推论统计学则是基于样本对总体进行推断的过程,通过样本的抽样和分析,得出关于总体的结论。
四、参数与统计量在推论统计学中,我们常常使用参数和统计量来对总体进行描述和推断。
参数是总体的某个特征的数值度量,而统计量是样本的某个特征的数值度量,通过对统计量的计算和比较,我们可以对总体的特征进行估计和推断。
五、假设检验与显著性水平假设检验是推论统计学中的一种重要方法,用于检验统计推断的可靠性。
在假设检验中,我们首先提出一个原假设和一个备择假设,然后通过样本数据对两个假设进行比较和判断。
显著性水平是用来确定是否拒绝原假设的临界值,通常设定为0.05或0.01。
六、相关与回归分析相关分析是用来衡量两个变量之间相关关系强弱的方法,它可以帮助我们了解变量之间的相互影响。
回归分析则是用来建立预测模型和解释模型的方法,通过回归分析,我们可以根据自变量的变化来预测因变量的变化。
七、抽样方法与抽样误差在统计学中,抽样方法是获取样本的重要手段。
不同的抽样方法对样本的选择有不同的原则和要求,常用的抽样方法包括随机抽样、分层抽样等。
抽样误差是指由于样本的随机性导致的样本估计值与总体真值之间的差异。
一、名词解释1、定性数据是指只能用文字或数字代码来表现事物的品质特征或属性特征的数据,具体又分为定类数据与定序数据。
(定类数据是对事物进行分类的结果,表现为类别,由定类尺度计量而成。
定序数据是对事物按照一定的排序进行分类的结果,表现为有顺序的类别,由定序尺度计量而成。
)2、定量数据是指用数值来表现事物数量特征的数据,具体又分为定距数据与定比数据两种。
(定距数据是一种不仅能反映事物所属的类别和顺序,还能反映事物类别或顺序之间数量差距的数据,由定距尺度计量而成。
定比数据是一种不仅能体现事物之间数量差距,还能通过对比运算,即计算两个测度值之间的比值来体现相对程度的数据,由定比尺度计量而成。
)3、长期趋势是指时间数列中指标值在较长一段时间内,由于受普遍的、持续的、决定性的基本因素的作用,使发展水平沿着一个方向持续向上或向下发展或持续不变的基本态势。
4、季节变动是指数列中各期指标值随着季节交替而出现周期性的、有规则的重复变动,这里的时间通常指一年。
5、循环变动是指时间数列中各项指标值随着时间变动发生周期性的重复变化,但循环变动所需的时间更长,重复变动的规律性、变动周期和时间也不像季节变动来得稳定、可以预测。
6、不规则变动是由未能得到解释的一些短期波动所组成的,常指时间数列由于受偶然因素或意外条件影响,在一段时间内(通常指短期内)呈现不规则的或自然不可预测的变动。
7、相关关系,也称统计相关,是指现象之间存在的非确定性的数量依存关系。
8、点估计也称定值估计,就是以样本观测数据为依据,对总体参数做出确定值的估计,也就是用一个样本的具体统计值去估计总体的未知参数。
9、区间估计,就是指用一个具有一定可靠程度的区间范围来估计总体参数,即对于未知的总体参数θ,想办法找出两个数值θ1和θ2(θ1<θ2),使θ处于区间(θ1,θ2)内的概率为1-α,即π(θ1<θ<θ2)=1-α。
区间(θ1,θ2)为总体参数的估计区间或置信区间,θ1为估计下限或置信下限,θ2为估计上限或置信上限。
统计学的基本概念简介统计学是一门研究数据收集、分析和解释的学科,是现代科学和社会科学的基石之一。
统计学主要包括描述统计学和推断统计学两个方面,通过运用数学和概率论的方法,为我们提供了一种了解和解释现象、做出决策的有效工具。
统计学的基本概念包括如下几个方面:1. 总体和样本:统计学的研究对象是总体,即研究对象的全体;而样本是从总体中选取出来的一小部分,用来代表和推断总体的特征。
2. 变量:统计学关注的是可变动的特征,即变量。
变量可以是定量的,如身高、体重等;也可以是定性的,如性别、颜色等。
通过对变量进行测量和观察,我们可以得到有关总体的信息。
3. 数据收集:统计学的一个重要环节是数据的收集。
数据可以通过调查问卷、实验观察、统计报表等方式获得。
数据的质量和多样性对统计学的分析和结论的准确性至关重要。
4. 描述统计学:描述统计学是统计学的第一步,它通过图表、表格、平均值、方差等指标对数据进行整理、概括和描述。
描述统计学为我们提供了全面了解数据的手段,可以对数据的分布、中心趋势和变异程度等进行定量描述。
5. 参数和统计量:参数是总体特征的度量,统计量是样本特征的度量。
通过对样本进行分析和推断,我们可以估计出总体的参数,进而研究和理解总体的特征。
6. 概率:概率是统计学的重要概念之一,它用来描述事件发生的可能性。
概率可以从频率或主观信念等角度来定义。
概率论提供了统计学推断和决策的理论基础,可以帮助我们评估风险、做出合理的决策。
7. 推断统计学:推断统计学是在样本数据的基础上对总体进行推断的学科。
推断统计学通过抽样方法和概率理论,从样本的统计量出发,通过假设检验、置信区间等方法,对总体特征进行估计和推断,从而对总体做出有关性质、差异、关联等方面的推断。
统计学的应用广泛,几乎涉及到所有学科领域,如自然科学、社会科学、商业管理等。
在自然科学中,统计学可以帮助我们分析天气变化、疾病传播、物种分布等问题;在社会科学中,统计学可以帮助我们研究人口统计、调查数据、社会经济等问题;在商业管理中,统计学可以帮助我们分析市场需求、销售趋势、风险评估等问题。
第一章、总论一、什么是统计学统计的含义与本质:用数字说明现象的本质1•统计活动2•统计数据3•统计学厂政府统计统计的含义及关系单位统计经营性统计匕其他原始数据:未加工价值更大-次级数据统计学的产生和发展1•古典统计学时期(萌芽——17世纪末到18世纪末)描述为主国势学派:德国的康令和阿亨瓦尔偏重事物性质的解释而不注重数量分析有名无实政治算数学派:英国的威廉配第和约翰格朗特主张以数字、重量和尺度来研究社会经济现象及其相互关系有实无名2•近代统计学时期(18世纪末到19世纪末)统计推断方法体系基本确立数理统计学派:比利时的凯特莱主张用研究自然科学的方法来研究社会现象,正式把概率论引入统计学,并最先用大数定律论证了社会生活中随机现象的规律性,还提出了“误差理论”和“平均人”思想奠定统计学理论基础社会统计学派:德国的克尼斯认为统计学是一门社会学科,是研究社会现象变动原因和规律性的实质性科学,其显著特点是强调对总体进行大量观察和分析,通过研究其内在联系来揭示社会现象的规律德国恩格尔提出的恩格尔系数美国经济学家库兹涅茨和英国经济学家斯通等人研究的国民收入和国内生产总值的核算方法3•现代统计学时期(19世纪末到现在)统计方法与应用全面发展显著特点:数理统计学由于同自然科学、工程技术科学紧密结合及被广泛应用于各个领域而获得迅速发展,各种新的统计理论与方法、尤其是推断统计理论与方法得以大量涌现。
统计学的学科性质1•研究对象:数量性(用数字说明现象本质,包括数量特征、数量关系、数量规律)、总体性(统计只研究总体不研究个体)、差异性(构成总体的个体必须存在差异) 2•学科范畴: 方法性、层次性、通用性 3•研究方式: 描述性、推断性统计学的作用――统计学的职能:信息职能(提供各种信息资料) 、咨询职能(提供信息整理)、监督职能(监督经济运行状况)、服务职能(服务社会) 1•统计学为我们认识自然和社会提供了必须的方法和途径 2•统计学在指导生产活动过程中发挥着重要作用 3•统计学在社会经济管理活动中的作用更为显著 4•统计学为科学研究提供了有力的手段1•计量尺度不同:定性数据和定量数据――定型数据:只能用文字或数字代码来表现事物的品质特征或属性特征的数据 —定类数据:对事物属性进行平行分类或分组 特点:只测度量事物类别差异,各类别地位相等。