220kV母线保护
- 格式:ppt
- 大小:724.00 KB
- 文档页数:96
220k V母线保护及失灵保护220kV母线保护及失灵保护第一节 220kV母线保护及失灵保护的现场配置本站220kV母线保护是采用了两套功能完全一样且又相互独立的深圳南瑞产BP-2B型微机母线保护装置。
BP-2B型微机母线保护装置采用比率制动特性的差动保护原理,结合微机数字处理的特点,发展出以分相瞬时值复式比率差动元件为主的一整套电流差动保护方案,完成差动保护,复合电压闭锁,人机接口等功能。
差动保护箱中设置大差电流元件,各段母线小差电流元件,母联(分段)充电保护,CT断线闭锁元件,CT饱和及检测元件,母线运行方式的自动识别等,电压闭锁箱包括母线保护的复合电压元件、PT 断线告警等功能。
220kV失灵保护是采用了深圳南瑞的BP-2B型微机断路器失灵保护,其保护与220kV母线保护没有任何关系,是独立的一套断路器失灵保护,保护由一套失灵保护装置和一套电压闭锁装置组成,具有断路器失灵保护,复合电压闭锁,运行方式自动识别其开关量,交流电流、电压的输入实时监测等功能。
本站220kV失灵保护的启动方式有以下几种:1.母线所连线路断路器失灵时启动方式:当母线所连的某线路断路器失灵时,由该线路或元件的失灵起动装置提供一个失灵起动接点给本装置。
本装置检测到某一失灵起动接点闭合后,起动该断路器所连的母线段失灵出口逻辑,经失灵复合电压闭锁,按可整定的‘失灵出口短延时(0.2S)’跳开联络开关,‘失灵出口长延时0.25S)’跳开该母线连接的所有断路器。
2.#1母联2012断路器失灵时启动方式:由母联2012保护的失灵起动装置提供一个失灵起动接点给本装置。
本装置检测到母联2012失灵起动接点闭合后,起动2012断路器失灵出口逻辑,当母联电流大于母联失灵定值,经失灵复合电压闭锁,按可整定的‘母联失灵延时’跳开Ⅰ母线和Ⅱ母线连接的所有断路器。
3.母联2025开关失灵时启动方式:本装置检测到母联2025失灵起动接点(在母差保护屏)闭合后,起动该断路器失灵出口逻辑,当母联电流大于母联失灵定值,经失灵复合电压闭锁,按可整定的‘母联失灵延时’跳开Ⅱ母线和Ⅴ母线上的所有断路器。
220KV母线保护改造方案母线保护是电力系统中非常重要的一项保护措施,保护母线的安全运行。
根据情况需要对220KV母线保护进行改造,以下是一种220KV母线保护改造方案:1.现状分析:首先需要对现有的220KV母线保护装置进行详细分析,包括设备类型、参数设置、运行状态等。
同时还需要对母线的电气参数进行测量和分析,包括电压、电流、频率等参数。
2.风险评估:针对现有的保护装置存在的问题和不足进行风险评估,包括保护范围、动作速度、灵敏度等方面的问题。
同时还需要分析可能出现的母线故障类型,例如短路、接地等。
3.改造目标:根据现状分析和风险评估的结果,确定改造的目标。
例如,提高母线保护的可靠性和速度,减少误动作的可能性,同时满足相关的国家和行业标准要求。
4.改造方案设计:根据改造目标,设计合理的改造方案。
可以从以下几个方面进行改造:a.更新保护装置:选择更先进的保护装置,例如数字化保护装置。
这种装置具有更高的可靠性、更快的动作速度和更灵敏的保护范围。
b.参数设置优化:根据电网的实际情况和母线的特性,优化保护装置的参数设置。
这包括定时器、灵敏度和延时等参数的调整。
c.通信接口改造:更新通信接口,使母线保护装置与电网监控系统或其他保护装置能够进行及时的信息交互和数据传输。
d.辅助装置改善:改进辅助装置,例如故障录波器和事件记录器的安装,增加故障诊断能力,方便事后分析和故障处理。
5.实施方案:根据改造方案,制定改造的具体实施方案。
包括改造的时间计划、具体工作步骤、所需人力和物力资源、安全措施等。
6.改造效果评估:在改造完成后,对改造效果进行评估。
包括装置的运行状态、动作速度、误动作情况等方面的评估。
同时还需要对装置的稳定性和可靠性进行评估。
7.运行维护:改造完成后,需要进行定期的运行维护工作。
包括装置的巡视、检修和仪器设备的校准等,确保装置的长期稳定运行。
总之,针对220KV母线保护的改造,需要进行现状分析、风险评估、改造目标确定、改造方案设计、实施方案制定、改造效果评估和运行维护等工作。
220kV母线差动保护动作事故原因和改进措施220kV母线差动保护系统是电力系统中非常重要的保护装置之一,它主要用于保护母线的安全运行。
有时候母线差动保护会出现误动作或者延迟动作的情况,造成对电力系统的影响甚至事故。
本文将探讨220kV母线差动保护动作事故的原因和改进措施。
1. 设备故障:母线差动保护的设备故障是造成动作事故的主要原因之一。
设备故障可能包括差动保护继电器故障、电流互感器故障、信号线路故障等。
这些故障可能导致母线差动保护误动作或者延迟动作,从而影响电力系统的正常运行。
2. 参数设置错误:母线差动保护系统的参数设置非常重要,它直接影响着保护的性能。
如果参数设置错误,可能导致误动作或者延迟动作。
误将负载电流设置成过流动作值,容易引起母线差动保护的误动作。
3. 母线结构变化:电力系统中母线的结构可能会由于运行中的各种原因发生变化,如接触电阻增大、接触电阻不平衡等,这些变化可能导致母线差动保护的动作不准确,出现误动作或者延迟动作的情况。
4. 外部干扰:外部干扰可能来自电力系统内部的其他设备,也可能来自外部环境。
如果差动保护系统受到外部干扰,可能导致母线差动保护误动作或者延迟动作。
5. 操作误操作:差动保护系统的操作人员如果操作不当,可能会导致误动作或者延迟动作的发生。
误操作设置参数、误操作复归装置等。
二、改进措施1. 设备维护和检修:对母线差动保护的设备进行定期维护和检修是非常重要的。
通过定期检测和维修,能够及时发现设备的故障,保证差动保护系统的正常运行。
2. 参数设置优化:对差动保护系统的参数设置进行优化是防止误动作或者延迟动作的关键。
要根据实际情况,科学合理地设置差动保护的参数,避免参数设置错误导致的事故发生。
3. 检测母线结构变化:对母线结构变化进行实时监测和检测非常重要。
可以利用其他装置,如微机保护装置、遥测装置等进行监测,及时发现母线结构的变化,以及时调整差动保护系统。
4. 外部干扰抑制:为了防止外部干扰对差动保护系统的影响,可以采取一些抑制措施,如在信号线路中加装滤波器、隔离器等设备,有效抑制外部干扰。
220kV双母双分段接线母线保护分析1 概述针对220 kV双母双分段接线母线电路方式,在高压线路中的运用,有利于确保高压线路电流量的稳定性,进而实现对高压线路组成中相关电力设备的保护。
因此220 kV双母双分段接线方式在高压线路等电网配电工程中,得到广泛应用。
如图1所示。
2 220 kV双母双分段接线母线保护原理220 kV双母双分段接线母线保护,主要指运用220kV电线进行双母双分段的母线接线设计,有利于实现对母线分段中发生电路故障过程中,科学控制母线跳闸范围[1]。
其中母线发生电路故障,其跳闸范围一般控制在全段电路的1/4左右,通过其他母线对电力的输送,以确保母线输电线路电力输送的稳定性。
220 kV双母双分段接线母线保护技术,是对220 kV双母线技术的创新和完善,有利于推动双母双分段接线母线保护技术在电力输送中的全面发展[2]。
如图2所示。
针对220 kV双母段线路容易造成线路短路的现象,应通过对双母线路改造为双套含失灵功能的双母段线路,以实现220 kV输电线路的稳定运行,避免线路故障造成整个线路系统的“瘫痪”。
3 220 kV双母双分段接线母线的具体运用3.1 220 kV双母双分段接线母线在主变跳段线路中的运用220 kV双母双分段接线母线在主变跳段线路中的运用,应结合主变跳段电路的运行要求进行科学设计,同时严格要求施工人员按照施工设计进行电力线路建设,针对主变跳运行方式和工作方式进行全面设计和监控,以实现对主变跳段线路的完善管理,进而减少主变跳运行过程中的联跳、误跳现象,有利于减少对主变跳线路的破坏。
运用220 kV双母双分段接线母线进行主变跳段线路的设计,有利于对主变跳段跳闸设置的简化处理,进而确保跳闸设置的方便操作和稳定运行,同时确保联跳阶段出口回路的科学工作[3]。
220 kV双母双分段接线母线在主变跳段中的具体应用,如图3所示。
通过上图得知:220 kV双母双分段接线母线在主变跳阶段中的运用,通过对不同灵重跳的管理,有利于实现各自的主变跳处理,同时通过主电源的控制,有利于避免其他子线进行主变跳过程中,对相邻线路的影响。
220KV母线及线路保护的操作及简介第一章继电保护装置简介 (1)2.1概述 (1)2.2继电保护装置的基本要求 (2)2.3继电保护装置的现状 (3)2.4微机保护装置典型结构 (3)2.5继电保护双重化原则 (5)第二章线路保护 (5)2.6概述 (5)2.7线路距离保护 (7)2.8220kV线路保护的调度命名 (7)2.9继电保护和重合闸装置的状态描述 (8)2.10继电保护和重合闸装置的投退 (8)第三章母线保护 (8)2.11概述 (8)2.12母联过流及充电保护 (10)3.1.1.母联过流保护 (10)3.1.2.充电保护 (11)2.13母联断路器失灵保护及死区保护 (11)3.1.3.母联断路器失灵保护 (11)3.1.4.死区保护 (12)2.14非全相运行保护 (12)2.15断路器失灵保护 (13)3.1.5.断路器失灵 (13)3.1.6.断路器失灵保护 (14)2.16自动重合闸 (16)3.1.7.自动重合闸装置重要性 (16)3.1.8.对自动重合闸装置的基本要求 (17)3.1.9.自动重合闸的类型 (17)第一章继电保护装置简介1.1概述继电保护装置:能反应电力系统中电气元件故障或不正常运行状态并动作于断路器跳闸或发出指示信号的一种自动装置。
为了实现继电保护的功能,可以利用电力系统发生故障和处于不正常运行状态时一些物理量的特征和特征分量,构成各种原理的保护。
如:电力系统发生短路故障时,有些参数发生变化。
如电流增大、电压降低、线路始端测得的阻抗减小以及电压之间的相位差发生变化等。
利用这些差别,可以构成各种不同原理的继电保护。
反应电流增大而动作的保护为过电流保护;反映电压降低而动作的保护为低电压保护;反应故障点到保护安装处之间的距离(或线路始端测量阻抗的减小)而动作的保护为距离保护(或低阻抗保护)。
此外,也可根据线路内部故障时,线路两端电流相位差发生变化构成各种差动原理的保护。
浅谈220KV母线保护改造技术【摘要】现代电力系统的飞速发展,对继电保护技术提出了更高的要求。
一些传统的继电保护技术已不能够满足要求。
具有良好性能的母线保护技术是研究的热点。
本文详细介绍了母线保护技术的知识,分析了母线保护技术的特点,找出其中存在的缺陷。
提出了母线保护的几种改造技术,并分析改造过程中存在的问题及解决方法。
【关键词】母线保护改造技术1 引言母线是现代电力系统如变电站和发电厂的重要组成部分。
在电力系统的各级电压配电装置中,母线装置连接着发电机、变压器等电气设备与配电线路、输电线路和调相设备。
其主要作用是聚集、分配和传送电能。
所以母线装置工作性能直接影响电力设备的安全稳定运行。
作为保障电力设备安全运行的重要装置之一,高压母线在变电站中起着十分重要的作用。
许多因素会引起母线故障,如遭受污秽、绝缘老化、误操作或误操作等,且母线故障引发的后果相当严重。
因此必须按照系统状况、变电站建设条件、负荷要求等各种因素选择适宜的母线接线方式和母线保护方式。
母线保护的基本要求包括可靠性、速动性和选择性。
(1)可靠性指当母线发生故障时,母线保护实现可靠动作;当系统发生区外故障时,母线保护无需反应。
(2)速动性指母线保护能够快速的切除故障部分。
(3)选择性指母线保护装置可以很好的区分内部故障部分和外部故障部分以及可以正确地选择出故障母线组别。
母线保护技术大概经历了三个发展阶段:整流母线保护、集成电路母线保护和微机母线保护。
(1)整流型母线保护装置原理简单,主要采用电流相位比较继电器,母线内部发生故障时,选择元件通过比较总差电流和母联断路器电流之间的相位关系,选出故障母线。
但此技术动作时间较长且短路电流过大造成互感器饱和时失去选择性。
(2)集成电路型母线保护逐渐代替了运行维护和性能都比较落后的整流型母线保护,其主要分为低阻抗型母线保护、高阻抗型母线保护和中阻抗型母线保护。
(3)随着计算机技术和通信技术的发展,推动了微机型母线保护的发展。