[自然科学]第5章 X射线衍射原理第二节
- 格式:ppt
- 大小:655.04 KB
- 文档页数:38
x射线衍射工作原理X射线衍射是一种广泛应用于材料结构分析和晶体学研究的技术。
其工作原理基于X射线穿过晶体后的散射现象。
X射线通过晶体时,会与晶体内的原子发生作用,导致X射线的散射方向和强度发生改变。
通过测量和分析散射X射线的特性,我们可以得到关于晶体的结构信息。
X射线衍射的工作原理可以用布拉格定律来解释。
根据布拉格定律,当入射X射线的波长和晶体的晶格常数满足特定条件时,散射的X射线波面会叠加形成衍射图样。
这些衍射图样呈现出明亮的衍射斑点,每个斑点对应着晶体中特定的晶面。
为了进行X射线衍射实验,首先需要一台X射线发生器。
X射线发生器会产生高能的X射线束,该束通过使用称为X射线管的装置产生。
X射线管由阴极和阳极组成,当阴极发射电子时,经过加速和碰撞作用,产生X射线。
产生的X射线束通过调节的光学元件来聚焦,并进一步通过样品。
样品是一个晶体,在X射线束的作用下,产生散射。
散射的X射线被称为衍射光,其角度和强度可以通过衍射图样来确定。
接下来,衍射光会被收集并聚焦到一个光学探测器上,比如一个镜子或一个光电二极管。
探测器会记录下衍射光的特性,并通过电信号转换为可见的图像或者其他数据。
最后,通过分析衍射图样和探测器记录的数据,我们可以推断出晶体的结构信息,比如晶胞参数、晶面排列等。
这些结构信息对于研究材料性质和开发新材料具有重要意义。
总之,X射线衍射通过测量和分析散射的X射线来研究晶体结构。
它的工作原理基于X射线的穿透和散射现象,通过衍射图样和探测器记录的数据可以获得晶体的结构信息。
这种技术在材料科学和晶体学研究中发挥着重要作用。
第五章 X射线衍射实验方法常用的实验方法1.按成相原理分:单晶劳埃法、多晶粉末法、周转晶体法2.按记录方式分:照相法:用照相底片记录衍射花样衍射仪法:用各种辐射探测器和电子仪表记录。
、第一节粉末照相法1.粉末照相法是用单色X射线照射转动(或固定)多晶体试样,并用照相底片记录衍射花样的一种实验方法。
试样可为块、板、丝等形状,但最常用粉末,故称粉末法。
2.粉末法成相原理:粉末试样是由数目极多的小晶粒组成,且晶粒取向完全无规则,各晶粒中d值相同的晶面取向随机分布于空间任意方向,这些晶面对应的倒易矢量也分布于整个倒易空间的各个方向,它们的倒易阵点则布满在以倒易矢量的长度为半径的倒易球面上.由于等同晶面族{HKL}的面间距相等,所以,等同晶面族的倒易阵点都分布在同一个倒易球面上,各等同晶面族的倒易阵点分别分布图5-1 粉末法成相原理图在以倒易点阵原点为中心的同心倒易球面上.在满足衍射条件时,根据厄瓦尔德原理,反射球与倒易球相交,其交线为一毓垂直于入射线的圆,从反射球中心向这些圆周连线级成数个以入射线为公共轴的共顶圆锥,圆锥的母线就是衍射线的方向,锥顶角等于4θ.这样的圆锥称为衍射圆锥。
1。
1 德拜照相法(1)德拜照相法(2)圆筒底片摄照示意图1。
2 聚焦照相法o是利用发散度较大的入射线,照射到试样的较大区域,由这个区域发射的衍射线又能重新聚焦,这种衍射方法称为聚焦法.聚焦相机的基本特征是狭缝光阑、试样和条状底片三者位于同一个聚焦圆上。
它所依据的几何原理是同一圆周上的同弧圆周角相等,并等于同弧圆心角的一半。
按照这样的几何原理,让狭缝光阑、试样和条状底片三者采取不同的布置,便可设计出各种不同类型的聚焦相机。
塞曼—波林相机的内壁圆周为聚焦圆,狭缝光阑s、试样表面AB和条状底片MN三者准确地安置在同一个聚焦圆上。
狭缝光阑相当X射线的虚光源,实际光源为x射线管的焦点。
图5—2 塞曼—波林相机的衍射几何1。
3 平面底片照相法2.利用单色(标识)X射线、多晶体试样、平面底片和针孔光阑,故也称之为针孔法。