第六章 参数估计基础
- 格式:doc
- 大小:26.50 KB
- 文档页数:2
1第六章 数据预处理及相容性检验6.1 前言航行器航行试验数据用于参数辨识之前,需要对试验数据进行预处理和数据相容性检验,目的在于尽可能消除含在数据中的各种噪声和系统误差,以提高辨识结果的准确度。
数据预处理包括:数据野值的识别、剔除与补正;数据加密;数据平滑与微分平滑;滤除高频噪声及以传感器位置校正等。
数据相容性检验的主要功能是将数据中的常值误差,特别是零位漂移误差辨识出来并重新建立没有常值误差的试验数据。
本章还以某型航行器的实测数据预处理为例,给出了具有实际应用意义的数据处理技术及结果。
6.2 数据处理的理论基础6.2.1 信号的分类用数学来描述待辨识系统的某一组输入和某一组输出时间函数间的关系是辨识的基础。
在选择信号的描述方法时,必须考虑信号表示的两个方面:①要表现出信号载有信息的属性;②要给出研究过程信息传递特性的方法。
按时间函数的特点来表达信息,可将信号分为连续信号和采样信号。
在许多情况下,信号的记录可以采用这两种信号中的任一种。
两种信号的记录均有各自的特点,但是利用计算机对记录的信号作处理时,往往需要采样信号,即使采用连续信号,也必须对信号作采样处理。
采样运算是线性运算,即当我们用算子ψ(.)表示这一运算时,对一切α和β,信号u(t)和y(t)均有ψαβαψβψ[()()][()][()]u t y t u t y t +=+(6-2-1)按幅度划分,信号可以分为模拟信号、量化信号和二进制信号。
二进制信号是量化信号的极限情况,量化运算是非线性运算。
因此,在处理量化信号时,这种非线性造成许多数学上的困难。
确定性信号与随机信号也是系统建模和参数辨识中常用的信号分析方式。
由于工程的实际环境,对随机信号的讨论更具有实际意义。
6.2.2 随机信号的描述为了讨论问题的方便,在此我们首先介绍随机信号的一些统计性质。
与确定性信号不一样,对随机信号询问其幅度的瞬时值是没有多少意义的,所以最有用的量是那些关于统计性质的量,如谱密度、数学期望值、方差和相关函数等。
第六章 参数估计§6.1 点估计的几种方法6.1.1 替换原理和矩法估计 一、矩法估计替换原理:(1)用样本矩去替换总体矩,这里的矩可以是原点矩也可以是中心矩;(2)用样本矩的函数去替换相应的总体矩的函数。
举例二、概率函数);(θx p 已知时未知参数的矩法估计设总体具有已知的概率函数),,;(1k x p θθ ,∈),,(1k θθ Θ是未知参数或参数向量,n x x x ,,21 是样本,假定总体的k 阶原点矩k μ存在,则对所有j ,,0k j <<j μ都存在,若假设k θθ,,1 能够表示成k μμ,,1 的函数),,(1k j j μμθθ =,则可给出诸j θ的矩法估计:k j a a kj j ,1),,,(ˆ1==θθ 其中k a a ,,1 是前k 个样本原点矩:∑==n i ji j x n a 11,进一步,如果要估计k θθ,,1 的函数),(1k g θθη =,则可直接得到η的矩法估计)ˆ,ˆ(ˆ1kg θθη=。
例1 设总体为指数分布,其密度函数为x e x p λλλ-=);(,0>xn x x x ,,21 是样本,此处1=k ,由于λ/1=EX ,亦即EX /1=λ,故λ的矩法估计为x /1ˆ=λ另外,由于2/1)(λ=X Var ,其反函数为)(/1X Var =λ,因此,从替换原理来看,λ的矩法估计也可取为s /1ˆ1=λ, s 样本标准差。
这说明矩估计可能是不唯一的,这是矩法估计的一个缺点,此时通常应该尽量采用低阶矩给出未知参数的估计。
例2设n x x x ,,21 是来自),(b a 上的均匀分布的样本,a 与b 均是未知参数,这里2=k 其密度函数为⎪⎩⎪⎨⎧≤≤-=0,1),;(bx a a b b a x p ,求a ,b 的矩估计.解 由2)(121)(,2)(a b X D b a X E -=+= 得方程组:⎪⎪⎩⎪⎪⎨⎧-==-=+∑=n i i X X n X V a r a b X b a 122.)(1)()(121,2解此方程组,得到矩估计量: .)(3ˆ , )(3ˆX Var X b X Var X a+=-= 6.1.2最大似然估计定义6.1.1 设总体的概率函数为);(θx p ,Θ∈θ,其中θ是一个未知参数或几个未知参数组成的参数向量,Θ是参数θ可能取值的参数空间,n x x x ,,21 是来自该总体的样本,将样本的联合概率函数看成θ的函数,用),,;(21n x x x L θ表示,简记为)(θL ,);();();(),,;()(2121θθθθθn n x p x p x p x x x L L ==)(θL 称为样本的似然函数。
第六章 参数值的估计 第一节 参数估计的一般问题一、估计量与估计值参数估计就是用样本统计量去估计总体参数,如用X 估计μ,用S2估计2σ,用p 估计π等。
总体参数可以笼统地用一个符号θ表示。
参数估计中,用来估计总体参数的统计量的名称,称为估计量,用θ表示,如样本均值、样本比例等就是估计量。
用来估计总体参数时计算出来的估计量的具体数值,叫做估计值。
二、点估计与区间估计——参数估计的两种方法 1、点估计用样本估计量θ的值直接作为总体参数θ的估计量值。
2、区间估计它是在点估计基础上,给出总体参数估计的一个区间,由此可以衡量点估计值可靠性的度量。
这个区间通常是由样本统计量加减抽样误差而得到。
以样本均值的区间估计来说明区间估计原理:根据样本均值的抽样分布可知,重复抽样或无限总体抽样情况下,样本均值,由此可知,样本均值落在总体均值两侧各为一个标准误差范围内的概率为0.6827,两个标准误差范围0.9545,三个标准误差范围0.9973,并可计算出样本均值落在μ的两侧任何一个标准误差范围内的概率(根据已知的μ,σ计算)。
但实际估计时,μ是未知的,因而不再是估计样本均值落在某一范围内的概率,而只能根据已设定的概率计算这个范围的大小。
例如:约有95%的样本均值会落在距μ的两个标准误差范围内,即约有95%的样本均值所构造的两个标准误差的区间会包括μ。
在区间估计中,由样本统计量所构造的总体参数的估计区间,称为置信区间,区间的最小值为置信下限,最大值为置信上限。
例如,抽取了1000个样本,根据每个样本构造一个置信区间,其中有95%的区间包含了真实的总体参数,而5%的没有包括,则称95%为置信水平/置信系数。
构造置信区间时,可以用所希望的值作为置信水平,常用的置信水平是90%,95%,99%,见下表:α称为显著性水平,表示用置信区间估计的不可靠的概率,1-为置信水平。
如何解释置信区间:如用95%的置信水平得到某班学生考试成绩的置信区间为(60,80),即在多次抽样中有95%的样本得到的区间包含了总体真实平均成绩,(60,80)这个区间有95%的可能性属于这些包括真实平均成绩的区间内的一个。
第六章参数估计范文第六章是统计学中的重要章节,讨论了参数估计的原理和方法。
参数估计是根据样本数据推断总体参数值的过程,它是统计推断的基础和核心。
在参数估计中,我们常常面临两个问题:点估计和区间估计。
点估计是通过样本数据得到总体参数的一个估计值,例如样本均值可以估计总体均值。
区间估计是在点估计的基础上,给出一个参数估计的区间,用于描述参数估计的不确定性。
常用的点估计方法有矩估计法和最大似然估计法。
矩估计法基于样本矩的性质,将样本矩和总体矩进行匹配,得到参数的估计值。
最大似然估计法是利用已知样本数据求取未知参数值,使样本观察到的概率最大化。
这两种方法都是有效的参数估计方法,但在特定情况下可能会有一定差异。
区间估计是对参数估计值的不确定性的度量,它给出了一个信任水平下参数取值的范围。
常用的区间估计方法有置信区间和预测区间。
置信区间是在给定置信水平下,对参数范围进行估计。
置信水平是指对总体参数落在区间内的置信程度,通常使用95%或99%。
预测区间是对未来观测值的取值范围进行估计,它比置信区间更宽泛。
在实际应用中,我们会根据问题的性质和数据的特点选择适合的参数估计方法。
参数估计方法的选择是统计分析的基础,它直接影响着最后结果的可靠性和准确性。
因此,正确选择和应用参数估计方法对于准确推断总体参数具有重要意义。
总结起来,第六章参数估计是统计推断的重要内容,包括点估计和区间估计两个方面。
点估计是通过样本数据得到总体参数的一个估计值,常用的方法有矩估计法和最大似然估计法。
区间估计是对参数估计值的不确定性的度量,常用的方法有置信区间和预测区间。
正确选择和应用参数估计方法对于准确推断总体参数具有重要意义。
第六章参数估计参数估计是指在统计学中,根据从总体中获取的样本数据,对总体参数的值进行估计的一种方法。
参数估计是统计推断的基础,它通过样本数据来推断总体的特征,并给出一个接近总体参数真值的估计值。
在本章中,我们将介绍参数估计的方法和一些常用的估计量。
一、点估计点估计是参数估计的一种方法,它是通过一个单一的数值来估计总体参数的值。
在点估计中,我们通过样本数据计算出一个估计量,作为总体参数的估计值。
点估计的关键是选择一个合适的估计量,这个估计量应当是无偏的、一致的以及有效的。
1.无偏性在参数估计中,无偏性是指估计量的期望值等于被估计的参数的真值。
如果一个估计量的期望值等于被估计参数的真值,则称该估计量是无偏的。
例如,对于总体均值的估计,样本均值是一个无偏估计量。
2.一致性在参数估计中,一致性是指随着样本容量的增加,估计量的值趋于总体参数的真值。
如果一个估计量的值在样本容量趋向无穷时收敛到被估计参数的真值,则称该估计量是一致的。
一致性是估计量的重要性质,它保证了估计量在大样本情况下的准确性。
3.有效性在参数估计中,有效性是指估计量的方差最小。
如果一个估计量的方差比其他估计量的方差都小,则称该估计量是有效的。
有效性是估计量的理想性质,它表示估计量具有较好的精确性。
二、区间估计区间估计是参数估计的另一种方法,它不仅给出了总体参数的一个点估计,还给出了一个置信区间。
置信区间是总体参数的一个估计范围,反映了总体参数的不确定性。
1.置信水平在区间估计中,置信水平是指在一次次重复取样中,估计的置信区间包含总体参数的比例。
通常使用95%或99%的置信水平。
2.置信区间的构造构造置信区间的方法有多种,常见的有正态分布的置信区间、t分布的置信区间以及bootstrap的置信区间等。
其中,正态分布的置信区间适用于大样本情况,t分布的置信区间适用于小样本情况,bootstrap的置信区间则是一种非参数方法。
3.置信区间的解释置信区间的解释是指一个置信区间中的统计学意义。
第六章参数估计基础习题
一、是非题
1.总体率的区间估计中, 值越大,置信度越低.( )
2.样本率的标准误越小,抽样误差越大.( )
3.对同一样本资料来说,总体均数的置信区间宽度通常会小于医学参考值范围的宽度.()
4.置信度由99%下降到95%,置信区间估计的准确度也下降.( )
5.在t值相同时,双侧概率正好是单侧格率的2倍.( )
二、选择题
1.均数的标准误反映了( ).
A.个体变异程度B.集中趋势的位置
C.指标的分布特征D.样本均数与总体均数的差异
E.频数分布规律
2.用于描述均数的抽样误差大小的指标是( ).
A.S B.S C.CV D.R E.S2
3.抽样误差产生的原因是( ).
A.观察对象不纯B.非正态分布
C.个体差异D.非分类变量资料E.随机抽样方法错误4.均数95%置信任区间主要用于().
A.估计“正常人群”某指标95%观察值所在范围
B.反映总体均数有95%的可能在某范围内
C.反映某指标的可能取值范围
D.反映某措标的观察值波动范围
E.反映95%的样本均数在此范围内
5.以下关于参数估计的说法正确的是( ).
A.区间估计优于点估计B.样本含量越大,置信区间范围越大
C.样本含量越小,参数估计越精确D.对于一个参数可以获得几个估计值E.标准差大小与置信区间范围无关
三、筒答题
1.已知某地正常成年女性的平均空腹血糖值为 4.95mmol/L,标淮差为 1.03 mmol/L,某医疗机构从该地随机抽取40名正常成年女性,测得其平均空腹血糖值为5.17 mmol/L,试指出5.17 mmol/L与4.95 mmol/L不同的原因是什么?应该用什么指标来表示两者间的差别?
2.样本均数的抽样分布有哪些特点?
3.t分布与Z(标准正态分布)分布相比有什么特点?。