高等数学(上)模拟试卷和答案
- 格式:doc
- 大小:1.78 MB
- 文档页数:29
高等数学模拟题A .上册:上册期中(一)一、试解下列各题: 1.求。
2.求。
3.设处连续,在处不连续,试研究在处的连续性。
4.求在上的最大值与最小值。
二、试解下列各题: 1.判断的奇偶性。
2.[5分]设,其中,求。
3.[5分]设,求。
4.[5分]验证罗尔定理对在上的正确性。
三、试解下列各题:1.[6分]设函数由方程所确定,且,其中是可导函数,,求的值。
2.求极限。
3.求的极值。
四、设圆任意一点M (点M 在第一象限)处的切线与轴,轴分别交于A 点和B 点,试将该切线与两坐标轴所围成的三角形AOB 的面积S 表示为的函数。
1cos cos 21cos 2cos 8lim223-+--→x x x x x π242320)1()1(limx x x x --+→0)(x x x f =在)(x g 0x )()()(x g x f x F +=0x x x x f +=2)(]1,1[-)11(11ln 11)(<<-+-+-=x x x e e x f x x )]1ln 1ln(1ln[x x x y ++=10<<x y 'x xy +-=11)(n y 1074)(23--+=x x x x f ]2,1[-)(x y y =)()(22y x f y x f y +++=2)0(=y )(x f 1)4(,21)2(='='f f 0=x dxdy xx x 10)(cos lim +→22)13()(e x x e x f x +++=-222a y x =+),(y x ox oy x五、用函数连续性“”的定义,验证函数在任意点处连续。
六、求极限七、求与的公切线方程。
八、证明:当时,。
九、]一气球从距离观察员500米处离地匀速铅直上升,其速率为140米/分,当此气球上升到500米空中时,问观察员的视线的倾角增加率为多少? 参考答案:一、1.2。
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
高数练习题及答案解析一、填空题1.设f?ax?by,其中a,b为常数,则f)?.axy?abx?b2y 2.函数z?x2?y2在点处,沿从点到点的方向的方向导数是.1?223.设有向量场A?yi?xyj?xzk,则divA? x1x2114.二重积分dxfdy交换积分次序后为?dyfdx0n5.幂级数?的收敛域为 . [0,6) nn3n?16.已知z?e7.三重积分x?2y,而x?sint,y?t,则33dzesint2t dt其中?是由x?0,x?1,y?0,y?1,z?0,z?3dv? ,所围成的立体.二、计算题21.设a?2,b?5,a与b的夹角为?,向量m??a?17b与n?3a?b相互垂直,求?.3222解:由0?m?n?3?a?a?b?17b?122?5?cos??17?253得??40.2x3yz50垂直的平面方程.3x?y?2z?4?0?ijk?解:直线的方向向量为s?2?31??5,7,1131?22.求过点且与直线?取平面的法向量为n?s,则平面方程为5?7?11?0 即5x?7y?11z?8?0.3.曲面xyz?32上哪一点处的法线平行于向量S?{2,8,1}?并求出此法线方程.解:设曲面在点M处的法线平行于s,令F?xyz?32则在点M处曲面的法向量为n?{Fx,Fy,Fz}?{yz,xz,xy}.由于ns,故有yzxzxy.由此解得81x?4y,z?8y,代入曲面方程,解得M的坐标为,用点向式即得所求法线方程为x?4y?1z?881三、计算题1.设z?xy?xF,其中F为可导函数,求xyx?z?z?y. ?x?y解:zyzyFF, xF xxyzzy2xyxFzxy xynd?ex?1?2.将函数f?展成的幂级数,并求的和. xdx?x?n?1!ex?1111xxn1 解:x2!n!并在内收敛。
12n1n2nfxxxn1,x2!3!n!n?1!ex1nfx!n1x?113.求微分方程y1?,y??2dy的通解. dx解:令y??p,则yp?,原方程化为p??1?p2?dpdxptan1p2y??tandx??lncos?c2四、计算题1.求曲线积分I?22233的值,其中L为x?y?R的正向. ydx?dyL解:记L所围成的区域为D,利用格林公式得2?RI?y3dx?dydxdy?3?dd?LD3R22.求微分方程yy?4xex的通解.解:对应的齐次方程为yy?0,它的特征方程为r?1?0,其根为r1?1,r2??1,该齐次方程的通为Y?C1ex?C2e?x。
高等数学(上)模拟试卷一一、填空题(每空3分,共42分)1、函数lg(1)y x =-的定义域是 ;2、设函数20() 0x x f x a x x ⎧<=⎨+≥⎩在点0x =连续,则a = ; 3、曲线45y x =-在(-1,-4)处的切线方程是 ; 4、已知3()f x dx x C=+⎰,则()f x = ;5、21lim(1)xx x →∞-= ; 6、函数32()1f x x x =-+的极大点是 ;7、设()(1)(2)2006)f x x x x x =---……(,则(1)f '= ;8、曲线x y xe =的拐点是 ;9、21x dx-⎰= ;10、设32,a i j k b i j k λ=+-=-+,且a b ⊥,则λ= ;11、2lim()01x x ax b x →∞--=+,则a = ,b = ;12、311lim xx x-→= ;13、设()f x 可微,则()()f x d e = 。
二、 计算下列各题(每题5分,共20分)1、11lim()ln(1)x x x →-+ 2、y =y ';3、设函数()y y x =由方程xye x y =+所确定,求0x dy =;4、已知cos sin cos x t y t t t =⎧⎨=-⎩,求dy dx 。
三、求解下列各题(每题5分,共20分)1、421x dx x +⎰2、2sec x xdx ⎰ 3、40⎰ 4、2201dx a x +⎰ 四、 求解下列各题(共18分):1、求证:当0x >时,2ln(1)2x x x +>-(本题8分) 2、求由,,0xy e y e x ===所围成的图形的面积,并求该图形绕x 轴旋转一周所形成的旋转体的体积。
(本题10分)高等数学(上)模拟试卷二一、填空题(每空3分,共42分)1、函数24lg(1)y x x =-+-的定义域是 ; 2、设函数sin 0()20xx f x xa x x ⎧<⎪=⎨⎪-≥⎩在点0x =连续,则a = ;3、曲线34y x =-在(1,5)--处的切线方程是 ; 4、已知2()f x dx x C=+⎰,则()f x = ;5、31lim(1)xx x →∞+= ; 6、函数32()1f x x x =-+的极大点是 ; 7、设()(1)(2)1000)f x x x x x =---……(,则'(0)f = ;8、曲线xy xe =的拐点是 ; 9、32x dx-⎰= ;10、设2,22a i j k b i j k λ=--=-++,且a b ,则λ= ;11、2lim()01x x ax b x →∞--=+,则a = ,b = ;12、311lim xx x-→= ;13、设()f x 可微,则()(2)f x d = 。
高等数学上册试题及参考答案高等数学上册试题及参考答案第一篇:微积分1.已知函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$,求$f'(x)$和$f''(x)$。
参考答案:首先,根据对数函数的导数公式$[\lnf(x)]'=\frac{f'(x)}{f(x)}$,我们可以得到$f'(x)$的计算式为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}+x}\cdot\frac{\fra c{1}{2}\cdot2x}{\sqrt{(1+x^2)}}+\frac{1}{\sqrt{(1+x^2)}+x}$$ 将上式整理化简,得到:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$接下来,我们需要求$f''(x)$。
由于$f'(x)$是由$f(x)$求导得到的,因此$f''(x)$可以通过对$f'(x)$求导得到,即:$$f''(x)=\frac{d}{dx}\left[\frac{1}{\sqrt{(1+x^2) }\cdot(\sqrt{(1+x^2)}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}\r ight]$$通过链式法则和乘法法则,我们得到:$$f''(x)=\frac{-(1+x^2)^{-\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)-\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot\frac{2x}{\sqrt{(1+x^2)}}\cdot(\sqrt{ (1+x^2)}+x)^2}{(\sqrt{(1+x^2)}+x)^2}$$将上式整理化简,得到:$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $因此,函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$的导数$f'(x)$和二阶导数$f''(x)$分别为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $2.计算二重积分$\iint_D(x^2+y^2)*e^{-x^2-y^2}d\sigma$,其中$D$是圆域$x^2+y^2\leqslant 1$。
高等数学测试卷(上)一、填空题:(每小题2分,共20分)1.一切初等函数在其 内都是连续的。
2.若y x ,满足方程xyy x arctan ln22=+,则=dy 。
3.已知)100()2)(1()(---=x x x x x f ,则=')0(f 。
4.当0→x 时,x x x f -=sin )(是3x 的 阶无穷小。
5.已知C xxdx x f +-=⎰21)(,则=⋅⎰dx x f x )(cos sin 。
6.=-⎰-dx x 312 。
7.若)(x f 在[]a a ,-上连续且为奇函数,则⎰-=aadx x f )( 。
8.曲线x y =2和2x y =所围成的平面图形的面积是 。
9.已知向量)1,2,1(),1,1,2(-=-=b a,单位向量e 同时垂直于a 与b ,则e= 。
10.通过点)5,0,3(0M 与坐标原点的直线的对称式方程为 。
二、选择题:(每小题2分,共20分) 1.下列极限存在的是:( ))A 2)1(lim x x x x +∞→ )B 121lim 0-→x x )C x x e 10lim → )D xx x 1lim 2++∞→2.设⎪⎩⎪⎨⎧≤>-=0),(0,cos 1)(2x x g x x xxx f ,其中)(x g 是有界函数,则)(x f 在0=x 处( ) )A 极限不存在 )B 极限存在,但不连续 )C 连续,但不可导 )D 可导高等数学测试卷(上)-答案一、 填空题:(每小题2分)1. 定义区间 2.dx yx yx -+ 3. 100! 4. 同5. C x x +⋅-csc cot 6. 5 7. 0 8.31 9. )355,353,351(-±10. ⎪⎩⎪⎨⎧==053y z x二、 选择题:(每小题2分) 1).A 2).D 3).C 4).D 5).D6).A 7).A 8).D 9).C 10).B三、 计算题:(每小题7分)1.3162sin lim 52202==→x x x ex x x e x 原式 2.x x f xxx x x dx dy x 2sin )(sin )sin ln (cos 2sin '++= 3.C x x dx xx dx x x +++=+++=⎰⎰]arctan )1[ln(211arctan 12222原式 4.3821)1()(221210=++==⎰⎰⎰dx x dx x du u f 原式5.由2222222)1()1)(1(2)1(4)1(2,12x x x x x x y x x y ++-=+-+=''+='得拐点坐标为:)2ln ,1(),2ln ,1(-在),1[],1,(+∞--∞上凸,在[-1,1]上凹。
模拟试题一一、单项选择题(本大题共10小题,每小题3分,共30分)1—5ACDDA 6—10DCCDD二、填空题(每小题4分)11.3/2,0,012.213.111110x y z ---==-14.cos (1)x y C e =+]15.011limsin 2sin _____x x x x x →+==216.-1,117.212!n x n e -+18.019.320.1三、计算题(本大题共8小题,每小题7分,共56分)21.()210lim cos x x x →。
()22ln cos 100lim cos lim x x x x x x e →→=又因为200ln cos sin 1lim lim 2cos 2x x x x x x x →→-==-所以原式=12e -或。
22.已知函数y =,求dy 。
等式两边取对数得()()()1ln 2ln ln 1ln 2ln 134y x x x x =-++--+⎡⎤⎣⎦等式两边同时求导得()()3132111424x y y x x x +'=-+-+-所以()()3132111424x y x x x ⎡⎤+'=-+-⎢⎥+-⎣⎦所以()()3132111424x dy y dx x x x ⎡⎤+'==-+-⎢⎥+-⎣⎦。
23.求由方程0=-+x y e xy e 所确定的隐函数y 的二阶导数22d y dx。
方程两边同时求导0y x e y y xy e ''++-=所以x y e y y e x-'=+对y '等式两边同时求导()()()()()21x y x y y e y e x e y e y y ex ''-+--+''=+把y '代入整理得()()()223x y y x y e e x e e y y e x +--''=+。
现代远程教育入学考试《高等数学》模拟试题(专科起点本科)1、设函数的定义域为,则函数的定义域为(A ).A. B.C. D.2、下列极限中结果等于的是(B ).A. B.C. D.3、函数,则等于(B ).A. 1B. 0C. D. 不存在4、函数在下列区间上不满足拉格朗日定理条件的是(B ).A. B.C. D.5、设是函数的一个原函数,且,则为(B ).A. B.C. D.6、积分(B ).A. B.C. D.7、已知,,则(A ).A. B.C. D.8、由方程所确定的隐函数,则(B ).A. B.C. D.9、若级数收敛,那么下列级数中发散的是(B ).A. B.C. D.10、设一阶线性微分方程(是已知的连续函数),则它的通解为(D ).A.B.C.D.11、函数是(C ).A. 以为周期的周期函数,且是偶函数B. 以为周期的周期函数,且是偶函数C. 以为周期的周期函数,且是奇函数D. 以为周期的周期函数,且是奇函数12、极限等于(C ).A. B. 1C. D. 213、设函数在点处可导,则的值依次为(A ).A. B.C. D.14、函数在区间内单调增加,则应满足(B ).A. B. 为任意实数C. D.为任意实数15、若,则(D ).A. B.C. D.16、极限(D ).A. 1B. 0C. D.17、二次曲面,表示(C ).A. 球面B. 椭圆锥面C. 椭球面D. 椭圆抛物面18、设,则(C ).A. 是的驻点,但非极值点B. 是的极大值点C. 是的极小值点D. 无驻点19、级数的和为(A ).A. B.C. D.20、齐次方程的通解为(A ).A. B.C. D.21、设,则(D ).A. 函数在的任意去心邻域内都有界B. 函数在的某个邻域内有定义C. 函数在处无定义D. 函数,其中是时的无穷小22、设函数在点可导,则极限为(D ).A. B.C. 不存在D.23、设函数,则等于(C ).A. B.C. D.24、对曲线,下列结论正确的是(D ).A. 有4个极值点B. 有3个拐点C. 有2个极值点D. 有1个拐点25、下列积分可直接使用牛顿-莱布尼兹公式的是(A ).A. B.C. D.26、设曲线及直线围成的平面图形的面积为,则下列四个式子中不正确的是(A ).A. B.C. D.A、AB、BC、CD、D27、过点且与平面平行的平面方程为(B ).A. B.C. D.28、二次积分(D ).A. B.C. D.29、设幂级数的收敛半径为,则的收敛半径为(A ).A. B.C. D.30、微分方程的通解为(B ).A. B.C. D.31、函数,在点处有(B ).A. 连续B. 不连续,但右连续C. 不连续,但左连续D. 左、右都不连续32、若曲线和在点处相切(其中为常数),则的值为(A ).A. B.C. D.33、函数的定义域为(B ).A. B.C. D.34、若函数可导,且,则有等于(B ).A. B.C. D.35、下面结论正确的是(C ).A. B.C. D.36、函数在区间上的最小值是(C ).A. 1B.C. 0D.37、积分(C ).A. 2B.C. 4D.38、设,则(A ).A. 6B. 3C. 2D. 039、下列函数在给定区间上满足罗尔定理条件的是(A ).A. B.C. D.40、曲线在区间上的曲边梯形的面积为(A ).A. B.C. 10D.41、若,则(D ).A. B.C. D.42、二元函数的两个偏导数存在,且,,则(D ).A. 当保持不变时,是随x的减少而单调增加的B. 当保持不变时,是随y的增加而单调增加的C. 当保持不变时,是随x的增加而单调减少的D. 当保持不变时,是随y的增加而单调减少的43、二重积分,是由所围成的区域,则二重积分的值为(B ).A. B.C. D.44、函数展开为的幂级数为(B ).A.B.C.D.45、微分方程的满足初始条件的特解为(C ).A. B.C. D.46、积分(A ).A. 1B. 2C. 3D. 447、已知,,则(D ).A. 0B. 1C. 2D. 348、方程确定隐函数,则(A ).A. B.C. D.49、级数(为常数)收敛的充分条件是(A ).A. B.C. D.50、设可微函数满足,且,则的值为(B ).A. B.C. 1D. 251、设,那么的定义域是(C ).A. B.C. D.52、极限(C ).A. 0B.C. 1D.53、,则(A ).A. B.C. D.54、下列极限中不能使用洛必达法则的是(A ).A. B.C. D.55、已知,且时,,则(C ).A. B.C. D.56、积分(C ).A. B.C. D.57、函数是(D ).A. 奇函数,非偶函数B. 偶函数,非奇函数C. 既非奇函数,又非偶函数D. 既是奇函数,又是偶函数58、已知向量,,,则(A ).A. B.C. D.59、极限(B ).A. B. 0C. 3D.60、由方程所确定的隐函数为,则(A ).A. B.C. D.高等数学模拟试题答案:1、A2、B3、B4、B5、B6、B7、A8、B9、B 10、D 11、C 12、C 13、A 14、B 15、D 16、D 17、C 18、C 19、A 20、A 21、D 22、D 23、C 24、D 25、A 26、A 27、B 28、D 29、A 30、B 31、B 32、A 33、B 34、B 35、C 36、C 37、C 38、A 39、A 40、A 41、D 42、D 43、B 44、B 45、C 46、A 47、D 48、A 49、A 50、B 51、C 52、C 53、A 54、A 55、C 56、C 57、D 58、A 59、B 60、A。
专升本高等数学(一)模拟144第Ⅰ卷(选择题)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1、极限等于______A.2B.1C.D.02、设,则f′(x)=______A.B.C.D.3、极限等于______A.0 B.1 C.2 D.+∞4、设函数f(x)在[0,1]上连续,在(0,1)内可导,且f′(x)<0,则下列结论成立的是______ A.f(0)<0 B.f(1)>0C.f(1)>f(0) D.f(1)<f(0)5、曲线y=x3(x-4)的拐点个数为______A.1个 B.2个 C.3个 D.0个6、设F(x)是f(x)的一个原函数,则∫cosxf(sinx)dx等于______A.F(cosx)+C B.F(sinx)+CC.-F(cosx)+C D.-F(sinx)+C7、下列积分中,值为零的是______A.B.C.D.8、直线A.过原点且与y轴垂直 B.不过原点但与y轴垂直C.过原点且与y轴平行 D.不过原点但与y轴平行9、设函数,则f y(1,0)等于______ A.0 B.1 C.2 D.不存在10、下列级数中,绝对收敛的是______A.B.C.D.第Ⅱ卷(非选择题)二、填空题11、设若f(x)在x=1处连续,则a=______.12、13、,求dy=______.14、15、y=y(x)是由方程xy=e y-x确定的函数,则dy=______.16、17、18、若D是中心在原点、半径为a的圆形区域,则19、幂级数的收敛区间为______.20、方程y″+y′+y=2xe-x的特解可设为y*=______.三、解答题21、设函数,求y′.22、如果,求f(x).23、设f(x)的一个原函数为,求∫xf′(x)dx.24、25、求方程的通解.26、计算,其中D是由y=x和y2=x围成.27、设2sin(x+2y-3z)=x+2y-3z,确定了函数z=f(x,y),求.28、讨论曲线的单调性、极值、凸凹性、拐点.答案:第Ⅰ卷(选择题)一、选择题1、D[考点] 本题考查了函数的极限的知识点.[解析] 因x→∞时,;而sin2x是有界函数;所以由无穷小的性质知,注:该题不是重要极限的类型.2、B[考点] 本题考查了一元函数的一阶导数的知识点.[解析]注:因e2是常数,所以(e2)′=0.3、D[考点] 本题考查了洛必达法则的知识点.。
高等数学上册试卷A 卷一 填空题(每题2分,共10分) 1. 2()d f x dx ⎰= ;2. 设f (x )=e -x ,则(ln )f x dx x'⎰= ; 3.比较积分的大小:11_________(1)x e dx x dx +⎰⎰;4.函数1()2(0)x F x dtx ⎛=> ⎝⎰的单调减少区间为 ;5. 级数()(0)nn n a x b b ∞=->∑,当x =0时收敛,当x =2b 时发散,则该级数的收敛半径是 ;二、求不定积分(每小题4分,共16分)1.; 2.sin x xdx ⎰;3.;4. 已知sin xx是f (x )的一个原函数,求()xf x dx '⎰. 三、求定积分(每小题4分,共12分)1.520cos sin 2x xdx π⎰; 2.121(x dx -⎰;3.设1,当0时1()1,当0时1xx xf x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)f x dx -⎰四、应用题(每小题5分,共15分)1.计算由曲线y =x 2,x =y 2所围图形的面积;2.由y =x 3、x =2、y =0所围成的图形绕x 轴旋转,计算所得旋转体的体积.3. 有一矩形截面面积为20米2,深为5米的水池,盛满了水,若用抽水泵把这水池中的水全部抽到10米高的水塔上去,则要作多少功?(水的比重1000g 牛顿/米3 )五、求下列极限(每题5分,共10分)1.222222lim 12n n n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭;2. 设函数f (x )在(0,+∞)内可微,且f (x )满足方程11()1()xf x f t dt x=+⎰,求f (x )。
六、判断下列级数的敛散性(每题5分,共15分)1. 21sin32n n n n π∞=∑; 2. 2111n n n ∞=⎛⎫- ⎪⎝⎭∑; 3.()1ln 1nn nn∞=-∑; 七、求解下列各题(每题5分,共10分)1. 求幂级数111n n x n +∞=+∑的收敛域及和函数;2. 将函数21()32f x x x =++展开成(x +4)的幂级数。
北京语言大学网络教育学院《高等数学(上)》模拟试卷注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。
一、【单项选择题】(本大题共100小题,每小题4分,共400分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、函数)1lg(2++=x x y 是( )。
[A] 奇函数[B] 偶函数[C] 既奇又偶函数 [D] 非奇非偶函数2、极限=--→93lim 23x x x ( )。
[A] 0 [B] 61[C] 1[D] ∞3、设c x x x x f +=⎰lnd )(,则=)(x f ( )。
[A] 1ln +x[B] x ln[C] x[D] x x ln4、 ⎰-=+01d 13x x ( )。
[A]65[B] 65-[C] 23-[D]23 5、由曲线22,y x x y ==所围成平面图形的面积=S ( )。
[A] 1[B]21[C]31 [D]41 6、函数x x y cos sin +=是( )。
[A] 奇函数[B] 偶函数[C] 既奇又偶函数[D] 非奇非偶函数7、设函数⎪⎩⎪⎨⎧=≠=003sin )(x ax x x x f ,在0=x 处连续,则a 等于( )。
[A] 1- [B] 1 [C] 2[D] 3 8、函数12+=x y 在区间]2,2[-上是( )。
[A] 单调增加[B] 单调减少[C] 先单调增加再单调减少 [D] 先单调减少再单调增加9、设⎰+=Φ031)(xtdt x ,则=Φ')(x ( )。
[A] 311x+-[B] 3213xx +-[C]311x+ [D]3213xx +10、曲线24,3x y x y -==所围成平面图形的面积S 是( )。
[A] dx x x )34(142--⎰- [B]dy y y)43(312⎰--- [C] ⎰---412)34(dx x x ;[D] dy y y)43(14⎰---11、函数122+=x xy 的反函数是( )。
[A] x x y -=1log 2[B] x xy -=1log 2[C] xxy +=1log 2[D] xxy +=1log 212、设)(x f 可导,)1(2+=x f y ,则=dxdy( )。
[A] )1(2+'x f[B] )1()1(22+'+x f x[C] )1(2+'x f x [D] )1(22+'x f x13、设⎰+=,sin )(C x dx x f 则=)(x f ( )。
[A] x cos [B] x sin[C] x cos -[D] x sin -14、下列积分值为0的是( )。
[A] ⎰-222sin ππxdx [B] ⎰-11sin xdx x[C]⎰-+11cos 1dx x x[D]⎰-21xdx15、若函数⎩⎨⎧<≥=00)(x e x x x f x,,,则积分=⎰-21d )(x x f ( )。
[A] 13--e [B] 13-+e[C] e -3[D] e +316、函数)32lg(213---=x x y 的定义域为( )。
[A] ),23(+∞ [B] ),23[+∞[C] ),2()2,23(+∞ [D] ),2()2,23[+∞17、设n x y =,则=+)1(n y ( )。
[A] 1 [B] !n [C] )!1(+n[D] 0 18、设 x f =)x 1(,则)(x f '=( )。
[A] x 1 [B] x 1- [C] 21x [D] 21x-19、函数xxy -=3的定义域是( )。
[A] )3,(-∞ [B] ]3,(-∞ [C] ]3,0()0,( -∞[D] )3,0()0,( -∞20、若axx e x =+→1)21(lim ,则常数=a ( )。
[A] 2-[B] 21-[C]21 [D]2 21、0330sin 'o的近似值为( )。
[A] 0.5076 [B] 0.2432[C] 0.7182[D] 0.992122、函数11y x =+-的定义域是( )。
[A] (0,)+∞ [B] (,0]-∞ [C] (,)-∞+∞[D] (,0)(0,)-∞+∞23、若极限a xx e x =-∞→)411(lim ,则常数=a ( )。
[A] 1[B]14[C] 0 [D] 14-24、若函数)(x f y =满足条件( ),则在),(b a 内至少存在一点)(b a <<ξξ,使得ab a f b f f --=')()()(ξ成立。
[A] 在),(b a 内连续[B] 在),(b a 内可导[C] 在),(b a 内连续,在),(b a 内可导 [D] 在],[b a 内连续,在),(b a 内可导25、若)(x f 是],[a a -上的连续偶函数,则 ()aaf x dx -=⎰( )。
[A]⎰-0d )(ax x f[B] 0[C] ⎰-0d )(2ax x f[D]⎰ax x f 0d )(26、设)(x f '为连续函数,则='⎰dx x f )(( )。
[A] )(x f ' [B] C x f +')( [C] C x f +)([D] )(x f27、下列式子中,正确的是( )。
[A] x tdt x cos cos 0='⎪⎭⎫⎝⎛⎰[B] x tdt cos cos 20='⎪⎪⎭⎫⎝⎛⎰π[C] 0cos 0='⎪⎭⎫ ⎝⎛⎰x tdt [D] x tdt xcos cos 0='⎪⎭⎫ ⎝⎛⎰ 28、满足方程0)(='x f 的点是函数)(x f y =的( )。
[A] 极值点[B] 拐点[C] 驻点[D] 间断点29、若)(x f 与)(x g 是],[b a 上的两条光滑曲线,则由这两条曲线及直线b x a x ==,所围图形的面积( )。
[A]⎰-ba dx x g x f )()( [B] ⎰-badx x g x f ))()(([C] ⎰-ba dx x f x g ))()(( [D]⎰-b adx x g x f ))()((30、22|1|x dx --=⎰( )。
[A] 5 [B] 0[C]25[D] 731、不是同一个函数的原函数的是( )。
[A] x y ln =[B] )(x y 3ln = [C] )2ln(x y =[D] 3ln 2+=x y32、⎰=')arcsin (xdx ( )。
[A]C x+-211[B]211x-[C] C x +arcsin[D] x arcsin33、=+⎰-+∞→xdx x xe x x )')sin ((lim ( )。
[A] 0[B] 1[C] ∞[D] ∞≠不存在,且34、设函数2()ln(2)x f x t dt =+⎰,则'()f x 的零点的个数( )。
[A] 0[B] 1[C] 2[D] 335、设)(x f '存在,a 为常数,则ha h x f a h x f h )()(lim 0--+→等于( )。
[A] )(x f ' [B] 0[C] )('2x f a[D] )('2x f 36、函数⎪⎩⎪⎨⎧=≠=0,0,1sin )(x x xx x f 在x=0处( )。
[A] 连续且可导[B] 连续,不可导 [C] 不连续 [D] 都不是37、已知x y 2tan =,则dy 等于( )。
[A] xdx tan 2[B]tgxdx x212+ [C] xdx x 2sec tan 2 [D] x tgx 2sec 238、⎰+dx xx 21=( )。
[A] c x +arctan [B] c x ++)1ln(2[C] c x ++212[D] c x ++2139、若⎰+=c xdx x f 2sin )(,则=)(x f ( )。
[A] 2cos x [B] 2cos x - [C] 2cos 21x[D] 2cos 21x-40、广义积分⎰1ln xdx 是( )。
[A] 发散[B] 收敛 [C] 无法判断 [D] 都不正确41、设函数()313f x x x =-,则1x =( )。
[A] 是()f x 的驻点且为极大值点 [B] 是()f x 的驻点且为极小值点 [C] 是()f x 的驻点但不是极值点[D] 不是()f x 的驻点42、曲线3(2)1y x =-+在区间(,2)-∞,(2,)+∞内分别为( )。
[A] 凹的和凹的[B] 凹的和凸的 [C] 凸的和凸的[D] 凸的和凹的43、下列等式正确的是( )。
[A]C x dx x +-=-⎰arcsin 112[B]C x dx x +=-⎰arcsin 112[C]C x dx x+=-⎰arcsin 2112[D]C x dx x+-=-⎰arcsin 511244、22dx x ⎰=( )。
[A] c x +2[B] c x +22 [C]c x +331 [D]c x +323 45、已知函数)2111)((+-=xa x G y ,(其中)(,1,0x G a a ≠>为偶函数),则该函数为( )。
46、极限=+--+→2332lim 2241x x x x x ( )。
47、函数2sin x y =的导数为( )。
[A] x x y cos 2=' [B] 2cos 2x x y =' [C] x x y cos 2-='[D] 2cos 2x x y -='[A] 奇函数[B] 偶函数[C] 非奇非偶函数[D] 无法判断[A] 4[B] 4- [C] 8 [D] 8-48、⎰=xdx x ln ( )。
[A] c x x x +-3241ln 21 [B]c x x x +-2341ln 21 [C] c x x x +-2241ln 21[D] c x x x +-3441ln 2149、极限=⎰→2sin lim x tdt xx ( )。
50、设函数nn x xx f 211lim )(++=∞→,讨论函数)(x f 的间断点,其结论为( )。
[A] 不存在间断点 [B] 存在间断点1-=x [C] 存在间断点0=x [D] 存在间断点1=x51、设函数)(),()(+∞<<-∞=-x x f x f ,在)0,(-∞内0)(,0)(<''>'x f x f ,则在),0(+∞内有( )。