人教版数学七年级下册《第六章实数》同步练习(含答案)
- 格式:docx
- 大小:66.44 KB
- 文档页数:8
第六章《实数》章节复习检测题号一二三总分2122 23 24 25 26 27 分数一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A .16的平方根是4 B .﹣1的立方根是﹣1 C .25是无理数D .9的算术平方根是32.下列四个数中,无理数是( ) A .0.14B .117C .2-D .327-3.一个正方形的面积为17,估计它的边长大小在( ) A .5和6之间 B .4和5之间 C .3和4之间 D .2和3之间4.下列各数中,最小的数是( ) A .|﹣3|B .﹣3C .﹣13D .﹣π5.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0ad >C .+0a c >D .0c b -<6.若将﹣,,﹣,四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .B .C .D .7.若a 2=4,b 2=9,且ab <0,则a ﹣b 的值为( ) A .﹣2 B .±5 C .5D .﹣58.已知a=,b=,c=,则下列大小关系正确的是( )A .a >b >cB .c >b >aC .b >a >cD .a >c >b9.实数a ,b 在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.已知:|a|=5,=7,且|a+b|=a+b ,则a-b 的值为( ) A.2或12B.2或-12C.-2或12D.-2或-12二、填空题(每小题3分,共30分)11.算术平方根等于本身的实数是 . 12.化简:()23π-= .13. 94的平方根是 ;125的立方根是 .14.一正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍. 15.估计60的大小约等于 或 .(误差小于1) 16.若()03212=-+-+-z y x ,则x +y +z = .17.我们知道53422=+,黄老师又用计算器求得:55334422=+,55533344422=+,55553333444422=+,则计算:22333444 +(2001个3,2001个4)= .18.比较下列实数的大小(填上>、<或=).215- 21;③53. 19.若实数a 、b 满意足0=+b b a a ,则abab = . 20.实a 、b 在数轴上的位置如图所示,则化简()2a b b a -++= .三、解答题(共60分) 21.(8分)求下列各式中的x : (1)(x ﹣1)2=16 (2)(x ﹣1)3﹣3=3822.(8分)已知7a -和24a +是某正数的两个平方根,7b -的立方根是1. (1)求a b 、的值; (2)求+a b 的算术平方根.23.(8分)(1)计算:2100﹣299= (2)发现:2n +1﹣2n =(3)计算:22019﹣22018﹣22017…﹣22﹣2﹣124.(8分)已知=0,求实数a ,b 的值,并求出的整数部分和小数部分.25.(8分)利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.26.(10分)如图是一个体积为25 cm3的长方体工件,其中a,b,c表示的是它的长、宽、高,且a∶b∶c=2∶1∶3,请你求出这个工件的表面积(结果精确到0.1 ).27.(10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=.(4)所以这个数为2m-6=2×-6=-.(5)综上可得,这个数为2或-.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.答案一、选择题(每小题3分,共30分) 1.B 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.C 10.D二、填空题(每小题3分,共30分)11.0.1;12. π-3;13. ±32,5;14. 2m ,3n ;15.7或8;16.6;17.2011个5;18. <,>,<; 19.-1;20. a 2-; 三、解答题(共60分)21.(1)x =5或﹣3;(2)x =5222.(1)a=1,b=8;(2)a+b 的算数平方根为3 23.(1)299;(2)2n ;(3)124.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.解根据题意得3a-b=0,a2-49=0且a+7>0,解得a=7,b=21.∵16<21<25,∴4<<5,∴的整数部分是4,小数部分是-4.25.(10分)利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.解(1)(x-3)2=,则x-3=±.∴x=±+3,即x1=,x2=.(2)2x-1=-2,∴x=-.26.导学号14154048(10分)如图是一个体积为25 cm3的长方体工件,其中a,b,c表示的是它的长、宽、高,且a∶b∶c=2∶1∶3,请你求出这个工件的表面积(结果精确到0.1 ).解由题意设a=2x cm,b=x cm,c=3x cm,根据题意知2x·x·3x=25,所以x3=,所以x=,所以工件的表面积=2ab+2ac+2bc=4x2+12x2+6x2=22x2=22×≈57.0(cm2).答:这个工件的表面积约为57.0 cm2.27.(10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=.(4)所以这个数为2m-6=2×-6=-.(5)综上可得,这个数为2或-.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.解可以看出小张错在把“某个数的算术平方根”当成“这个数本身”.当m=4时,这个数的算术平方根为2m-6=2>0,则这个数为22=4,故(3)错误;当m=时,这个数的算术平方根为2m-6=2×-6=-<0(舍去),故(5)错误;综上可得,这个数为4,故(6)错误.所以小张错在(3)(5)(6).。
人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。
16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。
14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。
人教版七年级下册数学第六章实数测试题及答案人教版七年级数学下册第六章实数一、单选题1.下列说法正确的是()A。
真命题的逆命题都是真命题B。
无限小数都是无理数C。
0.720精确到了百分位D。
16的算术平方根是22.(-9)²的平方根是x,6根是y,则x+y的值为()A。
3B。
7C。
3或7D。
1或73.3(-1)²的立方根是()A。
-1B。
1C。
-4D。
44.若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A。
-1B。
-1/2C。
3/2D。
25.若a=2,则a的值为()A。
2B。
±2C。
4D。
±46.下列计算中,错误的是()A。
30.125=0.5B。
3-273=-644C。
33/31=1/82D。
-3/8²=-125/577.下列说法正确的是()A。
实数分为正实数和负实数B。
3/2是有理数C。
0.9是有理数D。
30.01是无理数8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a²的算术平方根是a;④(π-4)²的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有() A。
2个B。
3个C。
4个D。
5个9.一个正方体的水晶砖,体积为100 cm³,它的棱长大约在()A。
4 cm~5 cm之间B。
5 cm~6 cm之间C。
6 cm~7 cm之间D。
7 cm~8 cm之间10.计算-4-|-3|的结果是()A。
-1B。
-5C。
1D。
5二、填空题11.已知(x-1)³=64,则x的值为4.12.若式子1/(x-1)有意义,则化简|1-x|+|x+2|=3.13.若a与b互为相反数,则它们的立方根的和是0.14.若3x+3y=0,则x与y关系是x=-y。
15.平方等于1/64的数是1/8.16.-27的立方根是-3.三、解答题17.1) 33+53=36;2) |1-2|+|3-2|=2.18.1) (x+1)²=16,解得x=3或x=-5;2) 3(x+2)²=27,解得x=1或x=-5.19.1) 16+3-27-1=-9;2) (-2)²+|2-1|-(2-1)=1.20.a²-b²-(a-b)²=2ab,所以a=3,b=2,代入得9/16.21.1) x=±11/3;2) x=2.22.对于实数a,规定用符号$\lfloor a \rfloor$表示不大于a 的最大整数,称$\lfloor a \rfloor$为a的根整数,例如:$\lfloor 9 \rfloor = 3$,$\lfloor 10 \rfloor = 3$。
《实数》同步练习一、选择题(每小题只有一个正确答案)1.下列各数中,为无理数的是( )A. B. C. 13 D. 2.下列各数中最小的是( )A. π-B. 3- D. 03.在数轴上标注了四段范围,如图,则表示 8的点落在( )A. 段①B. 段②C. 段③D. 段④4.在17-,-π,0,3.14,,0.3133-中,无理数的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个5的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间6.化简()101612π-⎛⎫-++- ⎪⎝⎭的结果为( )A. B. 2+ C. 2- D.7.定义新运算:对任意有理数a ,b ,都有a ⊕b=1a +1b ,例如2⊕1=12+11,那么(﹣2)⊕3的值是( ) A. 16 B. 56 C. ﹣56 D. ﹣168.已知整数a 0,a 1,a 2,a 3,a 4,……,满足下列条件:00a =,101a a =-+,212a a =-+,323a a =-+,…,以此类推,则2017a 的值为( )A. -1007B. -1008C. -1009D. -2016二、填空题9.201322-⎛⎫⨯+-= ⎪⎝⎭________.10.比较下列各组数大小:(Ⅰ)π________3.14 ________0.5.11.规定用符合[]x 表示一个实数的整数部分,例如[]3.693=,1=,按此规定,1⎤=⎦__________. 12.如果a =(-99)0,b =(-0.1)-1,c =(-53)-2,那么a 、b .c 三数大小关系为__________.(用“>”连接)13.已知6的小数部分为a ,6的小数部分为b ,则()2017a b +=__________.三、解答题14.计算: ()013π-+--.15.计算:()()0211432120.95103235⎛⎫⎛⎫÷----⨯+-⨯÷- ⎪ ⎪⎝⎭⎝⎭16, 2,0,﹣12及它们的相反数,并比较所有数的大小,按从小到大的顺序用“<”连接起来.17.(1)若x 、y 都是实数,且8y =++,求3x y +的立方根.(2a ,小数部分为b ,求2a b +-的值.18.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下: 我们称使等式1a b ab -=+成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”. (1)判断数对(2-,1),(3,12)是不是“共生有理数对”,写出过程; (2)若(a ,3)是“共生有理数对”,求a 的值;(3)若(m ,n )是“共生有理数对”,则(n -,m -)“共生有理数对”(填“是”或“不是”);说明理由;(4)请再写出一对符合条件的 “共生有理数对”为(注意:不能与题目中已有的“共生有理数对”重复)参考答案1.D2.A3.C4.B5.D6.A7.D8.C9.610.>>11.312.a> c>b13.114.215.解析:原式=3÷4+1-1-3÷(-3)=3÷4+1=1.7516.解:如图所示:故﹣2<﹣12<0<12<2. 17.解:(1)由题意可知,30x -≥,30x -≥,解得:3x =,∴8y =,∴333827x y +=+⨯=3=;(2)∵<<,∴34<<,∴的整数部分为3a =,小数部分为3b =-,∴22336a b +=+=.18.解析:(1)-2-1=-3,(-2) ×1+1=-1,-3≠-1,故(2-,1)不是共生有理数对; 3-12=52,3×12+1=52,故(3,12)是共生有理数对; (2)由题意得:331a a -=+,解得2a =-. (3)是.理由:()n m n m ---=-+, ()11n m mn -⋅-+=+,∵(m ,n )是“共生有理数对”∴m-n=mn+1,∴-n+m=mn+1,∴(-n ,-m )是“共生有理数对”;(4)(4,35)或(6,)等(答案不唯一,只要不和题中重复即可).。
人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:①任何无理数都是无限不循环小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④ 是分数,它是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.其中正确的个数是()A.1B.2C.3D.42、下面四个实数中,是无理数的为()A.0B.C.﹣2D.3、下列命题:①两直线平行,内错角相等;②如果m是无理数,那么m是无限小数;③64的立方根是8;④同旁内角相等,两直线平行;⑤如果a是实数,那么是无理数.其中正确的有()A.1个B.2个C.3个D.4个4、设,则的取值范围是()A. B. C. D.无法确定5、给出四个数0,,3,-1,其中最大的是( )A.0B.C.3D.-16、如图,数轴上与对应的点是()A.点B.点C.点D.点7、在下列式子中,正确的是()A. =﹣B.﹣=﹣0.6C. =﹣13D.=±68、下列运算正确的是( )A.a 2•a 3=a 6B.|-6|=6C. =±4D.-(a+b)=a+b9、若a=﹣0.32, b=(﹣3)﹣2, c=(﹣)﹣2, d=(﹣)0,则( )A.a<b<c<dB.a<b<d<cC.a<d<c<bD.c<a<d<b10、若x、y都是实数,且+ +y=4,则xy的算术平方根为()A.2B.±C.D.不能确定11、下列各数中,无理数为()A. B. C. D.12、估算的值在()A. 和之间B. 和0之间C.0和1之间D.1和2之间13、若a2=4,b2=9,且ab<0,则a﹣b的值为()A.±5B.±1C.5D.﹣114、4的平方根是()A.2B.-2C.±2D.1615、下列运算正确的是()A. =B. =-2C. =3D.3 -2 =1二、填空题(共10题,共计30分)16、的算术平方根是________,﹣2的相反数是________,的绝对值是________17、阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=﹣1,那么的平方根是________.18、比较大小:9________ .19、计算:﹣22+()﹣1+= ________20、写出一个大于3的无理数:________.21、18的算术平方根是________,的平方根是________,-0.064的立方根是________.22、如图,在数轴上A点表示数,B点示数,C点表示数,是最小的正整数,且、满足.若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合.23、如果一个数的平方根等于这个数的立方根,那么这个数是________.24、利用计算器计算(精确到0.001):-≈________.25、设的小数部分为b,那么(4+b)b的值是________.三、解答题(共6题,共计25分)26、如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.27、将下列各数填入相应的括号里:,,,8,,,0.7,- ,-1.121121112…,,.正数集合… ;负数集合… ;整数集合… ;有理数集合… ;无理数集合… .28、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.29、+|﹣2|﹣(﹣)﹣1.30、将下列各数填入相应的集合内.﹣7,0.32,, 0,,,,π,0.1010010001…①有理数集合{…}②无理数集合{…}③负实数集合{…}.参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、A5、C6、C7、A8、B9、B10、C11、D12、D13、A14、C15、B二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、28、30、。
第六章 实数 6.1 平方根第1课时 算术平方根基础题知识点1 算术平方根一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a的算术平方根.a 读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.1.(2017·桂林)4的算术平方根是( B ) A .4B .2C .-2D .±22.(2018·南京)94的值等于( A )A.32B .-32C .±32D.81163.0.49的相反数是( B )A .0.7B .-0.7C .±0.7D .04.下列说法正确的是( A )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根D .以上说法都不对5.求下列各数的算术平方根:(1)121;(2)1;(3)964;(4)0.01.解:(1)因为112=121,所以121的算术平方根是11,即121=11.(2)因为12=1,所以1的算术平方根是1,即1=1.(3)因为(38)2=964,所以964的算术平方根是38,即964=38.(4)因为(0.1)2=0.01,所以0.01的算术平方根是0.1,即0.01=0.1. 6.求下列各式的值:(1)81;(2)144289;(3) 1 000 000.解:(1)因为92=81,所以81=9.(2)因为(1217)2=144289,所以144289=1217.(3)因为1 0002=1 000 000,所以 1 000 000=1 000.知识点2 估计算术平方根一般采用“夹逼法”确定其值所在的范围.具体地说,先找出与被开方数相邻的两个能开得尽方的整数,分别求其算术平方根,即可确定所要求的数的算术平方根在哪两个整数之间.7.(2017·柳州期末)估算65的值介于( D )A.5到6之间B.6到7之间C.7到8之间D.8到9之间8.一个正方形的面积为50 cm2,则该正方形的边长约为( C )A.5 cm B.6 cm C.7 cm D.8 cm9用“>”或“<”填空).知识点3 用计算器求一个正数的算术平方根10.我们可以利用计算器求一个正数a的算术平方根,其操作方法是顺序进行按键输入:a=.小明按键输入16=显示的结果为4,则他按键输入1600=后显示的结果为40.11.用计算器求下列各式的值(结果精确到0.001):(1)800;(2)0.58;(3) 2 401.解:(1)28.284.(2)0.762.(3)49.000.易错点对算术平方根的意义理解不清12.(-6)2的算术平方根是( A )A.6 B.±6 C.-6 D. 6 13.(2018·安顺)4的算术平方根为( B )A.± 2 B. 2 C.±2 D.2中档题14.下列各数,没有算术平方根的是( B )A.2 B.-4 C.(-1)2D.0.1 15.若一个数的算术平方根等于它本身,则这个数是( D )A.1 B.-1 C.0 D.0或1 16.(2017·广州期中)已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是( D )A.a+1 B.a+1 C.a2+1 D.a2+1 17.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )A.B与C B.C与D C.E与F D.A与B 18.(2017·广州四校联考期中)已知a,b为两个连续整数,且a<15<b,则a+b的值为7.19.(教材P41探究变式)如图,将两个边长为3的正方形分别沿对角线剪开,将所得的4个三角形拼成一个大的正方形,则这个大正方形的边长是20.(教材P43探究变式)观察:已知 5.217≈2.284,521.7≈22.84,填空:(1)0.052 17≈0.228__4,52 170≈228.4;(2)若x≈0.022 84,则x≈0.000__521__7.21.比较下列各组数的大小:(1)12与14;(2)-5与-7;(3)5与24;(4)24-12与32.解:(1)12<14.(2)-5>-7.(3)5>24.(4)24-12>32.综合题22.(教材P43例3变式)国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用作国际比赛吗?并说明理由.解:这个足球场能用作国际比赛.理由:设足球场的宽为x m,则足球场的长为1.5x m,由题意,得1.5x2=7 560.∴x2=5 040.由算术平方根的意义可知x= 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71.∴70<x<71.∴105<1.5x<106.5.∴100<1.5x<110.∴符合要求.∴这个足球场能用作国际比赛.23.(教材P48习题T11变式)(1)通过计算下列各式的值探究问题:①42=4;162=16;02=0;(19)2=19.探究:对于任意非负有理数a,a2=a.②(-3)2=3;(-5)2=5;(-1)2=1;(-2)2=2.探究:对于任意负有理数a,a2=-a.综上,对于任意有理数a,a2=|a|.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:a2-b2-(a-b)2+|a+b|.解:a2-b2-(a-b)2+|a+b|=|a|-|b|-|a-b|+|a+b|=-a-b+a-b-a-b=-a-3b.第2课时 平方根基础题知识点1 平方根(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.这就是说,如果x 2=a ,那么x 叫做a 的平方根,记作±(2)求一个数a 的平方根的运算,叫做开平方,平方与开平方互为逆运算.正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.1.(2018·贺州)4的平方根是( C ) A .2B .-2C .±2D .162.±8是64的( A ) A .平方根B .相反数C .绝对值D .算术平方根3.13是一个数的平方根,则这个数是( D ) A .1B .3C .±19D.19 4.下列说法中,不正确的是( D ) A .6是36的平方根B .-6是36的平方根C .36的平方根是±6D .36的平方根是65.下列说法正确的是( D ) A .任何非负数都有两个平方根B .一个正数的平方根仍然是正数C .只有正数才有平方根D .负数没有平方根6.计算:±425=±25,-425=-25,425=25.7.填表:8.求下列各数的平方根:(1)16;(2)2536;(3)0.008 1.解:(1)因为(±4)2=16,所以16的平方根是±4.(2)因为(±56)2=2536,所以2536的平方根是±56.(3)因为(±0.09)2=0.008 1,所以0.008 1的平方根是±0.09.知识点2 平方根与算术平方根的关系正数a的正的平方根就是这个数的算术平方根,记作 a. 9.(2017·广州期中)下列说法正确的是( A )A.-5是25的平方根B.25的平方根是-5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根10.下列各式中,正确的是( D )A.4=±2 B.±9=3 C.(-3)2=- 3D.(-3)2=311.求下列各数的平方根与算术平方根:(1)25;解:25的平方根是±5,算术平方根是5.(2)0;解:0的平方根是0,算术平方根是0.(3)110 000.解:110 000的平方根是±1100,算术平方根是1100.12.求下列各式的值:(1)225;(2)-3649;(3)±144121.解:(1)∵152=225,∴225=15.(2)∵(67)2=3649,∴-3649=-67.(3)∵(1211)2=144121,∴±144121=±1211.易错点忽视一个正数的平方根有两个13.若x+3是4的平方根,则x=-1或-5.中档题14.(2017·广州期中)对于2-3来说( C )A.有平方根B.只有算术平方根C.没有平方根D.不能确定15.(易错题)(2017·广州四校联考期中)16的平方根等于( D )A.2 B.-4 C.±4 D.±2 16.(易错题)若x2=16,则5-x的算术平方根是( D )A.±1 B.±4 C.1或9 D.1或3 17.(2017·玉林期末)已知325.6≈18.044,那么± 3.256≈±1.804__4.18.“平方根”节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日,请你再写出21世纪你喜欢的一个“平方根”节(题中所举例子除外)2025年5月5日.19.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2;(2)-42;(3)-(a2+1).解:(1)±3.(2)没有平方根,因为-42是负数.(3)没有平方根,因为-(a2+1)是负数.20.(教材P48习题T8变式)求下列各式中x的值:(1)4x2-1=0;解:4x2=1.x2=1 4 .x=±1 2 .(2)(2017·广州四校联考期中)(2x-1)2=25.解:2x-1=5或2x-1=-5.解得x=3或x=-2.21.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.解:依题意,得2a-1=9且3a+b-1=16,∴a=5,b=2.∴a+2b=5+4=9.∴a+2b的平方根为±3,即±a+2b=±3.综合题22.(易错题)(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少?(2)已知a-1和5-2a都是m的平方根,求a与m的值.解:(1)根据题意,得(2a-1)+(a-5)=0.解得a=2.∴这个非负数是(2a-1)2=(2×2-1)2=9.(2)根据题意,分以下两种情况:①当a-1与5-2a是同一个平方根时,a-1=5-2a.解得a=2.此时,m=12=1;②当a-1与5-2a是两个平方根时,a-1+5-2a=0.解得a=4.此时,m=(4-1)2=9.综上所述,当a=2时,m=1;当a=4时,m=9.6.2 立方根基础题知识点1 立方根(1)一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根,即如果x3=a,那么x叫做a的立方根,记作a是被开方数,3是根指数.3-a=-3a.(2)求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是正数;负数的立方根是负数;0的立方根是0.1.(2018·恩施)64的立方根为( C )A.8 B.-8 C.4 D.-42.(2018·济宁)3-1的值是( B )A.1 B.-1 C.3 D.-3 3.若一个数的立方根是-3,则这个数为( B )A.-33 B.-27 C.±33 D.±274.下列说法中,不正确的是( D )A.0.027的立方根是0.3 B.-8的立方根是-2 C.0的立方根是0 D.125的立方根是±5 5.下列计算正确的是( C )A.30.012 5=0.5 B.3-2764=34C.3338=112D.-3-8125=-256.-13是-127的立方根,-16164的立方根是-54.7.求下列各数的立方根:(1)0.216;解:∵0.63=0.216,∴0.216的立方根是0.6,即30.216=0.6.(2)0;解:∵03=0,∴0的立方根是0,即30=0.(3)-210 27;解:∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-43,即3-21027=-43.(4)-5.解:-5的立方根是3-5.8.求下列各式的值:(1)30.001;解:30.001=0.1.(2)3-343125;解:3-343125=-75.(3)-31-1927.解:-31-1927=-23.知识点2 用计算器求立方根9.用计算器计算328.36的值约为( B )A.3.049 B.3.050 C.3.051D.3.05210.一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( A ) A.4 cm~5 cm之间B.5 cm~6 cm之间C.6 cm~7 cm 之间D.7 cm~8 cm之间11.计算:325≈2.92(结果精确到0.01).易错点立方根与平方根相混淆12.立方根等于本身的数为0,1或-1.中档题13.(易错题)32的立方根是( A )A.33 B.39 C.2 D.314.下列说法正确的是( D )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数的平方根小C.如果一个数有立方根,那么它一定有平方根 D.3a与3-a互为相反数15.若a2=(-5)2,b3=(-5)3,则a+b的值为( D )A.0 B.±10 C.0或10 D.0或-1016.已知2x+1的平方根是±5,则5x+4的立方根是4.17.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:被开方数扩大到原来的1__000倍,则立方根扩大到原来的10倍;(3)根据你发现的规律填空:①已知33≈1.442,则33 000≈14.42,30.003≈0.144__2;②已知30.000 456≈0.076 97,则3456≈7.697.18.求下列各式的值:(1)-3-0.125;解:原式=0.5.(2)-3729+3512;解:原式=-9+8=-1.(3)30.027-31-124125+3-0.001.解:原式=0.3-31125+(-0.1)=0.3-15-0.1=0.19.比较下列各数的大小:(1)39与3;解:39> 3.(2)-342与-3.4.解:-342<-3.4.20.求下列各式中x的值:(1)8x3+125=0;解:8x3=-125.x3=-125 8.x=-5 2 .(2)(2017·广州期中)(2x-1)3=-8. 解:2x-1=-2.解得x=-1 2 .21.将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.解:设每个小立方体铝块的棱长为x m,则8x3=0.216.∴x3=0.027.∴x=0.3.∴6×0.32=0.54(m2).答:每个小立方体铝块的表面积为0.54 m2.综合题22.请先观察下列等式:32+27=2327,33+326=33326,34+463=43463,…(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.解:(1)35+5124=535124,36+6215=636215.(2)3n+nn3-1=n3nn3-1(n>1,且n为整数).6.3 实数基础题知识点1 实数的概念及其分类1.(2018·玉林)下列实数中,是无理数的是( B )A.1 B. 2 C.-3 D.1 32.下列说法中,正确的是( C )A.无理数包括正无理数、零和负无理数B.无限小数都是无理数C.正实数包括正有理数和正无理数D.实数可以分为正实数和负实数两类知识点2 实数与数轴上的点的关系实数和数轴上的点是一一对应的,反过来,数轴上的每一个点必定表示一个实数.3.若在数轴上画出表示下列各数的点,则与原点距离最近的点是( B ) A .-1B .-12C.32D .2知识点3 实数的相反数、绝对值、倒数实数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即 |a|=⎩⎪⎨⎪⎧a ,当a>0时;0,当a =0时;-a ,当a<0时.4.-2的相反数是( C ) A .-2 B.22 C.2D .-225.π是1π的( B )A .绝对值B .倒数C .相反数D .平方根6.(2017·广州期中)3-8的绝对值是2.7.写出下列各数的相反数与绝对值.知识点4 实数的运算实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.8.(2018·包头)计算-4-|-3|的结果是( B )A.-1 B.-5 C.1 D.59.计算364+(-16)的结果是( B )A.4 B.0 C.8 D.12 10.计算:(1)33+53;解:原式=(3+5) 3=8 3.(2)|1-2|+|3-2|.解:原式=2-1+3- 2=3-1.11.计算(结果保留小数点后两位):(1)π-2+3;解:原式≈3.142-1.414+1.732 ≈3.46.(2)|2-5|+0.9.解:原式≈2.236-1.414+0.9≈1.72.易错点对无理数的判断有误12.下列说法正确的是( D )A.33是分数 B.227是无理数 C. π-3.14是有理数D.3-83是有理数中档题13.下列各组数中,互为相反数的一组是( C )A.-|-2|与3-8 B.-4与-(-4)2C.-32与|3-2|D.-2与1 214.有一个数值转换器,原理如下:当输入的x为4时,输出的y是( C )A.4 B.2 C. 2 D.- 215.(2017·宁夏)实数a在数轴上的位置如图所示,则|a-3|16.点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是17.把下列各数分别填入相应的集合中.-15,39,π,3.14,-327,0,-5.123 45…,0.25,-32.(1)有理数集合:{-15,3.14,-327,0,0.25,…};(2)无理数集合:{39,π,-5.123 45…,-32,…};(3)正实数集合:{39,π,3.14,0.25,…};(4)负实数集合:{-15,-327,-5.123 45…,-32,…}.18.求下列各式中的实数x.(1)|x|=4 5;解:x=±4 5 .(2)|x-2|= 5.解:x=2± 5.19.计算:(1)23+32-53-32;解:原式=(2-5)3+(3-3) 2=-3 3.(2)|3-π|+|4-π|.解:原式=π-3+4-π=1.20.已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为2,f的算术平方根是8,求12ab+c+d5+e2+3f的值.解:由题意可知ab=1,c+d=0,e=±2,f=64,∴e2=(±2)2=2,3f=364=4.∴12ab+c+d5+e2+3f=12+0+2+4=612.综合题21.阅读下列材料:如果一个数的n(n是大于1的整数)次方等于a,这个数就叫做a的n次方根,即x n=a,则x叫做a的n次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是±2,-243的5次方根是-3,0的10次方根是0;(2)归纳一个数的n次方根的情况.解:当n为偶数时,一个正数的n次方根有两个,它们互为相反数;当n 为奇数时,一个数的n次方根只有一个.负数没有偶次方根.0的n次方根是0.章末复习(二) 实数分点突破知识点1 平方根、算术平方根、立方根1.(2017·泰州)2的算术平方根是( B )A.± 2 B. 2 C.- 2 D.2 2.(2018·铜仁)9的平方根是( C )A.3 B.-3 C.3和-3 D.81 3.(2018·荆门)8的相反数的立方根是( C )A.2 B.12C.-2 D.-124.下列各式正确的是( A )A.±31=±1 B.4=±2 C.(-6)2=-6 D.3-27=3知识点2 实数的分类5.把下列各数分别填在相应的集合中:5,-6,38,0,π5,3.141 592 6,227,-16,-234.101 001 0001…(相邻两个1之间依次多1个0).知识点3 相反数、绝对值、倒数 6.9的倒数等于( D )A .3B .-3C .-13D.137.实数1-2知识点4 无理数的估算及实数的大小比较 8.(2018·贺州)在-1,1,2,2这四个数中,最小的数是( A ) A .-1B .1C.2D .29.(2018·南通)如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数2-5的点P 应落在( B )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上知识点5 实数的运算 10.求下列各式的值: (1)(2017·广州期末)38-9;解:原式=2-3=-1.(2)(2017·南宁期末)-32+|2-3|-(-2)2;解:原式=-9+3-2-2=-8- 2.(3)121+7×(2-17)-31 000.解:原式=11+27-1-10=27.易错题集训11.下列说法正确的是( D )A.-4没有立方根B.1的立方根是±1C.136的立方根是16D.-5的立方根是3-512.下列说法中,正确的有( B )①只有正数才有平方根;②a一定有立方根;③-a没意义;④3-a=-3a;⑤只有正数才有立方根.A.1个B.2个C.3个D.4个常考题型演练13.关于12的叙述,错误的是( A )A.12是有理数B.面积为12的正方形边长是12 C.12在3与4之间D.在数轴上可以找到表示12的点14.(2017·钦州期末)下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的有( A )A.0个B.1个C.2个D.3个15.(易错题)如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( C )A.0个B.1个C.2个D.3个16.已知30.5≈0.793 7,35≈1.710 0,那么下列各式正确的是( B )A.3500≈17.100 B.3500≈7.937C.3500≈171.00 D.3500≈79.3717.写出3-9到23之间的所有整数:-2,-1,0,1,2,3,4.18.(2018·东莞)一个正数的平方根分别是x+1和x-5,则x=2.19.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是-4π.20.求下列各式中x的值:(1)x2-5=4 9;解:x2=49 9,x=±7 3 .(2)(x-1)3=125.解:x-1=5,x=6.21.已知某正数的两个平方根分别是a+3和2a-15,b的立方根是-2,求3a+b的算术平方根.解:∵该正数的两个平方根分别是a+3和2a-15,b的立方根是-2,∴a+3+2a-15=0,b=(-2)3=-8.∴a=4,b=-8.∴3a+b=4=2,即3a+b的算术平方根是2.22.魔方又叫魔术方块,也称鲁比克方块,是匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授在1974年发明的.魔方与中国人发明的“华容道”、法国人发明的“独立钻石”一同被称为智力游戏界的三大不可思议.如图是一个4阶魔方,又称“魔方的复仇”,由四层完全相同的64个小立方体组成,体积为64 cm3.(1)求组成这个魔方的小立方体的棱长;(2)图中阴影部分是一个正方形,则该正方形的面积为10cm 2cm.解:组成这个魔方的小立方体的棱长为364÷64=1(cm).。
第六章 实数一、单选题1.4的算术平方根是( )A .±4B .4C .±2D .22.下列说法正确的是( )A .﹣5是﹣25的平方根B .3是(﹣3)2的算术平方根C .(﹣2)2的平方根是2D .8的平方根是±4 3.下列计算正确的是( )A B =±2 C 3=- D .6=± 4.若m <0,则m 的立方根是( )A .√m 3B .−√m 3C .±√m 3D .√−m 35.若a 是(−4)2的平方根,b 的一个平方根是2,则a +b 的立方根为( )A .0B .2C .0或2D .0或−2 6.下列四个实数中,是无理数的是( )A .0B .3-C .17D 7.如图,数轴上A ,B 两点的位置如图所示,则下列说法中,能判断原点一定位于A 、B 之间的是( )A .0a b +>B .0ab <C .||a b >D .a 、b 互为倒数 8.下列无理数中,与4最接近的是( )A B C D 9.按一定规律排列的一列数依次是23、1、87、119、1411、1713…按此规律,这列数中第100个数是( )A .299199B .299201C .301201D .30320310.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则7×6!的值为( )A .42!B .7!C .6!D .6×7! 二、填空题11.已知一个正数的两个平方根分别为26m -和3m +,则()1820m -的值为__________.124=,则数a 的平方根是__________.13.比较大小:4“>”或“<”填空).14.已知4的整数部分为a ,小数部分为b ,那么a b =_________.15.对于任意实数a , b ,定义一种新运算“⊕”,使得2a b ab a ⊕=-,例如22525=26⊕=⨯-,那么(1)3-⊕=___________________.三、解答题16.求下列各式中的x :(1)2x 2=8(2)(x ﹣1)3﹣27=017.已知4a 2b +的算术平方根,a 1a -18.的小数部分.的整数部分是2的小数﹣2.问题:(1(2)已知x+y ,其中x 是一个整数,且0<y <1,求出3x+y )的值 19.探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x = ;y= ;(2)从表格中探究a①≈3.16≈ ;① 1.8=180,则a = ;(3) 2.289≈0.2289=,则z=答案1.D2.B3.A4.A5.C6.D7.B8.C9.B10.B11.112.8±13.>14.315.-416.(1)x=±2;(2)x=417.218.(12;(2)33 19.(1) 0.1,10;(2) 31.62,32400;(3) 0.012。
人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、8的立方根等于()A. 2B.-2C.±2D.2、的算术平方根是()A. B. C.± D.3、下列实数是无理数的是A. B. C. D.4、估计的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间5、下列说法正确的是()A.a的平方根是±B.a的立方根是C. 的平方根是0.1 D.6、下列等式正确是A. B. C. D.7、下列实数中的无理数是()A.1B.0C.D.π8、下列各数中,无理数的个数有()0,,,,2π,3.7878878887…(两个7之间依次多一个8),A.2个B.3个C.4个D.5个9、由图可知,a、b、c的大小关系为()A.a < b < cB.a < c <bC.c < a <bD.c < b < a10、给出四个实数﹣2,0,0.5,,其中无理数是()A.﹣2B.0C.0.5D.11、实数π,,﹣3. ,,中,无理数有()个.A.1B.2C.3D.412、下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个 C.4个D.5个13、下列说法正确的是()A. =±3B. 的立方根是2C.D.的算术平方根是214、在实数范围内,下列判断正确的是()A.若|a|=|b|,则a=bB.若|a|=()2,则a=bC.若a>b,则a 2>b 2D.若= ,则a=b15、如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点AB.点BC.点CD.点D二、填空题(共10题,共计30分)16、实数a、b在数轴上的位置如图所示,则化简|a+2b|﹣|a﹣b|的结果为________.17、设的小数部分为b,那么(4+b)b的值是________.18、比较下列实数的大小(在横线填上>、<或=)①2 ________ 3 ;② ________ ;③﹣________﹣.19、16的平方根是________,算术平方根是________.20、如果实数a、b在数轴上的位置如图所示,那么化简=________.21、若x3=﹣,则x=________.22、若=0.7160,=1.542,则=________,=________.23、比较大小:________1(填“ ”“ ”或“ ”)24、若|x|=3,y2=4,且x>y,则x﹣y=________.25、计算:(+π)0﹣2|1﹣sin30°|+()﹣1=________ .三、解答题(共6题,共计25分)26、已知的立方根是2,的算术平方根是4,的整数部分是,求的值.27、将下列各数填入相应的集合内:,1.010010001,,0,,…(相邻的两个2之间的3一次增加1个),.有理数集合{ …}无理数集合{ …}28、在数轴上作出表示的点.29、已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,求a+b+c的平方根.30、计算:9×(﹣)+ +|﹣3|参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、A5、B6、D7、D8、B9、C10、D11、B12、B13、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。
人教版数学七年级下册 第六章 实数 习题练习(附答案)一、选择题1.(-0.7)2的平方根是( )A . -0.7B . ±0.7C . 0.7D . 0.492.下列实数中,属于有理数的是( )A . -√2B .√43C . πD .1113.16的平方根是( )A . 4B . -4C . ±4D . ±24.下列各数中最小的是( )A . 0B . -3C . -√3D . 15.√84.1的整数部分是( )A . 8B . 9C . 10D . 846.4的算术平方根的相反数是( )A . 2B . -2C .12D . ±27.在实数0、-√2、|-3|、-1中,最小的是( )A . 0B . -√2C . |-3|D . -18.一个数的平方根与立方根都是它本身,这个数是( )A . 1B . -1C . 0D . ±1,09.已知实数a =-√3,b =√2,它们在数轴上的位置对应点A ,B ,下列说法错误的是( ) A .A 、B 之间的整数有三个 B . |a |>|b | C . -a >-b D .A 、B 之间最小的无理数是-√2 10.边长为2的正方形的面积为a ,边长为b 的立方体的体积为27,则a -b 的值为( ) A . 29 B . 7 C . 1 D . -211.和数轴上的点一一对应的是( )A . 整数B . 无理数C . 实数D . 有理数12.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2 016次后,数轴上数2 016所对应的点是( )A . 点CB . 点DC . 点AD . 点B二、填空题13.已知(x -1)2=3,则x =________.14.若2ax +y b 5与-3ab 2x -y 是同类项,则2x -5y 的立方根是________.15.下列结论:①数轴上的点只能表示有理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中,正确的结论有________个.16.81的算术平方根是______.17.化简|2-π|=________.18.下列各数:227,√93,√273,0,√0.25,3.141 592 6,π2,−√32,2.181 181 118…(两个8之间1的个数逐次多1),其中是无理数的有________个.19.已知一个正数的两个平方根分别为3a -4和12-5a ,则a =________.20.(x -2)3=27,则x =________.21.绝对值不大于√5的非负整数是________.三、解答题22.将数轴上的各点与下列实数对应起来:√2,-1.5,√5,π,3.23.求下列各数的平方根.(1)100;(2)925;(3)1;(4)11549;(5)0.09. 24.求x 的值:27(x -1)3-8=0.25.已知:x -6和3x +14是a 的两个不同的平方根,2y +2是a 的立方根.(1)求x ,y ,a 的值;(2)求1-4x 的算术平方根.答案解析1.【答案】B【解析】因为(-0.7)2=0.49,又因为(±0.7)2=0.49,所以0.49的平方根是±0.7.2.【答案】D【解析】A.-√2是无理数,故A错误;3是无理数,故B错误;B.√4C.π是无理数,故C错误;D.1是有理数,故D正确;113.【答案】C【解析】因为(±4)2=16,所以16的平方根是±4.4.【答案】B【解析】因为在A、B、C、D四个选项中只有B、C为负数,故应从B、C中选择;又因为|-3|>|-√3|,所以-3<-√3.5.【答案】B【解析】因为81<84.1<100,所以√81<√84.1<√100,即9<√84.1<10,所以√84.1的整数部分是9.6.【答案】B【解析】因为22=4,所以4的算术平方根是2,所以4的算术平方根的相反数是-2.7.【答案】B【解析】|-3|=3,根据实数比较大小的方法,可得-√2<-1<0<3,所以在实数0、-√2、|-3|、-1中,最小的是-√2.8.【答案】C【解析】一个数的平方根与立方根都等于它本身,这个数是0.9.【答案】D【解析】A.A、B之间的整数有3个,正确;B.|a|>|b|,正确;C.-a<-b,正确;D.A、B之间最小的无理数是-√3,错误;故选D.10.【答案】C【解析】因为边长为2的正方形的面积为a,所以a=22=4,因为边长为b的立方体的体积为27,所以b3=27,所以b=3,所以a-b=1.11.【答案】C【解析】因为实数与数轴上的点是一一对应的,所以和数轴上的点一一对应的是实数.12.【答案】B【解析】当正方形在转动第一周的过程中,1所对应的点是A,2所对应的点是B,3所对应的点是C,4所对应的点是D,所以四次一循环,因为2 016÷4=504,所以2 016所对应的点是D.13.【答案】±√3+1【解析】∵(x-1)2=3,∴x-1=±√3,∴x=±√3+1.314.【答案】√9【解析】因为2ax+y b5与-3ab2x-y是同类项,所以x+y=1,2x-y=5.解得:x=2,y=-1.所以2x-5y=9.3.所以2x-5y的立方根是√915.【答案】2【解析】①数轴上的点表示实数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数有无限个,故④错误.16.【答案】9【解析】81的算术平方根是:√81=9.17.【答案】π-2【解析】因为2<π,所以2-π<0,所以|2-π|=-(2-π)=π-2.18.【答案】4【解析】无理数有:√93,π2,−√32,2.181 181 118…(两个8之间1的个数逐次多1),共4个. 19.【答案】4【解析】由题意知3a -4+12-5a =0,解得a =4.20.【答案】5【解析】方程变形得:(x -2)3=27,开立方得:x -2=3,解得:x =5.21.【答案】0,1,2【解析】因为4<5<9,所以2<√5<3,所以符合条件的非负整数有:0,1,2.22.【答案】解:点A 表示的数为-1.5;点B 表示的数为√2;点C 表示的数为√5;点D 表示的数为3;点E 表示的数为π.【解析】根据数轴上的点和实数是一一对应关系,各点从左到右所表示的数为-1.5;√2;√5;3;π.23.【答案】解:(1)因为(±10)2=100, 所以100的平方根是±10,即±√100=±10; (2)因为(±35)2=925,所以925的平方根是±35,即±√925=±35; (3)因为(±1)2=1,所以1的平方根是±1,即±√1=±1;(4)因为(±87)2=6449=11549,所以11549的平方根是±87,即±√11549=±87; (5)因为(±0.3)2=0.09,所以0.09的平方根是±0.3,即±√0.09=±0.3.【解析】分别根据平方根的定义解答即可.24.【答案】解:(x -1)3=827,x -1=23,x =53.【解析】根据立方根的定义即可求出x 的值.25.【答案】解:(1)由题意得:(x -6)+(3x +14)=0,解得,x =-2,所以,a =(x -6)2=64;又因为2y +2是a 的立方根,所以2y +2=√643=4,所以y =1,即x =-2,y =1,a =64;(2)由(1)知:x =-2,所以,1-4x =1-4×(-2)=9, 所以,√1−4x =√9=3,即:1-4x 的算术平方根为3.【解析】(1)根据正数的两个平方根互为相反数列方程求出x 的值,再求出a ,然后根据立方根的定义求出y 即可;(2)先求出1-4x ,再根据算术平方根的定义解答.。
《实数》同步练习课堂作业1.下列实数中,是无理数的为()A3B.1 3C.0D.-32.下列说法:①带根号的数都是无理数;②无理数是开方开不尽的数;③无理数是无限小数;④数轴上的所有点都表示实数.其中,错误的有()A.1个B.2个C.3个D.4个3.如图,数轴上的点P表示的数可能是()A5B.5-C.-3.8D.10-4.在实数1.41483,0,π,2271634________个.5.如图,在数轴上的A 、B 、C 、D 四点中,与表示数3-________.6.把下列各数分别填在相应的集合中:16-3163π64 3.14159265,|25--, 4.21-,1.103030030003…. (1)有理数集合:{ …};(2)无理数集合:{ …};(3)正实数集合:{ …}:(4)负实数集合:{ …}.课后作业7.下列说法正确的是( )A .实数分为正实数和负实数B 3C 0.9D 30.018.在实数12,22,2π中,分数的个数是( ) A .0B .1C .2D .39.如图,数轴上A 、B 2 5.1,则A 、B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个10.若无理数a 满足2<a <3,请写出a 的两个可能的取值为________.1113________.12.在实数-7.51543125-15π,22(2中,设有a 个有理数,b 个无理数,________b a =.13.把下列各数分别填在相应的集合中: 53316-3|1-,27-2π-,329,0.3. (1)整数集合:{ …};(2)分数集合:{ …};(3)无理数集合:{ …};(4)负实数集合:{ …}. 14.已知a 、b 都是有理数,且(31)233a b +,求a +b 的平方根.15.如图,数轴上点A 、B 表示的数分别是12C 也在数轴上,且AC =AB ,求点C 表示的数.答案[课堂作业]1.A2.B3.B4.35.点B6.(1)有理数集合:{16-64,3.14159265,|25--, 4.21-,…} (2)无理数集合:3163π,1.103030030003…,…} (3)正实数集合:3163π64 3.14159265,1.103030030003…,…} (4)负实数集合:{16-,|25--, 4.21-,…} [课后作业]7.D8.B9.C105611.412.213.(1)整数集合:{-331-}(2)分数集合:{0.3,…}(3)无理数集合:5316-27-2π-,329,…} (4)负实数集合:{-3316-27-,2π-,…} 14.∵(31)233a b +=,3233a a b -+=.∵a 、b 都是有理数,33a =-a +2b =3.解得a =1,b =2.∴a +b =3.∴a +b 的平方根是3±15.设点C 表示的数为x .∵AC =AB ,∴121x -=.解得22x =C 表示的数是22《实数》同步练习21.下列各数中是无理数的是( )A 2B .-2C .0D .132.下列各数中,3.141 59,380.131 131 113…,-π25-17,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个3.写出一个比-2大的负无理数__________.4.下列说法正确的是( )A .实数包括有理数、无理数和零B .有理数包括正有理数和负有理数C .无限不循环小数和无限循环小数都是无理数D .无论是有理数还是无理数都是实数5.实数可分为正实数,零和__________.正实数又可分为__________和__________,负实数又可分为__________和__________.6.把下列各数填在相应的表示集合的大括号内.-6,π,-23,-|-3|,227,-0.4,1.66,0,1.101 001 000 1… 整数:{ ,…},负分数:{ ,…},无理数:{ ,…}.7.下列结论正确的是( )A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间还有无数个点8.若将三个数-3,7,17表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.9.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O ′,点O ′所对应的数值是__________.10.下列实数是无理数的是( )A .-2B .13C 4D 511.下列各数:2 ,0,90.23,227,0.303 003…(相邻两个3之间多一个0),12无理数的个数为( )A.2个B.3个C.4个D.5个12.有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④17是17的平方根.其中正确的有( )A.0个B.1个C.2个D.3个参考答案1.A2.B3.答案不唯一,如:34.D5.负实数正有理数正无理数负有理数负无理数6.-6,-|-3|,0-23,-0.4π6,1.1010010001…7.D879.π10.D11.B12.B《实数》同步练习3课堂作业12的相反数是()A.2B.2 2D22.277的值为()A7B.37C.2D.03.与15+() A.4B.3C.2D.1471________1-(填“>”“<”或“=”).523的相反数是________,|3.14-π|=________.6321________.7.计算下面各式的值;(1)3333232;(2)|21|23|32|++.8.求下列各数的相反数和绝对值:32; 31125- 课后作业9.下列说法正确的是( )A .两个无理数的和一定是无理数B .无理数的相反数是无理数C .两个无理数的积一定是无理数D .无理数与有理数的乘积是无理数10.已知三个数:-π,-3,7-( )A .37-<-π<-B .37-π<-<-C .73-<-<-πD .73-π<-<-11.设实数a 、b 在数轴上对应的位置如图所示,且|a|>|b|2||a a b +的结果是( )A .2a +bB .-2a +bC .bD .2a -b12.计算:(1)3525________=; 334|4________--=.13.725-________,绝对值是________. 14.已知a 是小于35|2-a|=a -2,那么a 的所有可能值是________.15.如图,一只蚂蚁从点A 沿数轴向右爬行了2个单位长度到达点B ,点A 表示2-点B 所表示的数为m ,则|m -1|的值是________.16.求下列各式的值: (1)632343 5|35; (3)(2332)(3322)-; 1102233(精确到0.01). 17.设x 、y 是有理数,且x 、y 满足等式221742x y y +=+2016()x y 的值.答案[课堂作业]1.A2.A3.B4.<532π-3.146.±2,±3,±47.73(2)18.(1)11-111132的相反数是23,绝对值是2331125-15,绝对值是15[课后作业]9.B10.B11.C 12.(1)55(2)013725 72514.2、3、4、5152116.(1)433(3)32-(4)3.1017.由题意,知x +2y =17,-y =4,解得x =25,y =-4. ∴201620162016()(254)(54)1x y ==-=。
人教版数学七年级下册第六章 实数 同步练习
一、选择题
1.若
=102, =10.2,则 x 等于 ( C )
A. 1 040.4 C. 104.04
B. 10.404 D. 1.0404
2. 的算术平方根是(C)
A.
B.
C.
D.
3.已知下列命题: ①若 a>b,则 c-a<c-b;
②若 a>0,则 =a; 其中原命题与逆命题均为真命题的个数是( A )
A. 2 个 B. 1 个
C. 0 个
D. -1 个
4.某地新建一个以环保为主题的公园,开辟了一块长方形的荒地,已知这块荒地 的长是宽的 3 倍,它的面积为 600 000 m2,那么公园的宽约为( B )
A. 320 m C. 685 m
B. 447 m D. 320 m 或 447 m
5.下列说法正确的是(B )
A.﹣81 的平方根是±9 B.7 的算术平方根是
C. 的立方根是
D.(﹣1)2 的立方根是﹣1
6.化简:3 8=(C) A.±2 C.2
B.-2 D.2 2
7.下列说法正确的是( B ) A.﹣(﹣8)的立方根是﹣2 B.立方根等于本身数有﹣1,0,1 C. 的立方根为﹣4 D.一个数的立方根不是正数就是负数 8.实数 的倒数是(A)
A.
B.
C.
D. 6
9.下列各数:3.14,﹣2,0.131131113,0,﹣π , ,0. ,其中无理数有( A )
A.1 个 B.2 个 C.3 个 D.4 个
10、若 的整数部分为 a,小数部分为 b,则 a﹣b 的值为( B )
A.﹣
B.6
二、填空题
C.8﹣
D. ﹣6
11.平方等于 的数是
±0.125
12.若 =﹣ ,则 x= ﹣ 13.化简:3 8=2
;若 =6,则 x= ±216 .
14.大于- 18而小于 13的所有整数的和为__-4 __.
15.| 6-3|+|2- 6|的值为 2 6-1 三、解答题 16.阅读材料. 点 M,N 在数轴上分别表示数 m 和 n,我们把 m,n 之差的绝对值叫做点 M,N 之
间的距离,即 MN=|m﹣n|.如图,在数轴上,点 A,B,O,C,D 的位置如图所示, 则 DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣ 4)﹣(﹣2)|=|﹣2|=2.
(1)OA= 4 ,BD= 5 ; (2)|1﹣(﹣4)|表示哪两点的距离? (3)点 P 为数轴上一点,其表示的数为 x,用含有 x 的式子表示 BP= |x+2| , 当 BP=4 时,x= 2 或﹣6 ;当|x﹣3|+|x+2|的值最小时,x 的取值范围是 ﹣2 ≤x≤3 . 【解答】解:(1)OA=|﹣4﹣0|=4,BD=|﹣2﹣3|=5. 故答案是:4;5;
(2))|1﹣(﹣4)|表示点 A 与点 C 间的距离.
(3)BP=|x﹣(﹣2)|=|x+2|. 当 BP=4 时,|x+2|=4, 解得 x=2 或﹣6. 根据数轴的几何意义可得﹣2 和 3 之间的任何一点均能使|x﹣3|+|x+2|取得的值 最小.则 x 的取值范围是﹣2≤x≤3. 故答案是:|x+2|;2 或﹣6;﹣2≤x≤3.
17. 已知 a= ,b=|-2|,c= ,求 a2+b-4c 的值.
【答案】由题意知:a= ,b=|-2|=2,c= ,将其代入 a2+b-4c,得:原式=( )2+2-4 ×
=3+2-2 =3.
18.求下列各式的值: (1)3 -1 000; 解:-10.
(2)-3 -64; 解:-4.
(3)-3 729+3 512; 解:-1. 19.将一个体积为 0.216 m3 的大立方体铝块改铸成 8 个一样大的小立方体铝块, 求每个小立方体铝块的表面积. 解:设每个小立方体铝块的棱长为 x m,则 8x3=0.216. ∴x3=0.027.∴x=0.3. ∴6×0.32=0.54(m2). 答:每个小立方体铝块的表面积为 0.54 m2. 20.计算: 解:
. 21.已知实数 a,b,c,d,e,f,且 a,b 互为倒数,c,d 互为相反数,e 的绝 对值为 2,f 的算术平方根是 8,求12ab+c+5 d+e2+3 f的值.
解:由题意可知 ab=1,c+d=0,e=± 2,f=64, ∴e2=(± 2)2=2,3 f=3 64=4. ∴12ab+c+5 d+e2+3 f=12+0+2+4=612. 22.(2018 安徽合肥期中)已知 5a+2 的立方根是 3,3a+b-1 的算术平方根是 4,c 是
13 的整数部分. (1)求 a,b,c 的值; (2)求 3a-b+c 的平方根. 解析:(1)∵5a+2 的立方根是 3,∴5a+2=27,解得 a=5. ∵3a+b-1 的算术平方根是 4, ∴3a+b-1=16,∴3×5+b-1=16,解得 b=2. ∵c 是 13 的整数部分,3< 13 <4,∴c=3. (2)由(1)知 a=5,b=2,c=3, ∴3a-b+c=3×5-2+3=16, ∴3a-b+c 的平方根是±4.
。