七年级下册数学同步练习试题及答案
- 格式:doc
- 大小:3.17 MB
- 文档页数:130
2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.如图,可以判定的条件是( )A.=B.=C.=D.=2. 下列说法中正确的个数有( )在同一平面内,两条不相交的直线叫做平行线经过直线外一点,能够画出一条直线与已知直线平行,并且只能画出一条如果,,则两条不平行的射线,在同一平面内一定相交.A.B.C.D.3. 如图,下列条件:①,②,③,④中,能判断直线的有( )A.个B.个C.个AB//CD ∠1∠2∠3∠4∠D ∠5∠BAD+∠B 180∘(1)(2)(3)a//b b//c a//c (4)1234∠1=∠3∠2=∠3∠4=∠5∠2+∠4=180∘//l 1l 2123D.个4. 下列关系中,互相垂直的两条直线是( )A.两直线相交成的四角中相邻两角的角平分线B.互为对顶角的两角的平分线C.互为补角的两角的平分线D.相邻两角的角平分线5. 从下列命题中,随机抽取一个是真命题的概率是( )(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是.A.B.C.D.6. 过直线外一点作的平行线,可以作( )条.A.B.C.D.7. 如图,下列条件中,能判定的是( )A.B.4a −a =x 2a(x+1)(x−1)1cm 14cm 20πcm 240πcm 2120∘1412341m A m 0123DE//AC ∠EDC =∠EFC∠AFE =∠ACDC.D.8. 下列说法正确的是( )①在同一平面内,不相交的两条直线叫做平行线;②在同一平面内,过一点有且仅有一条直线与已知直线平行;③平面内,过一点有且仅有一条直线与已知直线垂直;④平行于同一条直线的两条直线平行;A.①②B.①③C.①②③D.①③④二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,点是延长线上一点,,。
2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,按下面的程序进行运算,规定程序运行到“判断结果是否大于”为一次运算.若运算进行了次才停止,则的取值范围是 A. B. C.D.2. 不等式组的整数解是( )A.B.C.D.3. 下列不等式中是一元一次不等式的是( )A.B.C.D.4. 某校准备组织名学生进行野外考察活动,行李共有件.学校计划租用甲、乙两种型号的汽303x ()a −1<2,2a +>3120123x+y <2>3x 2−<12x 2x+1>−35202404. 某校准备组织名学生进行野外考察活动,行李共有件.学校计划租用甲、乙两种型号的汽车共辆,经了解,甲种汽车每辆最多能载人和件行李,乙种汽车每辆最多能载人和件行李.设租用甲种汽车辆,你认为下列符合题意的不等式组是( )A.B.C.D.5. 不等式组 的解集在数轴上表示为( )A.B.C.D.6. 小明网购了一本课外阅读书,同学们想知道书的价格,小明让他们猜.甲说:“至少元.”乙说:“至多元.”丙说:“至多元.”小明说:“你们三个人都说错了”.则这本书的价格(元)所在的范围为( )A.B.C.D.7. 不等式组’的整数解的个数是( )5202401250154025x {50x+40(12−x)≥52015x+25(12−x)≥240{50x+40(12−x)>52015x+25(12−x)>240{50x+40(12−x)≤52015x+25(12−x)≤240{50x+40(12−x)<52015x+25(12−x)<2403x <2x+4−x ≤−1x+33151210x 10<x <1212<x <1510<x <15x >12{1−2x <3x+1≤4A.个B.个C.个D.个8. 下列不等式组:① ②③ ④ ⑤其中一元一次不等式组的个数是 ( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 对于实数,规定表示不大于的最大整数,例如,,若,则的取值范围为________.10. 不等式组的非负整数解是________.11. 某地经历百年一遇的干旱,驻地部队官兵开展“军民一家亲,鱼水情意深”的活动,帮助驻地周边农村运水,现需组战士步行运送水,要求每组分配的人数相同,若按每组人数比预定人数多分配人,则总数会超过人;若按每组人数比预定人数少分配人,则总数不够人,那么预定每组分配的人数是________人.12. 不等式组的解集是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 某校学生志愿服务小组分给每位老人盒牛奶,那么剩下盒牛奶;如果分给每位老人盒牛奶,那么最后一位老人分得的牛奶不足盒,但至少有盒.求这个敬老院的老人最少有多少人?14. 解不等式组并求出最大整数或最小整数解.6543{x >−2,x <3{x >0,x+2>4{+1<x ,x 2+2>4x 2{x+3>0,x <−7{x+1>0,y−1<02345x [x]x [1.2]=1[−2.5]=−3[x−2]=−1x 6−3x ≥0>−2x−2281100190 2−x ≥3,x+1>x−13212428541 +<−1,x+23x 21−2(x−1)≥−3,15. 某手机专营店代理销售,两种型号手机.手机的进价、售价如下表:型 号进 价元/部元/部售 价元/部元/部第一个月:用元购进,两种型号的手机,全部售完后获利元,求第一个月购进,两种型号手机的数量;第二个月:计划购进,两种型号手机共部,且不超出第一个月购进,两种型号的手机总费用,则型号手机最多能购多少部?16. 已知方程组的解能使等式成立,求的值.A B A B1800150020701800(1)54000A B 9450A B (2)A B 34A B A {7x+3y =4,5x−2y =m−14x−3y =7m参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】由实际问题抽象出一元一次不等式组一元一次不等式组的应用【解析】根据程序运算进行了次才停止,即可得出关于的一元一次不等式组,解之即可得出的取值范围.【解答】解:解得:故选.2.【答案】C【考点】一元一次不等式组的整数解【解析】首先解不等式组求出该不等式组的解集,然后根据解集求整数解即可.【解答】3x x {\left\{ \begin{array} {l}{2\left(2x-3\right)-3\le 30} \\ {2\left[2\left(2x-3\right)-3\right]-3\gt 30} \\ {2\left(2x-3\right)-3}<x ≤518394C a −1<2,①解:解不等式,得,解不等式,得,∴不等式组的解集为,∴该不等式组的整数解为.故选.3.【答案】D【考点】一元一次不等式组的定义【解析】此题暂无解析【解答】解:.不等式含两个未知数,∴二元不等式;.只有一个未知数,且未知数的次数是,∴是一元二次不等式;.是分式,不是整式,∴不是一元一次不等式;.只有一个未知数,且未知数的系数不是,次数是,∴是一元一次不等式,故选.4.【答案】A【考点】由实际问题抽象出一元一次不等式组【解析】设租用甲种汽车辆,则租用乙种汽车辆,根据题意可得两种车所载人数人,两种车载行李数件,根据不等关系列出不等式组即可.【解答】解:设租用甲种汽车辆,则租用乙种汽车辆,由题意得:,a −1<2,①2a +>3,②12①a <3②a >54<a <3542C A B 2C 2x D 01D x (12−x)≥520≥240x (12−x){50x+40(12−x)≥52015x+25(12−x)≥240故选:.5.【答案】C【考点】解一元一次不等式组【解析】此题暂无解析【解答】解:,由①得,;由②得,,故此不等式组的解集为:,在数轴上表示为:故选.6.【答案】B【考点】一元一次不等式组的应用【解析】根据题意得出不等式组解答即可.【解答】解:根据题意可得:∴.故选.7.【答案】C A 3x <2x+4①−x ≤−1②x+33x <4x ≥33≤x <4Cx <15,x >12,x >10,12<x <15B【考点】一元一次不等式组的整数解【解析】此题暂无解析【解答】解:,由①得:,由②得:,∴不等式组的解集为:,∴不等式组的整数解有共个.故选.8.【答案】B【考点】一元一次不等式组的定义【解析】此题暂无解析【解答】解:一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组.故①②④是一元一次不等式组.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】一元一次不等式组的应用【解析】{1−2x <3①x+1≤4②x >−1x ≤3−1<x ≤30,1,2,34C B 0<x ≤1此题暂无解析【解答】解:由题意得,解得:.故答案为:.10.【答案】,,【考点】一元一次不等式组的整数解【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.【解答】解不等式①得;解不等式②得∴原不等式组的解是,∴不等式组的非负整数解,,,11.【答案】【考点】由实际问题抽象出一元一次不等式组解一元一次不等式组【解析】先设预定每组分配人,根据若按每组人数比预定人数多分配人,则总数会超过人;若按每组人数比预定人数少分配人,则总数不够人,列出不等式组,解不等式组后,取整数解即可.【解答】{x−2≤−1,x−2>−2,0<x ≤10<x ≤10126−3x ≥0>−2x−22x ≤2x >−2−2<x ≤201212x 1100190解:设预定每组分配人,根据题意得:解得:,∵为整数,∴,答:预定每组分配的人数是人.故答案为:.12.【答案】【考点】解一元一次不等式组【解析】此题暂无解析【解答】解:由不等式可得;由不等式可得;故不等式组的解集是.故答案为: .三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:设老人人,牛奶盒,则∴∴或或∴至少有人.【考点】一元一次不等式组的应用【解析】此题暂无解析x {8(x+1)>100,8(x−1)<90,11<x <121214x x =121212−2<x ≤−12−x ≥3x ≤−1x+1>x−13212x >−2−2<x ≤−1−2<x ≤−1x y {4x+28=y 1≤y−5x <424<x ≤27x =25262725略14.【答案】解:解不等式得,解不等式得,所以原不等式组的解集是,所以最大整数解是.【考点】一元一次不等式组的整数解解一元一次不等式组【解析】此题暂无解析【解答】解:解不等式得,解不等式得,所以原不等式组的解集是,所以最大整数解是.15.【答案】解:设该专营店第一个月购进、两种型号手机的数量分别为部和部.由题意可知:解得:答:该专营店本次购进、两种型号手机的数分别为部和部;设第二个月购进型号手机部.由题意可知:,解得:,则不等式的最大整数解为.答:第二个月最多能购型号手机部.【考点】二元一次方程组的应用——销售问题由实际问题抽象出一元一次不等式组+<−1x+23x 2x <−21−2(x−1)≥−3x ≤3x <−2−3+<−1x+23x 2x <−21−2(x−1)≥−3x ≤3x <−2−3(1)A B x y {1800x+1500y =54000,270x+300y =9450,{x =15,y =18.A B 1518(2)A a 1800a +1500(34−a)≤54000a ≤1010A 10(1)设该专营店第一个月购进、两种型号手机的数量分别为部和部,根据用元购进、两种型号的手机,全部售完后获利元,列方程组求解;(2)设第二个月购进型号手机部,根据购进、两种型号手机共部,总费用不超过元,据此列不等式求解.【解答】解:设该专营店第一个月购进、两种型号手机的数量分别为部和部.由题意可知:解得:答:该专营店本次购进、两种型号手机的数分别为部和部;设第二个月购进型号手机部.由题意可知:,解得:,则不等式的最大整数解为.答:第二个月最多能购型号手机部.16.【答案】解:根据题意,得①②,得,解得,把代入①,得,所以原方程组的解为将,代入,解得,所以的值为.【考点】二元一次方程组的解【解析】先解方程组,求得、的值,即为原方程组的解,再将、的值代入,从而得出的值.【解答】解:根据题意,得①②,得,解得,A B x y 54000A B 9450A a A B 3454000(1)A B x y {1800x+1500y =54000,270x+300y =9450,{x =15,y =18.A B 1518(2)A a 1800a +1500(34−a)≤54000a ≤1010A 10{7x+3y =4①,4x−3y =7②,+11x =11x =1x =1y =−1{x =1,y =−1,x =1y =−15x−2y =m−1m=8m 8{7x+3y =4①4x−3y =7②x y x y 5x−2y =m−1m {7x+3y =4①,4x−3y =7②,+11x =11x =1把代入①,得,所以原方程组的解为将,代入,解得,所以的值为.x =1y =−1{x =1,y =−1,x =1y =−15x−2y =m−1m=8m 8。
第九章 不等式与不等式组9.2 一元一次不等式基础过关全练知识点1 一元一次不等式1.下列式子中,是一元一次不等式的有( )①3a -2=4a +9;②3x -6>3y +7;③5<32x ;④x 2>1;⑤2x +6>x ;⑥1x +5≤5.A.1个 B.2个 C.3个 D.4个2.【新独家原创】当m = 时,不等式(m -2 023)x |m |-2 022+2 021>0是关于x 的一元一次不等式. 知识点2 一元一次不等式的解法3.(2022辽宁大连中考)不等式4x <3x +2的解集是 ( )A .x >-2B .x <-2C .x >2D .x <24.若关于x 的不等式(a -2)x >2a -5的解集是x <4,则关于y 的不等式2a -5y >1的解集是( )A.y <52 B.y <25 C.y >52 D.y >255.(2021四川自贡中考)请写出不等式x +2>7的一个整数解: .6.若关于x 的不等式2x ―0.53>a 2与5(1-x )<a -20的解集完全相同,则它们的解集为 .7.(2022江苏连云港中考)解不等式2x -1>3x ―12,并把它的解集在数轴上表示出来.8.请根据小明同学解不等式的过程,完成各项任务.解不等式:x+16≥2x―54+1.解:去分母,得2(x+1)≥3(2x-5)+1,①去括号,得2x+2≥6x-5+1,②移项,得2x-6x≥-5+1+2,③合并同类项,得-4x≥-2,④系数化为1,得x≥12,⑤所以不等式的解集为x≥12.任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程写出来;任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意?知识点3 一元一次不等式的应用9.(2021重庆綦江期末)把一些书分给几名同学,若 ;若每人分11本,则有剩余.依题意,设有x名同学,可列不等式为7(x+9)>11x,则横线上的信息可以是( )A.每人分7本,则剩余9本B.每人分7本,则可多分9个人C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本10.(2022山西中考)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.11.【教材变式·P125T2变式】为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?12.(2022广西玉林中考)某果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨,因为龙眼大量上市,价格下跌,所以第二次购买龙眼的价格为0.3万元/吨,已知两次购买龙眼共用了7万元.(1)求两次购买龙眼各多少吨;(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?能力提升全练13.(2022辽宁盘锦中考,5,★☆☆)不等式12x ―1≤7―32x 的解集在数轴上表示为( )A B C D14.(2022山东聊城中考,6,★★☆)关于x ,y 的方程组2x ―y =2k ―3,x ―2y =k 的解中x 与y 的和不小于5,则k 的取值范围为( )A .k ≥8B .k >8C .k ≤8D .k <815.(2022福建福州期末,15,★★☆)在实数范围内规定新运算“△”,其规则是a △b =2a -b ,已知不等式x △k ≥2的解集在数轴上的表示如图所示,则k 的值是 .16.(2021北京东城广渠门中学期中,16,★★☆)已知关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .17.(2020四川绵阳中考,18,★★★)若不等式x +52>―x ―72的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 . 18.(2022湖南邵阳中考,23,★☆☆)2022年2月4日至20日第24届冬季奥运会在北京举行.某商店购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量;(2)该商店计划将“冰墩墩”摆件的售价定为100元/个,挂件的售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,则购进的“冰墩墩”挂件不能超过多少个?19.【学科素养·应用意识】(2022江苏宿迁中考,26,★★☆)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动.该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的支付费用为 元,在乙超市的支付费用为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?素养探究全练20.【应用意识】【跨学科·生物】某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量占8%,该早餐食品包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60 g,蛋白质含量占15%;谷物食品和牛奶的部分营养成分如表所示).牛奶项目每100克(g)能量261千焦(kJ)蛋白质3.0克(g)脂肪3.6克(g)碳水4.5克(g)化合物钙100毫克(mg)谷物食品项目每100克(g)能量 2 215千焦(kJ)蛋白质9.0克(g)脂肪32.4克(g)碳水50.8克(g)化合物钠280毫克(mg)(1)设该份早餐中谷物食品为x克,牛奶为y克,则谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克;(用含有x,y的式子表示)(2)x= ,y= ;(3)该公司为学校提供的午餐有A,B两种套餐(每天只提供一种):套餐主食(克)肉类(克)其他(克)A15085165B18060160为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周内,学生午餐主食摄入总量不超过830克,那么该校在一周内可以选择A,B套餐各几天?写出所有的方案.(说明:一周按5天计算)答案全解全析基础过关全练1.A ①3a-2=4a+9是等式;②3x-6>3y+7中含有两个未知数,不是一元一次不等式;③5<3的右边不是整式;2x④x2>1中x的次数不是1,不是一元一次不等式;⑤2x+6>x符合一元一次不等式的定义;≤5的左边不是整式.故选A.⑥1x+52.答案-2 023解析 根据一元一次不等式的定义,得|m|-2 022=1且m-2 023≠0,解得m=-2 023.3.D 移项,得4x-3x<2,合并同类项,得x<2.故选D.4.B ∵关于x的不等式(a-2)x>2a-5的解集是x<4,=4,∴a-2<0,2a―5a―2,可得a=32.∴关于y的不等式2a-5y>1即为3-5y>1,其解集为y<25故选B.5.答案6(答案不唯一)解析 解不等式得x>7-2,∵1<2<2,∴5<7-2<6,因此不等式的整数解是大于或等于6的任何整数.6.答案x>4解析 解不等式2x―0.53>a2,得x>3a+14,解不等式5(1-x)<a-20,得x>25―a5.由两个不等式的解集完全相同,得3a+14=25―a5,解得a=5.所以它们的解集为x>4.7.解析 去分母,得4x-2>3x-1,移项,得4x-3x>-1+2,合并同类项,得x>1,将不等式的解集表示在数轴上如下:8.解析 任务一:从第①步开始出现错误,错误的原因是不等式两边都乘12时右边的1漏乘.任务二:正确的解答过程如下:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项,得2x-6x≥-15+12-2,合并同类项,得-4x≥-5,系数化为1,得x≤54,所以不等式的解集为x≤54.任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时,不等式两边都乘或除以负数,不等号的方向要改变.9.B 10.答案32解析 设该护眼灯降价x元,根据“以利润率不低于20%的价格降价出×100%≥20%,解得x≤32,故答案售”列一元一次不等式,得320―x―240240为32.11.解析 (1)设该参赛同学一共答对了x道题,则答错了(25-1-x)道题,依题意得4x-(25-1-x)=86,解得x=22.答:该参赛同学一共答对了22道题.(2)设参赛者答对y道题,则答错(25-y)道题,依题意得4y-(25-y)≥90,解得y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.12.解析 (1)设第一次购买龙眼x吨,则第二次购买龙眼(21-x)吨,由题意得0.4x+0.3(21-x)=7,解得x=7,∴21-x=21-7=14.答:第一次购买龙眼7吨,第二次购买龙眼14吨.(2)设把y吨龙眼加工成桂圆肉,则把(21-y)吨龙眼加工成龙眼干,由题意得10×0.2y+3×0.5(21-y)≥39,解得y≥15,∴至少需要把15吨龙眼加工成桂圆肉.答:至少需要把15吨龙眼加工成桂圆肉.能力提升全练13.C ∵解不等式12x ―1≤7―32x ,移项,得12x +32x ≤7+1,合并同类项,得2x ≤8,系数化为1,得x ≤4,∴解集在数轴上表示如下:故选C .14.A 把两个方程相减,可得x +y =k -3,根据题意得k -3≥5,解得k ≥8.所以k 的取值范围是k ≥8.故选A .15.答案 -4解析 根据题图知,不等式的解集是x ≥-1.∵x △k =2x -k ≥2,解得x ≥2+k 2,∴2+k 2=-1,∴k =-4.故答案是-4.16.答案D解析 2x -1>3+mx ,移项、合并同类项得(2-m )x >4,∵关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,∴2-m <0,∴m >2,∵数轴上的A ,B ,C ,D 四个点中,只有点D 表示的数大于2,∴实数m 对应的点可能是点D.17.答案 236≤m ≤6解析 解不等式x +52>―x ―72得x >-4,根据题意得,当x >-4时,不等式(m -6)x <2m +1恒成立,①当m-6=0,即m=6时,不等式(m-6)x<2m+1可化为0<13,恒成立,符合题意;②当m-6≠0时,要满足题意,需不等式(m-6)x<2m+1的不等号方向与其解集的不等号方向不同,∴m-6<0,即m<6,∴不等式(m-6)x<2m+1的解集为x>2m+1m―6,∵x>-4都能使x>2m+1m―6成立,∴-4≥2m+1m―6,∴-4m+24≤2m+1,∴m≥236,∴236≤m<6.综上所述,m的取值范围是236≤m≤6.18.解析 (1)设购进“冰墩墩”摆件x个,购进“冰墩墩”挂件y个.依题意得x+y=180,80x+50y=11 400,解得x=80,y=100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题意得(60-50)m+(100-80)(180-m)≥2 900,解得m≤70.答:购进的“冰墩墩”挂件不能超过70个.19.解析 (1)∵10×30=300(元),300<400,∴在甲超市的支付费用为300元.在乙超市的支付费用为300×0.8=240(元).故答案为300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的支付费用为10x元,在乙超市的支付费用为0.8×10x=8x(元),10x>8x.当x>40时,在甲超市的支付费用为400+0.6(10x-400)=(6x+160)元,在乙超市的支付费用为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.素养探究全练20.解析 (1)谷物食品中所含的蛋白质为9%x克,牛奶中所含的蛋白质为3%y克.故答案为9%x;3%y.(2)依题意,列方程组为9%x+3%y+60×15%=300×8%,x+y+60=300,解得x=130, y=110.故答案为130;110.(3)设该学校一周内共有a天选择A套餐,则有(5-a)天选择B套餐.依题意,得150a+180(5-a)≤830,解得a≥73.方案如表所示.方案A套餐B套餐方案13天2天方案24天1天方案35天0天。
第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).图2 图3 图4(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。
2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知,,是的三边,且满足,则的形状是 A.等腰三角形B.等边三角形C.任意三角形D.不能确定2. 如图在平面直角坐标系中,▱的两条对角线,交于原点,点的坐标是,则点的坐标是 A.B.C.D.3. 已知在中,,,则的度数为A.B.C.D.4. 七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )a b c △ABC ++=ab +bc +caa 2b 2c 2△ABC ()MNEF ME NF O F (3,2)N ()(−3,−2)(−3,2)(−2,3)(2,3)△ABC AB =AC ∠B =38∘∠A ( )72∘54∘104∘38∘A. B. C. D.5. 等腰三角形中,有一个角是,它的一条腰上的高与底边的夹角是 A.B.C.或D.或6. 如图,点是的中点,,,平分,下列结论:① ;② ;③ ;④.其中正确的是( )A.①②④40∘()20∘50∘25∘40∘20∘50∘E BC AB ⊥BC DC ⊥BC AE ∠BAD ∠AED =90∘∠ADE =∠CDE DE =BE AD =AB+CDB.①②③④C.②③④D.①③7. 如图,等边的顶点、分别在网格图的格点上,则的度数为( )A.B.C.D.8. 如图,在平面直角坐标系中,正方形的顶点在双曲线上,点,在轴上,延长至,使 ,连接交轴于点,连接,则的面积为 ( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,已知,等边的顶点在直线上,,则________.10. 如图,在正方形中,是等边三角形,,的延长线分别交于点,,连接△ABC A B ∠α15∘20∘25∘30∘ABCD A y =(x >0)12x C D x BC P BC =2PC PD y F CF △DCF 3456l//m △ABC B m ∠1=20∘∠2=ABCD △BPC BP CP AD E F,,与相交于点.给出下列结论:①=; ②=;③; ④=,其中正确的是________.(填写正确结论的序号)11. 计算: ________.12. 一个等腰三角形的两边为和,则它的周长为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图,在中,,,,将绕点按顺时针旋转一定角度得到,当点的对应点恰好落在边上时,求的长.14. 如图,,点在边上,.(1)求证:;(2)若,求的度数;(3)若,当的外心在直线上时,,求的长. 15. 在中,,点是直线上一点(不与,重合),以为一边在的右侧作,使,,连接.BD DP BD CF H AF DE ∠ADP 15∘PD 2PH ⋅PB −+−+−+⋯+−=1222324252621992200237△ABC AB =4BC =7∠B =60∘△ABC A △ADE B D BC CD ∠A =∠B,AE =BE D AC ∠1=∠2△AEC ≅△BED ∠C =70∘∠AEB ∠AEC =90∘△AEC DE CE =2AE △ABC AB=AC D BC B C AD AD △ADE AD=AE ∠DAE=∠BAC CE如图,当点在线段上①如果,则________;②如果,则________;设,.①如图,当点在线段动,则,之间有怎样的数量关系?请说明理由;②当点在直线动,则,之间有怎样的数量关系?请直接写出你的结论.16. 如图,为的直径,点为左侧一动点,连接,,,过点作,在上取异于点的点,使.求证:四边形是平行四边形;①当________时,与相切;②当________时,四边形是菱形.(1)1D BC∠BAC=90∘∠BCE=∘∠BAC=100∘∠BCE=∘(2)∠BAC=α∠BCE=β2D BCαβD BCαβAB⊙O C⊙O AC BC OC O OE//ACOE O D AD=AO(1)ACOD(2)∠COD=AD⊙O∠COD=ACOD参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】因式分解的应用完全平方公式等腰三角形的判定因式分解-运用公式法等边三角形的判定【解析】利用完全平方公式进行局部因式分解,再根据非负数的性质进行分析.【解答】解:∵,∴,,∴,∴是等边三角形.故选.2.【答案】A【考点】平行四边形的性质坐标与图形性质【解析】++=ab +bc +ca a 2b 2c 22+2+2−2ab −2bc −2ca =0a 2b 2c 2(a −b +(a −c +(b −c =0)2)2)2a =b =c △ABC B要求点的坐标,根据平行四边形的性质和关于原点对称的规律写出点的坐标.【解答】解:在▱中,点和点关于原点对称,∵点的坐标是,∴点的坐标是.故选.3.【答案】C【考点】三角形内角和定理等腰三角形的性质【解析】利用等腰三角形的性质以及三角形的内角和定理得解.【解答】解:在中,,所以,所以.故选.4.【答案】C【考点】七巧板【解析】解答此题要熟悉七巧板的结构:五个等腰直角三角形,有大、小两对全等三角形;一个正方形;一个平行四边形,根据这些图形的性质便可解答.【解答】图中根据图、图和图形不符合,故不是由原图这副七巧板拼成的.5.【答案】N N MNEF F N F (3,2)N (−3,−2)A △ABC AB =AC ∠B =∠C =38∘∠A =−2×=180∘38∘104∘C C 74【答案】D【考点】等腰三角形的判定与性质【解析】分①角是顶角时,根据等腰三角形两底角相等求出,再根据直角三角形两锐角互余列式计算即可得解;②角是底角时,利用直角三角形两锐角互余列式计算即可得解.【解答】解:①角是顶角时,如图,,∵是高,∴;②角是底角时,如图,∵是高,∴;综上所述,它的一条腰上的高与底边的夹角是或.故选.6.【答案】A【考点】角平分线的性质全等三角形的性质与判定【解析】30∘∠B 30∘40∘1∠B =(−)=12180∘40∘70∘CD ∠BCD =−=90∘70∘20∘40∘2CD ∠BCD =−=90∘40∘50∘20∘50∘D过作于,易证得,得到,,;而点是的中点,得到,则可证得,得到,,也可得到,,即可判断出正确的结论.【解答】解:过作于,如图,∵,,平分,∴.∵,∴,∴,.∵点是的中点,∴,∴.∵,∴,故③错误.∵,,∴,∴,,故②正确,∴,故④正确.,,即,故①正确.故选.7.【答案】A【考点】等边三角形的性质【解析】根据等边三角形的性质和三角形内角和解答即可.【解答】E EF ⊥AD F Rt △AEF ≅Rt △AEB BE =EF AB =AF ∠AEF =∠AEB E BC EC =EF =BE Rt △EFD ≅Rt △ECD DC =DF ∠FDE =∠CDE AD =AF +FD =AB+DC ∠AED =∠AEF +∠FED =∠BEC =1290∘E EF ⊥AD F AB ⊥BC EF ⊥AD AE ∠BAD BE =EF AE =AE Rt △AEF ≅Rt △AEB(HL)AB =AF ∠AEF =∠AEB E BC EC =BE EC =EF DE >EC DE >BE DE =DE EC =EF Rt △EFD ≅Rt △ECD(HL)DC =DF ∠ADE =∠CDE AD =AF +FD =AB+CD ∵∠AED+∠AEB+∠DEC =2∠AEF +2∠FED =180∘∴∠AEF +∠FED =90∘∠AED =90∘A如图:由图可知:==,∵等边,∴=,∴==,∴===,8.【答案】A【考点】等边三角形的性质与判定全等三角形的性质与判定【解析】【解答】解:设,由得,即,∴.∵正方形,∴.∴.∴.即=.∴.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.∠BOE ∠OBE 45∘△ABC ∠ABC 60∘∠OFB −−180∘45∘60∘75∘∠BFG ∠α−90∘75∘15∘AD =BC =CD =a y =12x A(,a)12aOD =12a CP =BC =12a 2ABCD ∠DCP =90∘CP//OF =OD CD OF CP OF =⋅CP OD CD 6a =OF ⋅CD =⋅⋅a =3S △DCF 12126a A【答案】【考点】平行线的判定与性质等边三角形的性质【解析】过作直线,根据等边三角形性质求出,根据平行线的性质求出,,即可求出答案.【解答】解:∵是等边三角形,∴,过作直线,∵直线直线,∴直线直线,∵,,∴,∴,故答案为:.10.【答案】①②④【考点】正方形的性质等边三角形的性质全等三角形的性质与判定相似三角形的性质与判定【解析】先判断出==,===,再判断出==,===,进而得出==,即可判断出,即可得出结论;由等腰三角形的性质得出=,则可得出答案;证明,得出40∘C CM//l ∠ACB =60∘∠1=∠MCB ∠2=∠ACM △ABC ∠ACB =60∘C CM//l l//m l//m//CM ∠ACB =60∘∠1=20∘∠1=∠MCB =20∘∠2=∠ACM =∠ACB−∠MCB =−=60∘20∘40∘40∘BP PC BC ∠PBC ∠PCB ∠BPC 60∘AB BC CD ∠A ∠ADC ∠BCD 90∘∠ABE ∠DCF 30∘△ABE ≅△DCF(ASA)∠PDC 75∘△FPE ∽△CPB,设=,=,则=,得出=,则可求出答案;先判断出=,进而判断出,即可得出结论.【解答】∵是等边三角形,∴==,===,在正方形中,∵==,===,∴==,∴,∴=,∴=,∴=;故①正确;∵=,=,∴=,∴===.故②正确;∵==,∴是等边三角形,∴,∴,设=,=,则=,∵=,∴=,整理得:)=,解得:,则,故③错误;∵=,=,∴=,∵=,∴==,∵=,∴,∴,∴=,∵=,∴=;故④正确.11.【答案】PF x PC y DC y y (x+y)∠DPH ∠DPC △DPH ∽△CPD △BPC BP PC BC ∠PBC ∠PCB ∠BPC 60∘ABCD AB BC CD ∠A ∠ADC ∠BCD 90∘∠ABE ∠DCF 30∘△ABE ≅△DCF(ASA)AE DF AE−EF DF −EF AF DE PC CD ∠PCD 30∘∠PDC 75∘∠ADP ∠ADC −∠PDC −90∘75∘15∘∠FPE ∠PFE 60∘△FEP △FPE ∽△CPB PF x PC y DC y ∠FCD 30∘y (x+y)(1−y x PC CD ∠DCF 30∘∠PDC 75∘∠BDC 45∘∠PDH ∠PCD 30∘∠DPH ∠DPC △DPH ∽△CPD PD 2PH ⋅CP PB PC PD 2PH ⋅PB【考点】平方差公式【解析】先根据平方差公式进行计算,再算加法即可.【解答】解:原式.故答案为:.12.【答案】【考点】等腰三角形的性质三角形三边关系【解析】因为等腰三角形的两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】当为底时,其它两边都为,、、可以构成三角形,周长为;当为腰时,其它两边为和,因为=,所以不能构成三角形,故舍去.所以三角形的周长为.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:∵将绕点按顺时针旋转一定角度得到,∴.∵,∴为等边三角形,−20100=(1+2)(1−2)+(3−4)(3+4)+⋯+(199−200)(199+200)=−3−7−⋯−399=−(3+399)×1002=−20100−20100173737773173733+36<717△ABC A △ADE AB =AD =4∠B =60∘△ABD∴,∴.【考点】旋转的性质等边三角形的性质与判定【解析】由旋转的性质可得,可证为等边三角形,可得,即可求解.【解答】解:∵将绕点按顺时针旋转一定角度得到,∴.∵,∴为等边三角形,∴,∴.14.【答案】(1)证明:∵,又∵,又∵,∴,在与中,,∴.解:(2)由得,,∴,∴,∴,∵,,∴.(3)∵,∴外心在斜边中点上且与点重合,∵,∴,∴,在中,,.BD =AD =4CD =BC −BD =7−4=3AB =AD =4△ABD BD =AD =4△ABC A △ADE AB =AD =4∠B =60∘△ABD BD =AD =4CD =BC −BD =7−4=3∠ADE =∠2+∠BDE ∠ADE =∠1+∠ECD ∠1=∠2∠BDE =∠ECD △AEC △BED ∠BDE =∠ECD∠A =∠BAE =BE△AEC ≅△BED(AAS)(1)△AEC ≅△BED ED =EC ∠EDC =∠C =70∘∠1=−2∠C =180∘40∘∠1=∠2=40∘∠B+∠AEB =∠A+∠2∠BEA =∠2=40∘∠AEC =90∘△AEC D CE =2AD =DC =ED =2AC =4Rt △AEC AE =A −E C 2C 2−−−−−−−−−−√=−4222−−−−−−√=23–√【考点】全等三角形的应用三角形的外角性质三角形的外接圆与外心【解析】本题主要考察了全等三角形的判定及性质、三角形的外角性质、三角形的外心、直角三角形斜边上的中线.【解答】(1)证明:∵,又∵,又∵,∴,在与中,,∴.解:(2)由得,,∴,∴,∴,∵,,∴.(3)∵,∴外心在斜边中点上且与点重合,∵,∴,∴,在中,,.∠ADE =∠2+∠BDE ∠ADE =∠1+∠ECD ∠1=∠2∠BDE =∠ECD △AEC △BED ∠BDE =∠ECD∠A =∠BAE =BE△AEC ≅△BED(AAS)(1)△AEC ≅△BED ED =EC ∠EDC =∠C =70∘∠1=−2∠C =180∘40∘∠1=∠2=40∘∠B+∠AEB =∠A+∠2∠BEA =∠2=40∘∠AEC =90∘△AEC D CE =2AD =DC =ED =2AC =4Rt △AEC AE =A −E C 2C 2−−−−−−−−−−√=−4222−−−−−−√=23–√15.【答案】,①当点在线段的延长线动时,与之间的数量关系是,理由是:∵,∴,∴,在和中∵∴,∴,∵,∴,∵,,∴;②当在线段上时,,当点在线段延长线或反向延长线上时,.【考点】全等三角形的性质与判定等腰三角形的性质【解析】(1)问要求的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.【解答】解:∵,∴,即.在与中,9080(2)D BC αβα=β∠DAE =∠BAC ∠DAE+∠CAD =∠BAC +∠CAD ∠BAD =∠CAE △BAD △CAE AB =AC ,∠BAD =∠CAE ,AD =AE ,△BAD ≅△CAE(SAS)∠B =∠ACE ∠ACD =∠B+∠BAC =∠ACE+∠DCE ∠BAC =∠DCE ∠BAC =α∠DCE =βα=βD BC α+β=180∘D BC α=β∠BCE △ABD ≅△ACE α+β(1)∠BAC=∠DAE ∠BAC −∠DAC =∠DAE−∠DAC ∠BAD=∠CAE △ABD △ACE∴,∴.∴,∴;①当,,∴.②当,,∴.故答案为:.①当点在线段的延长线动时,与之间的数量关系是,理由是:∵,∴,∴,在和中∵∴,∴,∵,∴,∵,,∴;②当在线段上时,,当点在线段延长线或反向延长线上时,.16.【答案】证明:∵ ,,,∵ ,,,∵ ,∴ ,∴,∴.又∵,∴四边形是平行四边形.,【考点】平行四边形的判定AB =AC,∠BAD =∠CAE,AD =AE,△ABD ≅△ACE(SAS)∠B =∠ACE ∠B+∠ACB=∠ACE+∠ACB ∠BCE=∠B+∠ACB =−∠BAC 180∘∠BAC=90∘∠BCE =−∠BAC 180∘∠BCE=90∘∠BAC=100∘∠BCE =−∠BAC 180∘∠BCE=80∘90,80(2)D BC αβα=β∠DAE =∠BAC ∠DAE+∠CAD =∠BAC +∠CAD ∠BAD =∠CAE △BAD △CAE AB =AC ,∠BAD =∠CAE ,AD =AE ,△BAD ≅△CAE(SAS)∠B =∠ACE ∠ACD =∠B+∠BAC =∠ACE+∠DCE ∠BAC =∠DCE ∠BAC =α∠DCE =βα=βD BC α+β=180∘D BC α=β(1)AD =AO ∠AOD =∠ADO ∠DAO =−2∠AOD 180∘OA =OC ∠OAC =∠OCA ∠AOC =−2∠OAC 180∘AC//OD ∠OAC =∠AOD ∠AOC =∠DAO AD//OC AC//OD ACOD 135∘120∘三角形内角和定理平行线的判定与性质切线的性质菱形的性质【解析】利用条件证得两组对边分别平行,即可求证.利用平行线的性质求角.【解答】证明:∵ ,,,∵ ,,,∵ ,∴ ,∴,∴.又∵,∴四边形是平行四边形.解:①,若与相切,则,又∵,∴,又∵,∴,可得,即时,与相切,故答案为:.②若四边形为菱形,则,又,∴为等边三角形,∴,则,即,四边形为菱形.故答案为:.(1)AD =AO ∠AOD =∠ADO ∠DAO =−2∠AOD 180∘OA =OC ∠OAC =∠OCA ∠AOC =−2∠OAC 180∘AC//OD ∠OAC =∠AOD ∠AOC =∠DAO AD//OC AC//OD ACOD (2)AD ⊙O ∠OAD =90∘CO//AD ∠COA =∠OAD =90∘AD =AO ∠AOD =45∘∠COD =∠COA+∠AOD =135∘∠COD =135∘AD ⊙O 135∘ACOD AC =CO OC =OA △ACO ∠ACO =60∘∠COD =120∘∠COD =120∘ACOD 120∘。
2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 一件衣服标价元,若以折降价出售,仍可获利,则这件衣服的进价是( )A.元B.元C.元D.元2.如图,根据图中提供的信息,可知一个茶壶的价格是( )A.元B.元C.元D.元3. 《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五;屈绳量之,不足一尺.问木长几何?”译文如下:用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余尺.问木条长多少尺?若设木条长为尺,根据题意列方程正确的是( )A.B.C.D. 4. 如图是某年的日历表,在此日历表上用一个矩形圈出个位置的个数(如,,,,,,,,).若用这样的矩形圈圈这张日历表的个数,则圈出的个数的和可能为下列数中的( )132910%1061051181081533353841 4.51x x+4.5=2(x+1)x+4.5=2(x−1)x+4.5=−1x 2x−4.5=−1x 23×3967813141520212299A.B.C.D.5. 按如图所示的程序计算,如果输入的值为非负整数,且最后输出的结果为,那么开始输入的值不可能是( )A.B.C.D.6. 《九章算术》中有一道题,原文是:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”意思是:同样时间段内,走路快的人能走步,走路慢的人只能走步.走路慢的人先走步,走路快的人走多少步才能追上走路慢的人?答( )A.步B.步C.步D.步7. 小明的爸爸买回两块地毯,他告诉小明小地毯的面积正好是大地毯面积的,且两块地毯的面积和为平方米,小明很快便得出了两块地毯的面积为(单位:平方米) 81100108216n 2343n 183793468100601003002502001501320()4020A.,B.,C.,D.,8. 某商品打七折后价格为元,则原价为 ( )A.元B.元C.元D.元二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,是一块在电脑屏幕上出现的长方形色块图,由个不同颜色的正方形组成,已知中间最小的一个正方形的边长为,则这个长方形色块图的面积是________.10. 暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:________元暑假八折优惠,现价:元11. 某中学的学生自己动手整修操场,如果让初二学生单独工作,需要小时完成;如果让初三学生单独工作,需要小时完成.现在由初二、初三学生一起工作小时,完成了任务.根据题意,可列方程为________.12. 《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“人同吃一碗饭,人同吃一碗羹,人同吃一碗肉,共用个碗,问有多少客人?”设共有客人人,可列方程为________.4032033010155128a a a 10730%a a 7106216064x 23465x三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 一个数减去,再加上等于.求这个数. 14. 列方程解应用题:为提高学生的计算能力,我县某学校八年级在元旦之前组织了一次数学速算比赛。
七下数学全册同步练习、单元检测(含答案,100页)七下数学同步练习、单元检测第五章相交线与平⾏线5.1.1 相交线复习检测(5分钟):1、如图所⽰,∠1和∠2是对顶⾓的图形有( )A.1个B.2个C.3个 D.4个2、如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ .3、如图是⼀把剪⼑,其中?=∠401,则=∠2 ,其理由是。
4、如图三条直线AB,CD,EF 相交于⼀点O, ∠AOD 的对顶⾓是_____,12121221∠AOC 的邻补⾓是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____. OF E D CBA5、如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,?求∠EOB 的度数.OE D CBA6、如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba34125.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补⾓都相等.( )2、⼀条直线不可能与两条相交直线都垂直.( )3、两条直线相交所成的四个⾓中,如果有三个⾓相等,那么这两条直线互相垂直.( )4、两条直线相交有⼀组对顶⾓互补,那么这两条直线互相垂直.( ).5、如图1,OA ⊥OB,OD ⊥OC,O 为垂⾜,若∠AOC=35°,则∠BOD=________.6、如图2,AO ⊥BO,O 为垂⾜,直线CD 过点O,且∠BOD=2∠AOC,则E (3)O D C B A(2)O D CB A (1)O DC B A ∠BOD=________.7、如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.8、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.9、如图,AC ⊥BC,C 为垂⾜,CD ⊥AB,D 为垂⾜,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点间的距离是_________.10、如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.⼩明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对⼩明的说法,你认为对吗?11、⽤三⾓尺画⼀个是30°的∠AOB,在边OA 上任取⼀点P ,过P 作PQ ⊥OB, 垂⾜为Q,量⼀量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?5.1.3同位⾓、内错⾓、同旁内⾓复习检测(5分钟): E O DC BA F E D CB A DCBA1、如图(4),下列说法不正确的是()A.∠1与∠2是同位⾓B.∠2与∠3是同位⾓C.∠1与∠3是同位⾓D.∠1与∠4不是同位⾓2、如图(5),直线AB、CD被直线EF所截,∠A和是同位⾓,∠A和是内错⾓,∠A和是同旁内⾓.3、如图(6), 直线DE截AB, AC, 构成⼋个⾓:①、指出图中所有的同位⾓、内错⾓、同旁内⾓.②、∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪⼀条直线截哪两条直线⽽成的什么⾓?4、如图(7),在直⾓ ABC中,∠C=90°,DE⊥AC于E,交AB于D .①、指出当BC、DE被AB所截时,∠3的同位⾓、内错⾓和同旁内⾓.②、若∠3+∠4=180°试说明∠1=∠2=∠3的理由.5.2.1平⾏线复习检测(5分钟):1、在同⼀平⾯内,两条直线的位置关系有_________2、两条直线L1与L2相交点A,如果L1//L,那么L2与L()3、在同⼀平⾯内,⼀条直线和两条平⾏线中⼀条直线相交,那么这条直线与平⾏线中的另⼀边必__________.4、两条直线相交,交点的个数是________,两条直线平⾏,交点的个数是_____个.判断题5、6、7、85、不相交的两条直线叫做平⾏线.( )6、如果⼀条直线与两条平⾏线中的⼀条直线平⾏, 那么它与另⼀条直线也互相平⾏.( )7、过⼀点有且只有⼀条直线平⾏于已知直线.( )8、读下列语句,并画出图形后判断.(1)直线a、b互相垂直,点P是直线a、b外⼀点,过P点的直线c垂直于直线b.(2)判断直线a、c的位置关系,并借助于三⾓尺、直尺验证.65ca34129、试说明三条直线的交点情况,进⽽判定在同⼀平⾯内三条直线的位置情况.5.2.2平⾏线的判定复习检测(10分钟):1、如图1所⽰,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD(1) (2) (3) (4) 2、如图2所⽰,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF34DCBA21FE D CBA 876543219654321DCB A3、下列说法错误的是( )A.同位⾓不⼀定相等B.内错⾓都相等C.同旁内⾓可能相等D.同旁内⾓互补,两直线平⾏ 4、如图5,直线a,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明 a∥b的条件序号为()(5)A.①②B.①③C.①④D.③④5、如图5,如果∠3=∠7,那么______ ,理由是 ;如果∠5=∠3,那么________, 理由是______________; 如果∠2+ ∠5= ______ 那么a ∥b,理由是________ .6、如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 7、在同⼀平⾯内,若直线a,b,c 满⾜a ⊥b,a ⊥c,则b 与c 的位置关系是______.8、如图所⽰,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________. (2)由∠CBE=∠C 可以判断______∥______,根据是_________. 9、已知直线a 、b 被直线c 所截,且∠1+∠试判断直线a 、b 的位置关系,并说明理由.EDCB AD CBA2110、如图,已知DG∠,2=∠AEM∠,试问EF是否平⾏GH,并说明理1∠=由.11、如图所⽰,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.12、如图所⽰,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=30°,试说明AB ∥CD.GHKEDC B A13、提⾼训练:如图所⽰,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平⾏吗??为什么?d ecb a 34125.3.1平⾏线的性质复习检测(10分钟):1、如图1所⽰,AB ∥CD,则与∠1相等的⾓(∠1除外)共有( )DCBAOFED C BADCB A 187654321DCBAGF EDCBA 12A.5个B.4个C.3个D.2个(1) (2) (3)2、如图2所⽰,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( )A.35°B.30°C.25°D.20°3、如图3所⽰,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______, ∠ACD=?_______.4、如图4,若AD ∥BC,则∠______=∠_______,∠_______=∠_______,∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.(4)(5)E21DCB(6)5、如图5,在甲、⼄两地之间要修⼀条笔直的公路, 从甲地测得公路的⾛向是南偏西56°,甲、⼄两地同时开⼯,若⼲天后公路准确接通, 则⼄地所修公路的⾛向是_________,因为____________.6、河南)如图6所⽰,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG?平分∠B-EF,若∠1=72°,则∠2=_______.7、如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?8、如图,EF 过△ABC 的⼀个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,并说明依据?NMG F EDCB A9、如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.10、如图所⽰,把⼀张长⽅形纸⽚ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.11、如图所⽰,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .求证:∠1+∠2=90°.证明:∵ AB ∥CD ,(已知)∴∠BAC +∠ACD =180°,()⼜∵ AE 平分∠BAC ,CE 平分∠ACD ,()∴112B A C ∠=∠,122A C D ∠=∠,( )∴001112()1809022B AC A CD ∠+∠=∠+∠=?=.即∠1+∠2=90°.结论:若两条平⾏线被第三条直线所截,则⼀组同旁内⾓的平分线互相 .推⼴:若两条平⾏线被第三条直线所截,则⼀组同位⾓的平分线互相 .5.3.2命题、定理、证明复习检测(5分钟): 1、判断下列语句是不是命题(1)延长线段AB ()(2)两条直线相交,只有⼀交点()(3)画线段AB 的中点()(4)若|x|=2,则x=2()(5)⾓平分线是⼀条射线() 2、下列语句不是命题的是() A.两点之间,线段最短B.不平⾏的两条直线有⼀个交点C.x 与y 的和等于0吗?D.对顶⾓不相等.3、下列命题中真命题是() A.两个锐⾓之和为钝⾓B.两个锐⾓之和为锐⾓C.钝⾓⼤于它的补⾓D.锐⾓⼩于它的余⾓4、命题:①对顶⾓相等;②垂直于同⼀条直线的两直线平⾏;③相等的⾓是对顶⾓;④同位⾓相等.其中假命题有() A.1个B.2个C.3个D.4个5、分别指出下列各命题的题设和结论(1)如果a ∥b,b ∥c,那么a ∥c (2)同旁内⾓互补,两直线平⾏ 6、分别把下列命题写成“如果……,那么……”的形式(1)两点确定⼀条直线;(2)等⾓的补⾓相等;(3)内错⾓相等.7、如图,已知直线a 、b 被直线c 所截,在括号内为下⾯各⼩题的推理填上适当的根据:(1)∵a ∥b,∴∠1=∠3( ); (2)∵∠1=∠3,∴a ∥b( ); (3)∵a ∥b,∴∠1=∠2( ); (4) ∵a ∥b,∴∠1+∠4=180o ( ) (5)∵∠1=∠2,∴a ∥b( );(6)∵∠1+∠4=180o,∴a ∥b( ).8、已知:如图AB ⊥BC,BC ⊥CD 且∠1=∠2,求证:BE ∥CF 证明:∵AB ⊥BC,BC ⊥CD (已知)∴ = =90°()∵∠1=∠2(已知)∴ = (等式性质)ab 1 23c4C A BD EF1 2∴BE ∥CF () 9、已知:如图,AC ⊥BC,垂⾜为C,∠BCD 是∠B 的余⾓. 求证:∠ACD=∠B 证明:∵AC ⊥BC (已知)∴∠ACB=90°()∴∠BCD 是∠ACD 的余⾓∵∠BCD 是∠B 的余⾓(已知)∴∠ACD=∠B ()5.4 平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的()BD2、如图所⽰,△FDE 经过怎样的平移可得到△ABC.( )A.沿射线EC 的⽅向移动DB 长;B.沿射线EC 的⽅向移动CD 长C.沿射线BD 的⽅向移动BD 长;D.沿射线BD 的⽅向移动DC 长3、下列四组图形中,?有⼀组中的两个图形经过平移其中⼀个能得到-BDACFBA另⼀个,这组图形是( )4、如图所⽰,△DEF 经过平移可以得到△ABC,那么∠C的对应⾓和ED 的对应边分-别是( )A.∠F,ACB.∠BOD,BA;C.∠F,BAD.∠BOD,AC 5、在平移过程中,对应线段( ) A.互相平⾏且相等; B.互相垂直且相等 C.互相平⾏(或在同⼀条直线上)且相等 6、在平移过程中,平移后的图形与原来的图形________和_________都相同,?因-此对应线段和对应⾓都________.7、如图所⽰,平移△ABC 可得到△DEF,如果∠A=50°, ∠C=60°,那么∠E=?____-度,∠EDF=_______度, ∠F=______度,∠DOB=_______度.8、将正⽅形ABCD 沿对⾓线AC ⽅向平移,且平移后的图形的⼀个顶点恰好在AC 的中点O 处,则移动前后两个图形的重叠部分的⾯积是原正⽅形⾯积的_______OF ECB ADABCDOFECB AD9、直⾓△ABC中,AC=3cm,BC=4cm,AB=5cm,将△ABC沿CB⽅向平移3cm,则边AB所经过的平⾯⾯积为____cm2。
2022-2023学年全国七年级下数学同步练习考试总分:33 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )1. 已知的半径为,为线段的中点,若点在上,则的长( )A.等于B.等于C.小于D.大于2. 按照图的方式摆放一副三角板,画出 再按照图的方式摆放一副三角板,画出射线,则的大小为( )A.B.C.D.3. 如图,,且,则 的度数为 ( )⊙O 6cm P OA P ⊙O OA 6cm12cm6cm12cm1∠AOB 2OC ∠AOC 70∘75∘60∘65∘AB =,BC =AC =A 1B 1B 1C 1A 1C 1∠A =,∠B =110∘40∘∠C 1110∘A.B.C.D.4. 如图, ,则的度数为(( )A.B.C.D.AD / 人 2 →卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )5. 如图,已知 点,在边上, ,点是边上的点,若使点,,构成等腰三角形的点恰好只有一个,则的取值范围是________.6. 如图,四边形是平行四边形,若________(添加一个条件),四边形是菱形.7. 如图用一张长方形纸条折成的.如果 ,那么的度数是________.8. 如图,在中,、是的弦,,则的度数是__________.110∘40∘30∘20∘∠1=,∠B =65∘65∘∠C =80∘∠2BL65∘80∘115∘100∘1AE BL C∠AOB =30∘M N OA OM =x,ON =x +2P OB P M N P x ABCD ABCD ∠1=100∘∠2⊙O AD BC ⊙O OA ⊥BC,∠AOB =,CE ⊥AD 52∘∠DCE9. 如图,已知,为的中点,若,则________.三、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )10. 如图所示,直线,连接,直线、及线段把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分,当动点落在某部分时连接、,构成,,三个角(提示:有公共端点的两条重合的射线所组成的角是角).当动点落在第①部分时, 、 、 之间有什么关系?并说明理由;当动点落在第②部分时,中结论是否依然成立?(直接回答成立或不成立)当动点落在第③部分时,全面探究之间的关系,直接写出动点的具体位置和相应的结论.11. 如图,已知,,垂足分别为,,,试说明.将下面的解答过程补充完整,并填空.证明:∵,(已知),∴ (垂直定义),∴________________(同位角相等,两直线平行),∴(________)又∵ (已知),∴ (________)∴________________(两直线平行,内错角相等),∴(________).AB//CF E DF AB =8,CF =5BD =AC//BD AB AC BD AB P PA PB ∠PAC ∠APB ∠PBD 0∘(1)P ∠PAC ∠APB ∠PBD (2)P (1)(3)P ∠PAC,∠APB,∠PBD P CD ⊥AB EF ⊥AB D F ∠B +∠BDG =180∘∠BEF =∠CDG CD ⊥AB EF ⊥AB ∠BFE =∠BDC =90∘//∠BEF =∠BCD ∠B +∠BDG =180∘BC//DG =∠CDG =∠BEF参考答案与试题解析2022-2023学年全国七年级下数学同步练习一、 选择题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )1.【答案】B【考点】圆的有关概念【解析】点在圆上,则=;点在圆外,;点在圆内,(即点到圆心的距离,即圆的半径).【解答】根据点和圆的位置关系,得=,再根据线段的中点的概念,得==.2.【答案】B【考点】角的计算【解析】此题暂无解析【解答】解:,,.故选.3.【答案】C【考点】d r d >r d <r d r OP 6OA 2OP 12∵∠AOB =+=60∘90∘150∘∠BOC =+=45∘30∘75∘∴∠AOC =−=150∘75∘75∘B平行线的性质【解析】由三角形内角和定理求出=,再由证明,即可得出结果.【解答】解:∵在中,=,=,∴==.在和中,,∴.∴==;故选.4.【答案】D【考点】平行线的判定与性质【解析】此题暂无解析【解答】略二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )5.【答案】或【考点】含30度角的直角三角形等腰三角形的判定与性质【解析】此题暂无解析∠C 30∘SSS △ABC ≅△A 1B 1C 1△ABC ∠A 110∘∠B 40∘∠C −∠A −∠B 180∘30∘△ABC △A 1B 1C 1 AB =A 1B 1BC =B 1C 1AC =A 1C1△ABC ≅△(SSS)A 1B 1C 1∠C ∠C 130∘C x >4x =2【解答】解:6.【答案】【考点】菱形的判定平行四边形的性质【解析】根据菱形的判定方法即可判断.【解答】解:当时,根据对角线互相垂直的平行四边形是菱形,可得四边形是菱形.故答案为:.7.【答案】【考点】平行线的性质【解析】根据折叠的性质可得,根据平行线的性质可得,最后根据即可求出的度数.【解答】解:如图所示:根据折叠的性质可得.AC ⊥BDAC ⊥BD ABCD AC ⊥BD 50∘∠2=∠3∠4=80∘∠2+∠3+∠4=180∘∠2∠2=∠3ABCD∵四边形是长方形,∴.∴.∴.∵,∴.解得.故答案为:.8.【答案】【考点】平行线的判定与性质【解析】此题暂无解析【解答】此题暂无解答9.【答案】【考点】全等三角形的性质与判定平行线的性质【解析】根据平行线的性质得出 ,进而利用全等三角形的判定与性质得出答案.【解答】解:因为,所以,,在△和中,,∴Δ(),,∴.ABCD AD//BC ∠1+∠4=180∘∠4=−∠1=−=180∘180∘100∘80∘∠2+∠3+∠4=180∘2∠2+=80∘180∘∠2=50∘50∘64∘3∠A =∠ACF ∠AED =∠CEF AB//CF ∠A =∠ACF ∠AED =∠CEF AED △CEF ∠A =∠ACF∠AED =∠CEF DE =DFAED ≅△CEF AAS FC =AD =5ED =AB −AD =8−5=3故答案为:.三、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )10.【答案】解:如图,过点作,∴,∵,∴,∴,∴.不成立.理由如下:如图,过点作,∵,∴,∴,,,∴,则中结论不成立.①当动点在的右侧时,结论是:.②当动点在上,3(1)P FP//AC ∠PAC =∠APF AC//BD FP//BD ∠FPB =∠PBD ∠APB =∠APF +∠FPB =∠PAC +∠PBD (2)P PF//AC AC//BD PF//BD ∠PAC +∠APF =180∘∠PBD +∠BPF =180∘∠APB =∠APF +∠BPF ∠PAC +∠PBD=−∠APF +(−∠BPF)180∘180∘=−∠APB 360∘(1)(3)P BA ∠PBD =∠PAC +∠APB P BA结论是:.③当动点在的左侧时,结论是:.【考点】平行线的判定与性质【解析】()如图,延长交直线于点,由,可知.由,可知;()过点作的平行线,根据平行线的性质解答;()根据的不同位置,分三种情况讨论.【解答】解:如图,过点作,∴,∵,∴,∴,∴.不成立.理由如下:如图,过点作 ,∠PBD =∠PAC +∠APB P BA ∠PAC =∠APB +∠PBD 11BP AC E AC//BD ∠PEA =∠PBD ∠APB =∠PAE +∠PEA ∠APB =∠PAC +∠PBD 2P AC 3P (1)P FP//AC ∠PAC =∠APF AC//BD FP//BD ∠FPB =∠PBD ∠APB =∠APF +∠FPB =∠PAC +∠PBD (2)P PF//AC∵,∴,∴,,,∴,则中结论不成立.①当动点在的右侧时,结论是:.②当动点在上,结论是:.③当动点在的左侧时,结论是:.11.【答案】,,两直线平行,同位角相等,同旁内角互补,两直线平行,,,等量代换【考点】AC//BD PF//BD ∠PAC +∠APF =180∘∠PBD +∠BPF =180∘∠APB =∠APF +∠BPF ∠PAC +∠PBD=−∠APF +(−∠BPF)180∘180∘=−∠APB 360∘(1)(3)P BA ∠PBD =∠PAC +∠APB P BA ∠PBD =∠PAC +∠APB P BA ∠PAC =∠APB +∠PBD EF CD ∠CDG ∠BCD平行线的判定与性质【解析】根据平行线的判定与性质即可完成证明过程.【解答】证明:, (已知),∴ (垂直定义),∴ (同位角相等,两直线平行),∴ (两直线平行,同位角相等),又∵ (已知),∴ (同旁内角互补,两直线平行),∴ (两直线平行,内错角相等),∴ (等量代换).故答案为:;;两直线平行,同位角相等;同旁内角互补,两直线平行; ;;等量代换.∵CD ⊥AB EF ⊥AB ∠BFE =∠BDC =90∘EF//CD ∠BEF =∠BCD ∠B +∠BDG =180∘BC//DG ∠CDG =∠BCD ∠CDG =∠BEF EF CD ∠CDG ∠BCD。
2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 下列图形中,由如图经过一次平移得到的图形是( ) A. B. C.D.2. 如图,将周长为的沿方向向右平移个单位得到,则四边形的周长为A.B.C.4△ABC BC 1△DEF ABFD ()567D.3. 下列运动属于平移的是( )A.电风扇扇叶的转动B.石头从山顶滚到山脚的运动C.足球被踢飞后的运动D.缆车沿索道从山顶运动到山脚4. 如图,将周长为的沿方向平移个单位得到,则四边形的周长为( ) A.B.C. D.5. 图案中能够通过平移图案得到的是( )A.B.C.87△ABC BC 2△DEF ABFD 1691112A−DD.6. 如图,将向右平移个单位长度得到,且点,,,在同一条直线上,若=,则的长度是( )A.B.C.D.7. 图中不是由平移而得到的是( ) A. B. C.D.8. 如图,将沿所在直线向左平移得到,若,,则平移的距离为( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )△ABC 8△DEF B E C F EC 4BC 11121314△DEF BC △ABC EC =1BF =5122.539. 如图,立方体棱长为,将线段平移到的位置上,平移的距离是________.10. 在一块边长为米的正方形草坪上修了横竖各两条宽都为米的长方形小路(图中阴影部分)将草坪分隔成如图所示的图案,则图中未被小路覆盖的草坪的总面积为________平方米.11. 如图,将向右平移个单位长度得到,且点,,,在同一条直线上,若,则的长度是________.12. 某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格的红色地毯,其侧面如图,则至少需要购买地毯________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图所示,在边长为的小正方形组成的网格中.将沿轴正方向向上平移个单位长度后,得到,请作出,并求出的长度;再将绕坐标原点顺时针旋转,得到,请作出,并直接写出点的坐标;2cm AC A 1C 1cm 10 1.5△ABC 5△DEF B E C F EC =4BC m △ABC 1cm (1)△ABC y 5△A 1B 1C 1△A 1B 1C 1A 1B 1(2)△A 1B 1C 1O 180∘△A 2B 2C 2△A 2B 2C 2B 2(1),(2)在的条件下,求线段在变换过程中扫过图形的面积和.14. 已知,,点为射线上一点.如图,若,,则________;如图,当点在延长线上时,此时与交于点,则,,之间满足怎样的关系,请说明你的结论;如图,当点在延长线上时,平分,且,,,求的度数.15. 在长为,宽为的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,其示意图如图所示,求其中一个小长方形花圃的长和宽.16. 如图,在中,,,的垂直平分线交于点,交于点,,连接.求证:是直角三角形;求的面积.(3)(1),(2)AB AB//CD E FG (1)1∠EAF =25∘∠EDG =45∘∠AED =∘(2)2E FG CD AE H ∠AED ∠EAF ∠EDG (3)3E FG DP ∠EDC ∠EAP :∠BAP =1:2∠AED =32∘∠P =30∘∠EKD 12m 9m △ABC AB =4BC =8AC AC D BC E CE =3AE (1)△ABE (2)△ACE参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】生活中的平移现象【解析】利用平移的性质直接判断得出即可.【解答】解:根据平移的性质:平移时图形中所有点移动的方向一致,并且移动的距离相等.选项,,都改变了图象的方向,只有答案符合题意.故选.2.【答案】B【考点】平移的性质【解析】先根据平移的性质得出,,,再根据四边形的周长即可得出结论.【解答】解:∵将周长为的沿边向右平移个单位得到,∴,,,又∵,∴四边形的周长.A B D C C AD =1BF =BC +CF =BC +1DF =AC ABFD =AD+AB+BF +DF 4△ABC BC 1△DEF AD =1BF =BC +CF =BC +1DF =AC AB+BC +AC =4ABFD =AD+AB+BF +DF =1+AB+BC +1+AC =6故选3.【答案】D【考点】生活中的平移现象【解析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化.【解答】解:、电风扇扇叶的转动,是风扇叶在空中不断的做旋转运动,不是平移;、石头从山顶滚到山脚的运动,有旋转运动,不是平移;、足球被踢飞后的运动,有旋转运动,不是平移;、符合平移的性质,是平移.故选:.4.【答案】C【考点】平移的性质【解析】根据平移的基本性质,得.即可得出四边形的周长为.【解答】解:根据题意,将周长为个单位的沿边向右平移个单位得到,∴,,,又∵,∴四边形的周长为.故选.5.【答案】B【考点】B.A B C D D ABFD AD+AB+BF +DF =2+AB+BC +2+AC7△ABC BC 2△DEF AD =2BF =BC +CF =BC +2DF =AC AB+BC +AC =7ABFD AD+AB+BF +DF =2+AB+BC +2+AC =11C生活中的平移现象【解析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,找各点位置关系不变的图形.【解答】解:观察图形可知,图案能通过平移图案得到.故选:.6.【答案】B【考点】平移的性质【解析】利用平移的性质求出即可解决问题.【解答】由题意,==,∵=,∴===,7.【答案】D【考点】生活中的平移现象【解析】根据平移和旋转的定义对各选项分析判断后利用排除法求解.【解答】解:、可以由平移得到,故本选项错误;、可以由平移得到,故本选项错误;、可以由平移得到,故本选项错误;、可以由旋转得到,不能由平移得到,故本选项正确.故选.B B BE BE CF 8EC 4BC BE+EC 6+412A B CD D8.【答案】B【考点】平移的性质【解析】因点平移后的对应点是点,所以只要求出线段的长,也就求出了平移的距离.【解答】解:由平移的性质可知,,,,,,平移的距离为.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】平移的性质【解析】根据平移的性质即可得到结论.【解答】解:∵将线段平移到的位置上,平移的距离是立方体棱长,∴平移的距离是,故答案为:.10.【答案】【考点】B E BE BE =CF ∵BF =5EC =1∴BE+CF =5−1=4∴BE =CF =2∴2B 2AC A 1C 12cm 249生活中的平移现象【解析】把四条线路平移到两侧,再表示出未被小路覆盖的草坪的边长即可算出面积.【解答】解:如图所示:(平方米),故答案为:.11.【答案】【考点】平移的性质【解析】根据平移的性质可得,然后列式其解即可.【解答】解: 是由向右平移个单位长度得到的,,,.故答案为:.12.【答案】【考点】生活中的平移现象【解析】由平移性质求解.【解答】解:由平移可得,为.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )(10−3)×(10−3)=49499BC =EF,CF =5∵△DEF △ABC 5∴BC =EF CF =5∴BC =EF =EC +CF =4+5=998.45.8+2.6=8.48.4三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:如图所示,即为所求,;如图所示,即为所求,;在的条件下,线段在变换过程中扫过图形的面积和为:.【考点】作图-平移变换作图-旋转变换三角形的面积【解析】(1)分别将点、、向上平移个单位得到对应点,再顺次连接可得;(2)分别将点、、绕点顺时针旋转得到对应点,再顺次连接可得;(3)平行四边形的面积加上大半圆的面积与小半圆面积的差即可求得.【解答】解:如图所示,即为所求,;如图所示,即为所求,;在的条件下,线段在变换过程中扫过图形的面积和为:.14.(1)△A 1B 1C 1=3cm A 1B 12–√(2)△A 2B 2C 2(4,−4)B 2(3)(1)(2)AB 5×3+π×(4−π×(122–√)2122–√)2=(15+15π)cm 2A B C 5A B C O 90∘(1)△A 1B 1C 1=3cm A 1B 12–√(2)△A 2B 2C 2(4,−4)B 2(3)(1)(2)AB 5×3+π×(4−π×(122–√)2122–√)2=(15+15π)cm 2【答案】.理由:∵,∴.∵是的外角,∴,∴.∵,∴设,则.∵,∴,∴.∵平分,∴.∵是的外角,∴,解得:,∴,∴,∴.【考点】平行线的判定与性质三角形的外角性质【解析】此题暂无解析【解答】解:如图,延长交于,∵,∴.∵是的外角,∴.故答案为:..理由:∵,∴.70(2)∠EAF =∠AED+∠EDG AB//CD ∠EAF =∠EHC ∠EHC △DEH ∠EHG =∠AED+∠EDG ∠EAF =∠AED+∠EDG (3)∠EAP :∠BAP =1:2∠EAP =α∠BAE =3αAB//CD ∠DHK =∠BAE =3α∠PDC =∠DHA−∠EAP −∠P =3α−α−=2α−30∘30∘DP ∠EDC ∠EDH =2∠PDC =4α−60∘∠DHA △DHE 4α−+=3α60∘32∘α=28∘∠PAK =28∘∠AKP =−−=180∘28∘30∘122∘∠EKD =122∘(1)DE AB H AB//CD ∠EDG =∠AHE =45∘∠AED △AEH ∠AED =∠AHE+∠EAF =+=45∘25∘70∘70(2)∠EAF =∠AED+∠EDG AB//CD ∠EAF =∠EHC∵是的外角,∴,∴.∵,∴设,则.∵,∴,∴.∵平分,∴.∵是的外角,∴,解得:,∴,∴,∴.15.【答案】小矩形花圃的长和宽分别为,.【考点】生活中的平移现象【解析】由图形可看出:小矩形的个长+一个宽,小矩形的个宽+一个长,设出长和宽,列出方程组即可得答案.【解答】解:设小矩形的长为,宽为,由题意得:,解得:,即小矩形的长为,宽为.16.【答案】证明:∵的垂直平分线交于点,∴.,∴.在中,∵,∴是直角三角形.解:如图,过点作于点,∠EHC △DEH ∠EHG =∠AED+∠EDG ∠EAF =∠AED+∠EDG (3)∠EAP :∠BAP =1:2∠EAP =α∠BAE =3αAB//CD ∠DHK =∠BAE =3α∠PDC =∠DHA−∠EAP −∠P =3α−α−=2α−30∘30∘DP ∠EDC ∠EDH =2∠PDC =4α−60∘∠DHA △DHE 4α−+=3α60∘32∘α=28∘∠PAK =28∘∠AKP =−−=180∘28∘30∘122∘∠EKD =122∘5m 2m 2=12m 2=9m xm ym {2x+y =122y+x =9{x =5y =25m 2m (1)AC AC D AE =CE =3∵BC =8BE =5△ABE +=324252△ABE (2)A AF ⊥BC F,,.故的面积是.【考点】勾股定理的逆定理线段垂直平分线的性质三角形的面积【解析】(1)根据线段垂直平分线的性质可得==,根据线段的和差关系可求=,再根据勾股定理的逆定理可证是直角三角形;(2)根据三角形面积公式可求中边上的高,再根据三角形面积公式可求的面积.【解答】证明:∵的垂直平分线交于点,∴.,∴.在中,∵,∴是直角三角形.解:如图,过点作于点,,,.故的面积是.∵BE ⋅AF =AB ⋅AE1212∴AF ===2.4AB ⋅AE BE 4×35∴=CE ⋅AF =×2.4×3=3.6S △ACE 1212△ACE 3.6AE CE 3BE 5△ABE △ABE BE △ACE (1)AC AC D AE =CE =3∵BC =8BE =5△ABE +=324252△ABE (2)A AF ⊥BC F ∵BE ⋅AF =AB ⋅AE 1212∴AF ===2.4AB ⋅AE BE 4×35∴=CE ⋅AF =×2.4×3=3.6S △ACE 1212△ACE 3.6。
第五章相交线与平行线测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC(B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ).(A)30° (B)45°(C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角. ( )11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. ( )12.有一条公共边的两个角是邻补角. ( )13.如果两个角是邻补角,那么它们一定互为补角. ( )14.对顶角的角平分线在同一直线上. ( )15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. ( )综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( )12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直.( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB .( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α (C)α2190+︒ (D)2α-90° 18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n(C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条(B)4条(C)7条 (D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE ∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______.(3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义)又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质)即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( )∴∠2=∠______.(等量代换)∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(____________,____________)即∠A=______-______=______°-______°=______°.∵DC∥AB,( )∴∠D+∠A=______.(_____________,_____________)即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( )∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行)∴∠3=∠______.(两直线平行,内错角相等)∵AP 平分∠BAC ,CP 平分∠ACD ,( ) ∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( ) ∴∠APC =∠2+∠3=∠1+∠4=90°.( )总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( ) 二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?参考答案第五章相交线与平行线测试11.公共,反向延长线.2.公共,反向延长线.3.对顶角相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.测试21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A,B,C三点中任何两点的连线都不与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有三个不同的垂足.(2)当A,B,C三点中有且只有两点的连线与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有两个不同的垂足.(3)当A,B,C三点共线,且该线与直线m垂直时,则只有一个垂足.25.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A,B,C,D,依次连接AM,BM,CM,DM,再分别过A,B,C,D点作半径AM,BM,CM,DM的垂线l1,l2,l3,l4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE .90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712 ⨯=∠+∠∴BOC AOB ∴是712倍. 测试31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角,(5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角,(9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8;同旁内角有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6.3.(1)BD ,同位. (2)AB ,CE ,AC ,内错.4.(1)ED ,BC ,AB ,同位;(2)ED ,BC ,BD ,内错;(3)ED ,BC ,AC ,同旁内.5.C . 6.D . 7.B . 8.D .9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.测试41.不相交,a ∥b .2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行.4.第三条直线平行,互相平行,a ∥c .5.略.6.(1)EF ∥DC ,内错角相等,两直线平行.(2)AB ∥EF ,同位角相等,两直线平行.(3)AD∥BC,同旁内角互补,两直线平行.(4)AB∥DC,内错角相等,两直线平行.(5)AB∥DC,同旁内角互补,两直线平行.(6)AD∥BC,同位角相等,两直线平行.7.(1)AB,EC,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略.9.略.10.略.11.同位角相等,两直线平行.12.略.13.略.14.略.测试51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.4.(1)已知,∠5,两直线平行,内错角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.测试61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.测试71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线.4~7.略.8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB 最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB2=AC2+BC2.七年级数学第五章相交线与平行线测试一、选择题1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).(A)144° (B)135°(C)126° (D)108°2.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ).(A)30° (B)60°(C)150° (D)30°或150°3.如图,直线l 1,l 2被l 3所截得的同旁内角为α,β ,要使l 1∥l 2,只要使( ).(A)α+β =90° (B)α=β(C)0°<α≤90°,90°≤β <180° (D) 603131=+βα 4.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α(C)180°+α (D)270°-α5.以下五个条件中,能得到互相垂直关系的有( ).①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线(A)1个 (B)2个 (C)3个 (D)4个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°,能判定AB ∥CD 的有( ).(A)3个(B)2个(C)1个(D)0个7.在5×5的方格纸中,将图a中的图形N平移后的位置如图b所示,那么正确的平移方法是( ).图a 图b(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格8.在下列四个图中,∠1与∠2是同位角的图是( ).图①图②图③图④(A)①②(B)①③(C)②③(D)③④9.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有( ).(A)6个(B)5个(C)4个(D)3个10.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ).(1)∠C ′EF =32°(2)∠AEC =148° (3)∠BGE =64°(4)∠BFD =116° (A)1个(B)2个 (C)3个(D)4个二、填空题 11.若角α与β 互补,且 2031=-βα,则较小角的余角为____°. 12.如图,已知直线AB 、CD 相交于O ,如果∠AOC =2x °,∠BOC =(x +y +9)°,∠BOD=(y +4)°,则∠AOD 的度数为____.13.如图,DC ∥EF ∥AB ,EH ∥DB ,则图中与∠AHE 相等的角有____________________________________________________.14.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E ,F ,EP 与∠EFD 的平分线相交于点P ,且∠EFD =60°,EP ⊥FP ,则∠BEP =______°.15.王强从A 处沿北偏东60°的方向到达B 处,又从B 处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为______°.16.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、作图题17.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.四、解答题18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.21.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.22.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.五、问题探究23.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=α,∠ACB=β ,用α,β 的代数式表示∠BOC的度数.(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC的度数.24.已知:如图,AC∥BD,折线AMB夹在两条平行线间.(1)判断∠M,∠A,∠B的关系;(2)请你尝试改变问题中的某些条件,探索相应的结论.建议:①折线中折线段数量增加到n条(n=3,4,…);②可如图1,图2,或M点在平行线外侧.图1 图2参考答案第五章 相交线与平行线测试1.A . 2.D . 3.D . 4.B . 5.B . 6.C . 7.C . 8.B . 9.B . 10.C . 11.60. 12.110° 13.∠FEH ,∠DGE ,∠GDC ,∠FGB ,∠GBA . 14.60. 15.35. 16.4. 17~22.略.23.(1)∠BOC =125°;(2))(21180βα+-=∠ BOC ;(3)⋅+=∠βα2121BOC 24.略.第六章 实数测试1 平方根学习要求1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.课堂学习检测一、填空题1.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的算术平方根记为______,a 叫做______. 规定:0的算术平方根是______.2.一般的,如果______,那么这个数叫做a 的平方根.这就是说,如果______,那么x 叫做a 的平方根,a 的平方根记为______. 3.求一个数a 的______的运算,叫做开平方.4.一个正数有______个平方根,它们______;0的平方根是______;负数______. 5.25的算术平方根是______;______是9的平方根;16的平方根是______. 6.计算:(1)=121______;(2)=-256______;(3)=±212______;(4)=43______;(5)=-2)3(______;(6)=-412______. 二、选择题7.下列各数中没有平方根的是( ) A .(-3)2 B .0 C .81D .-638.下列说法正确的是( ) A .169的平方根是13 B .1.69的平方根是±1.3 C .(-13)2的平方根是-13 D .-(-13)没有平方根 三、解答题9.求下列等式中的x :(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______;。