理解示波器的频率响应及其对上升时间测量精度的影响
- 格式:docx
- 大小:12.08 KB
- 文档页数:3
在过去5年左右的时间中,工程师一直把重点更多地放在低压差分信令上,以明显提高系统性能。
数据速率已经以几何级数提高,推动着设备之间的通信更广泛地采用复杂的串行协议,如PCIExpress、Infiniband、XAUI等等。
这些环境涵盖了各种数据速率和传输结构,但所有这些数据速率和传输结构都需要严格的设计和检验方法。
这使得示波器等测试设备的重要性大大提高。
工程师依赖示波器分析串行设备设计的性能,支持检验和调试工作。
他们的任务包括精确进行参数测量、检修和信号完整性分析。
在开发流程后期,他们转向示波器,生成眼图进行一致性测试。
选择示波器的工程师经常只考虑产品手册和杂志广告标题中列明的技术指标。
人们最熟知的指标是带宽、取样速率和记录长度。
尽管衡量示波器性能的这些指标也非常重要,但它们并不能全面表明仪器在实际日常使用环境中的效果。
例如,带宽指标仅指明了示波器的大体频率范围,而几乎与仪器可靠地检测和捕获快速异常事件的能力没有关系。
因此,在评估示波器时,领会主要指标的言外之意非常重要。
这个建议实际有两层含义:第一,最好深入分析厂商大肆宣传的技术指标后面所隐藏的细微差别;第二,记住要研究某些功能,这些功能可能不如市场上最经常吹捧的功能那样光彩夺目,但它们可能会明显影响设计人员工作的效果,甚至会影响工作的有效性。
带宽界定带宽指标当然非常重要。
对不断挑战高速串行总线结构极限的设计人员来说,在购买示波器时,带宽一直是其最首要的考虑因素。
但是,带宽本身只是描述仪器频响的一个指标(正弦波滚降-3dB的频率)。
拥有相同额定带宽的两台示波器可能会拥有非常不同的上升时间,对复杂波形的响应完全不同。
是不是需要认真推敲部分指标或功能,以更好地促进购买者决策呢?有两个方面可以回答这个问题,一个是示波器真正的上升时间性能,另一个是仪器在数字信号处理(DSP)模式下的行为。
模拟上升时间是示波器带宽的函数。
它试图使用教科书中的公式,从带宽中简单地计算上升时间,这是某些公布的上升时间指标的基础。
影响数字示波器计量准确性的原因分析[摘要] 数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及,本文对影响数字示波器计量准确性的原因进行了分析。
[关键词] 数字示波器带宽采用速率上升时间计量准确性1.数字示波器原理示波器是一种应用最广泛、最基础的时域测量仪器,可以观测信号的波形全貌,直观显示两个量的函数关系。
它能测量信号的幅度、频率周期等基本参数,也能测量脉冲信号的脉宽、占空比、上升下降时间、预冲、上冲和振铃等参数,同时,通过变换还能获取信号的频域信息。
数字示波器通常称为数字存储示波器,简称数字示波器,是在模拟示波器的基础上,嵌入微处理器,将被测信号数字化,从而便于根据需要对信号实现存储、处理和控制,再恢复成模拟信号予以显示。
2.影响数字示波器计量准确性的几个因素数字示波器的工作是在CPU管理下进行的,信号波形的测量要通过采集、数字化、存储和读出显示等过程过程来实现,其设计思想、功能设置、技术特征和使用方法和模拟示波器都存在较大差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。
下面主要浅析数字示波器的几个主要参数:1)区分模拟带宽(重复带宽)和数字实时带宽(单次带宽)带宽是示波器最重要的指标之一。
模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽(重复带宽)和数字实时带宽(单次带宽)两种。
数字示波器对重复信号采用顺序采样或随机采样技术,其重复带宽可以很宽,可达几十或上百吉赫兹,重复带宽也称为等效带宽。
单次带宽也称为有效存储带宽,单次采集带宽或实时带宽。
数字示波器其Y通道的前端由前置放大器和滤波器组成,其决定的带宽为数字示波器的模拟带宽,而波形显示通常采用插值技术,所以单次带宽由模拟带宽、采样率及波形显示技术共同决定。
2)采样速率采样速率是指单位时间内对模拟输入信号的采样次数,常以Sa/s(取样点数/秒)或取样(脉冲)频率(Hz)表示。
a.如果采样速率不够,容易出现混迭现象如果示波器的输人信号为一个100kHz的正弦信号,示波器显示的信号频率却是50kHz,这是因为示波器的采样速率太慢,产生了混迭现象。
示波器的标定和校准方法示波器是一种广泛应用于电子测量和实验的仪器。
在使用示波器进行测量时,其准确性和可靠性是非常重要的。
因此,对示波器进行标定和校准是必不可少的。
本文将介绍示波器的标定和校准方法,以确保测量结果的准确性。
一、示波器标定的目的和重要性示波器标定的目的在于校准示波器的各种参数,以保证其测量结果的准确性和稳定性。
示波器标定包括频率响应、幅度响应、时间基准、增益和衰减系数、垂直和水平定标等方面的校准。
示波器的标定是确保其测量结果准确可靠的重要环节。
只有标定过的示波器才能提供准确的信号测量结果,从而保证实验和测试的可信度。
因此,标定示波器是非常重要的,尤其是在需要精确测量和分析电子信号的应用中。
二、示波器标定的方法2.1 频率响应标定频率响应标定是通过输入一个标准信号,如正弦波信号,测量示波器输出波形的幅度和相位变化,来评估示波器对不同频率下的信号响应情况。
标定频率范围通常从几百Hz到数GHz。
2.2 幅度响应标定幅度响应标定是通过输入一个标准信号,如直流电压或正弦波信号,测量示波器输出波形的幅度,来评估示波器在不同幅度下的信号响应情况。
标定的幅度范围通常从微伏到几十伏不等。
2.3 时间基准标定时间基准标定是通过输入一个标准信号,如方波信号,测量示波器输出波形的上升时间和下降时间,来评估示波器的时间基准准确性和稳定性。
2.4 增益和衰减系数标定增益和衰减系数标定是通过输入一个标准信号,如方波信号,测量示波器输出波形在垂直方向上的放大倍数和衰减倍数,来评估示波器的增益和衰减系数。
2.5 垂直和水平定标垂直定标是通过输入一个标准信号,如直流电压或交流信号,来调整示波器的垂直灵敏度,使示波器在测量不同信号幅度时能够准确显示波形。
水平定标是通过输入一个标准信号,如方波信号,来调整示波器的水平灵敏度,使示波器在测量不同时间范围内的信号时能够准确显示波形。
三、示波器校准的方法示波器校准是指在标定基础上对示波器进行调整,以确保示波器在实际使用中的测量结果准确可靠。
示波器带宽和上升时间--定义及原理示波器带宽和上升时间--定义及原理带宽示波器最生根的技术指标就是带宽。
示波器的带宽表明了该示波器垂直系统的频率响应。
示波器的带宽定义为示波器在屏幕上能以不低于真实信号3dB的幅度来显示信号的最高频率。
—3dB点的频率就是示波器所显示的信号幅度“Vdisp”为示波器输入端真实信号值“Vinput”的71%时的信号频率,如下式所示:设:dB(伏)=20log(电压比)—3Db=20log(Vdisp/Vinput)—0.15=log(Vdisp/Vinput)10-0.15=Vdisp/VinputVdisp=0.7Vinput图表示出一个100MHz示波器的典型频率响应曲线。
出于现实的理由,通常把带宽想象成为叔响曲线一直平坦延伸至其截止频率,然后从该频率以-20dB/+倍频程的斜率下降。
当然,这是一种简化的考虑。
实际上,放大器的灵敏度从较低的频率就开始下降,百在其截止频率达到-3dB。
图5中中同时给出了简化的频率响应曲线和实际的频率响应曲线。
上升时间上升时间直接和带宽有关。
上升时间通常规定为信号从其稳态最大值的10%到90%所用的时间。
上升时间是一个示波器从理论上来说能够显示的最快的瞬变的时间。
示波器的高频响应曲线是经过认真安排的。
这就保证了具有高谐波含量的信号,如方波,能够在屏幕上精确的再现。
如果频响曲线下降太快,则在信号的快速上升沿上就会发生振铃现象。
如果频响曲线下降太慢,即在频响曲线上下降开始得过早,则示波器总的高频响应就受到影响,使得方波失去“方形”特性。
对于各种通用示波器来说,其高频响应曲线是类似的。
从该曲线我们可以得到一个示波器带宽和上升时间的简单关系公式。
此公式为:tr(s)=0.35/BW(Hz)对于高频示波器来说,这个公式可以表示为:tr(ns)=350/BW(MHz)对于一个100MHz的示波器来说,上升时间为3.5(ns=纳秒10-9秒)在示波器的标尺上刻有标明0%和100%的专门的线,用来进行上升时间的测量。
数字示波器上升时间测量结果的不确定度评定摘要:评定了数字示波器检定中实时上升时间测量结果的不确定度,讨论了影响测量结果不确定度的主要误差来源,包括示波器校准仪快沿脉冲、测量重复性、垂直分辨力、水平分辨力、读数分辨力。
同时,以一组实验结果为例,给出了不确定度评定结果。
关键词:数字示波器;上升时间;不确定度0 引言在脉冲测量技术中,数字示波器是应用最为广泛的观测仪器。
上升时间是数字示波器的一个重要技术指标,上升时间愈小,示波器所能观测的脉冲信号包含的频谱分量愈丰富,谐波次数愈高,对应的频带宽度愈宽。
本文主要讨论数字示波器检定过程中上升时间测量结果的不确定度评定。
1 测量方法1.1依据:GJB7691-2012《数字示波器检定规程》。
1.2环境条件:温度(18~28)℃,相对湿度≤80%。
1.3实验过程:Fluke5520A(SC600)示波器校准仪输出上升时间为300ps的快沿脉冲信号(频率为1MHz,幅度为500mV),TDS3032数字示波器选置128次平均采集模式,垂直偏转系数置100mV/p,扫描时间系数置2ns/p,用数字示波器的上升时间测量功能直接测量脉冲上升时间,在重复性测量条件下独立测量6次。
2影响测量结果不确定度的主要来源分析在上升时间测量时,采用的是直接测量法,因此在分析其不确定度时按直接测量进行评定。
在实验中,示波器校准仪输出快沿脉冲上升时间为300ps,与TDS3032数字示波器标称上升时间1.2ns之比为1:4,因此上升时间测量值不需要进行修正。
使用的测量仪器的技术指标按B类方法评定,测量数据的分散性按A类方法评定,然后计算其合成标准不确定度及扩展不确定度:(1)=k (2)影响测量结果不确定度的主要来源有:(1)测量数据的分散性引入的标准不确定度,用测量重复性表征;(2)示波器校准仪快沿脉冲信号引入的标准不确定度;(3)数字示波器垂直分辨力引入的标准不确定度;(4)数字示波器水平分辨力引入的标准不确定度;(5)上升时间测量读数分辨力引入的不确定度。
理解示波器的频率响应及其对上升时间测量精度的影响
引言:传统上,示波器的频率响应是高斯型的,是由许多具有类似频响的电路元件组合而成的,传统的模拟示波器就是这个样子,从它的BNC 输入端
至CRT 显示,有很多模拟放大器构成一个放大器链注1。
有关高斯频响示波器的特点,在行业内已经广为人知。
但鲜为人知的是当代高性能数字示波器所普遍采用的平坦频率响应。
数字示波器中和高斯频响有关的只是很少的几个模拟放大器,并可用DSP 技术优化其对精度的影响。
对于数字示波器来说,还有一件重要事情是,要尽量避免采样混叠误差注2,而模拟示波器是根本没有这种问题的。
与高斯频响相比,平坦型频率响应能减少采样混叠误差,我们在这里首先回顾高斯响应和平坦响应的特性。
然后讨论这两种响应类型所对应的上升时间测量精度。
从而说明具有平坦频率响应的示波器与具有同样带宽的高斯响应示波器相比,有更高的上升时间测量精度。
我们的讨论以1GHz 示波器为例。
这里的分析结论完全适用于其它带宽。
高斯响应示波器的特性
1GHz 示波器的典型高斯频响如图1 所示。
高斯频率响应的优点是不管输入信号(被测信号)有多快,它都能给出没有过冲的较好脉冲响应(即示波器屏幕上显示的信号没有过冲)。
图2 示出1GHz 高斯频响示波器对快沿阶跃信号的脉冲响应。
在高斯频响示波器中,示波器的上升时间注3 与示波器带宽注4 间有熟知的常用公式...
上升时间= 0.35 / 带宽注5(高斯系统)
高斯系统的另一常用特性是它的系统总带宽注6 为各子系统带宽的RMS 值,。