现代光学测试技术
- 格式:ppt
- 大小:5.23 MB
- 文档页数:66
浅谈现代光学测量技术摘要:本文主要提到了现代光测力学技术的发展以及如今光测技术的分类,并对其中的数字图像相关测量技术以及数字散斑相关方法发表了自己的观点,在光学测量仪器上提到了光电跟踪测量仪。
最后阐述现代光学测量技术的优点以及其重要应用。
关键词:数字图像相关测量技术,光电跟踪测量仪,现代光学测量技术正文:在10月25号的晚上,我有幸和室友一起听取了何小元教授关于先进力学测试技术及其在现代工业与工程测量中的应用的讲座,讲座主要介绍了现代光测力学技术中的几种全场变形测量方法以及数字图像相关测量技术和剪切电子散斑干涉测量技术的特点和应用领域。
在听完讲座后,我获益匪浅。
现在我就根据自己所搜集的资料,粗略的谈一下自己对现代光学测量技术的认识。
现代光测力学技术包括:相位检测技术、图像处理技术、全息干涉技术、散斑计量技术、云纹测试技术、光测弹性技术等技术。
每个技术都有一段各自的发展历程。
例如,数字散斑相关方法是在上世纪80年代初由日本山口一郎和美国南卡罗来纳大学的W.H.Peter和W.F.Ranson等人同时独立提出的。
前者着重于研究一维变形场的测量,并进行相应的仪器化工作,而后者则限于对局部变形场的算法进行研究和改进,并应用于一些实际测量问题中。
山口一郎在研究物体小变形时,采用测量物体变形前后光强的互相关函数峰值来导出物体的位移。
他采用双光束照明,并在照明点法线方向放置图像传感器,推导了物体变形与在衍射场中散斑位移的关系,利用这个关系导出了与表面应交有关的项,因而提出一种测量表面应变的激光应变计。
与此同时,美国南卡罗来纳大学的W.H.Peter和W.F.Ranson则采用电视摄像机记录被测物体加载前后的激光散斑图,经过模数转换得到数字灰度场,并进行相关迭代运算,得到相关系数的全场分布矩阵,找出相关系数的极值而得到物体对应的位移和应变,它是一个二维位移场的测量问题。
提到光学测量,就不得不提到它所采用的仪器。
一种光学测试的方法
光学测试是一种利用光波来测试光学元件或系统性能的方法。
其中一种常见的光学测试方法是通过反射或折射测量光的传输或反射特性。
以下是一种常见的光学测试方法:
1. 设计测试方案:确定要测试的光学元件或系统,以及测试的参数,例如:透过率、反射率、像间距等等。
2. 准备测试设备:需要准备测试光源、光学元件(例如反射镜、透镜)、探测器和相应的仪器设备(如功率计、微计步器等)。
3. 测量:将测试设备按照定好的测试方案组装,将光源置于入射方向上,发出特定波长的光,经过待测试的光学元件或系统,再通过探测器进行检测和记录。
4. 结果分析:根据记录的数据,分析测试结果,比较与理论值的差异,确定光学元件或系统的性能和误差。
此外,还有一些其他的光学测试方法,例如:干涉法、散射法、波前传感技术等等。
不同的测试方法适用于不同的测试场合和要求。
近代光学测试技术随着激光技术、光波导技术、光电子技术、光纤技术、计算机技术的发展,以及傅里叶光学、现代光学、二元光学和微光学的出现与发展,光学测试技术无论从测试方法、原理、准确度、效率,还是适用的领域范围都得到了巨大的发展,是现在科学技术与社会生产快速发展的重要技术支撑和高新技术之一。
光学测试技术的复杂性随着科学的发展而日渐增加,大量需要处理的数据更加远离使用者的直观感觉。
因此必须发展面向科学实践的、能对现代光学测试技术产生深入的了解其中运用先进的实验手段和方法来开展内燃机缸内燃烧过程的研究,获得缸内燃咦产焰的有关信息(例如温度场·浓度场·速度场),具有十分重要的学术价值和广阔的应用前景。
内燃机缸内燃烧的光学测试方法是目前最有效的研究手段之一,在国内外得到越来越广泛的运用。
采用这种方法来研究内燃机的燃烧过程,能够进一步加深对燃烧过程的理解,为燃烧系统的评价和改进提供依据,对于指导内燃机燃烧系统的设计,提高内燃机工业整体水平具有重要的现实意义。
在内燃机燃烧的各种光学测试方法中,主要有双色法(Two一ColorMethod)、全息法(Holo脚phMeth-od)、吸收光谱法(Abso甲tionSpeetroseopyMeth-od)、激光诱导荧光法(肠ser一IndueedFluores-cenceSpectroscopy,简称LIF法)、喇曼散射光谱法(RamanSeatteringSpeetroseopy)和相干反斯托克斯光谱法(CoherentAnti一StokesRamanscattering,简称CARS法)等。
这些光学测试方法的应用,使内燃机缸内燃烧的研究向微观化、定量化和可视化方向发展[z]。
双色法双色法是一种传统的测高温的方法。
热辐射是自然界中普遍存在的现象,一切物体,只要其温度高于绝对零度,都要不同程度地产生辐射。
双色法的基本原理在于,通过测量两个波长的发光强度拟合黑体辐射曲线,从而可以推断物体的温度。
光学测量与检测技术的发展与应用光学测量与检测技术是光与物质相互作用的领域,涉及光的产生、传播、散射、反射、折射、干涉、衍射等现象。
随着科技的进步和社会的发展,光学测量与检测技术在众多领域中扮演着越来越重要的角色。
本文将探讨光学测量与检测技术的发展历程、现状及应用前景。
光学测量与检测技术的发展早期光学测量技术早期光学测量技术主要包括干涉测量、光度测量、光谱测量等。
这些技术主要应用于科学研究和天文学领域。
例如,牛顿在17世纪利用光谱测量研究了光的色散现象。
近代光学测量技术随着光学仪器和光电子技术的进步,光学测量技术得到了快速发展。
近代光学测量技术主要包括激光测量、光学三角测量、光学成像测量等。
这些技术在精密制造、航空航天、生物医学等领域得到了广泛应用。
现代光学测量技术随着光学、光电子、光子技术的飞速发展,现代光学测量技术逐渐走向集成化和智能化。
例如,基于光学干涉原理的干涉光学测量技术,基于光学成像原理的成像光学测量技术,以及基于光子集成电路的光学测量技术等。
这些技术具有高精度、高速度、高可靠性等特点,在众多领域具有广泛的应用前景。
光学测量与检测技术的应用在制造业中的应用光学测量与检测技术在制造业中的应用十分广泛,如在汽车、电子、精密机械等领域。
通过光学测量技术,可以实现对产品尺寸、形状、表面质量等参数的精确测量,从而保证产品的质量和性能。
在生物医学领域的应用光学测量与检测技术在生物医学领域具有重要作用,如荧光显微镜、共聚焦显微镜、光学相干断层扫描等技术在生物医学研究中发挥着关键作用。
此外,光学测量技术还可以应用于临床诊断,如光学相干断层扫描成像技术在心血管病诊断中的应用。
在环境监测领域的应用光学测量与检测技术在环境监测领域也具有重要意义。
例如,利用激光雷达技术可以实现对大气污染物的实时监测;利用光谱技术可以对土壤、水质等进行分析,为环境保护提供科学依据。
光学测量与检测技术的发展和应用展示了光学的巨大潜力和魅力。
物理学中的现代光学技术知识点物理学是研究物质和能量之间相互作用的科学领域,而光学则是物理学的一个分支,研究光的行为和性质。
现代光学技术在科学研究和实际应用中起着重要的作用。
本文将介绍一些物理学中的现代光学技术知识点,包括干涉、衍射、偏振和激光等。
一、干涉干涉是光学中一种重要的现象,指的是两束或多束光波相互叠加形成干涉图样。
干涉现象的基础是波动理论,在实际应用中有许多重要的应用,比如光学干涉仪器和干涉测量等。
干涉现象对光的相位和波长有很大的依赖性,通过干涉测量可以实现非常高的精度。
二、衍射衍射是光束经过遮挡物后发生的波动现象,这种现象是由光的波动性质所决定的。
通过衍射实验,我们可以观察到光的波动性和光波传播的规律。
衍射现象在光学中具有重要的意义,例如在显微镜和望远镜中的应用中,我们需要考虑到光的衍射效应,以保证成像的清晰度和准确性。
三、偏振光波是电磁波,它的振动方向决定了光的偏振状态。
偏振是指固定光波的振动方向的过程。
偏振现象在光学中非常重要,因为它涉及到许多实际应用,如光通信和光显示技术。
为了控制和利用光波的振动方向,我们可以使用偏振片、液晶等材料进行光的偏振处理。
四、激光激光是一种特殊的光波,具有高度的相干性、单色性和直线传播性。
激光技术是现代光学中最具有影响力和广泛应用的技术之一。
激光在通信、医学、材料加工、生物学和光学标定等领域都有重要的应用。
激光的原理是通过受激辐射将光子从低能级跃迁到高能级,然后通过光学腔增强和反射,产生高度聚焦和高强度的激光束。
以上是物理学中的几个现代光学技术知识点的简要介绍。
光学作为物理学的重要分支,研究光的行为和特性,广泛应用于科学研究和实际生活中。
随着科学技术的发展,光学技术的应用前景也越来越广阔。
希望本文对读者了解和理解物理学中的现代光学技术有所帮助。
现代光学测量技术的应用研究光学测量技术是利用光学原理和器材进行测量、检测和分析的一种技术。
经过长时间的发展,现代光学测量技术已经成为工业生产、科学研究、医学诊断、国防安全等领域必不可少的重要手段。
本文将从三个方面介绍现代光学测量技术的应用研究。
一、光学测量技术在工业生产中的应用研究现代工业生产对于产品尺寸、工艺要求越来越高,而传统的机械测量方法已经难以满足需求。
光学测量技术是一种高精度、高速度、无损伤的测量方法,因此在工业生产中得到了广泛应用。
1.三维数字化设计三维数字化设计是将物理实体转化为数字化模型的过程。
利用光学三维扫描技术可以轻松地获取产品的三维模型,进而进行数字化设计、分析和仿真。
相较于传统的手工测量和CAD建模,光学测量技术提高了模型精度和效率,并且降低了成本和时间。
2.光学检测技术光学检测技术是一种高速、高精度的非接触式检测方法,其不仅可以检测产品表面缺陷和尺寸误差,还可以对物体的形态、色度和光学属性进行检测。
在工业品质控制、精密加工、无损检测等领域应用广泛。
3.激光全息术激光全息术是光学测量技术中的一种新兴技术,其可以将物体的全息图像记录在光敏材料上,并能进行3D影像的重建。
在军事兵器、汽车、航天、医学等领域的应用前景十分广阔。
二、光学测量技术在科学研究中的应用研究科学研究是光学测量技术的主要应用领域之一,因此在物理学、化学、生物学、地质学和天文学等研究领域,光学测量技术也被广泛应用。
1.超光分辨显微镜超光分辨显微镜是另一种新兴的光学测量技术,其可以实现像素级别以下的分辨率。
这项技术在生命科学领域的主要应用方向是细胞形态的研究和细胞膜输运。
2.光学相干断层扫描(OCT)光学相干断层扫描是一种高分辨率、无创伤的成像方法,主要用于人体或动物组织和器官等的非侵入性检测。
这项技术在医学领域的应用主要是眼科疾病的治疗和药物的研究。
三、光学测量技术在文物保护中的应用研究文物保护是一项重要的文化遗产保护工作,而光学测量技术在文物保护中也发挥着重要的作用。
光学测试的方法光学测试是一种用光学方法检测物体性质、结构和性能的技术。
它广泛应用于科学研究、工业生产和日常生活中。
光学测试方法包括测量物体的光学参数、光学成像和光学显微观察等。
本文将介绍光学测试的原理、常用方法和应用领域。
光学测试的原理基于光的传播和相互作用。
光是一种电磁波,具有波长、频率和振幅等特性。
物体对光的相互作用会产生折射、反射、散射等现象。
通过测量光的特性和物体对光的相互作用,可以获得物体的信息。
光学测试的常用方法包括光谱分析、干涉测量、衍射测量和散射测量等。
光谱分析是通过将光分解成不同波长的组成部分来测量物体的光学参数。
干涉测量是利用光的干涉现象来测量物体的形状、薄膜厚度等。
衍射测量是通过物体对光的衍射现象来测量物体的结构特征。
散射测量是通过测量物体对光的散射现象来获得物体的表面形貌和颗粒大小分布等信息。
光学测试在科学研究中有着广泛的应用。
在物理学研究中,光学测试可以用于研究物质的光学性质和结构特征,如晶体结构、分子光谱等。
在化学分析中,光学测试可以用于分析物质的成分和浓度,如光谱分析和荧光分析等。
在材料科学中,光学测试可以用于检测材料的光学性能和结构特征,如透明度、折射率和表面形貌等。
在生命科学中,光学测试可以用于研究生物分子的结构和功能,如蛋白质结构和细胞成像等。
光学测试在工业生产中也有着重要的应用。
在制造业中,光学测试可以用于检测产品的质量和性能,如光学元件的透过率和平整度等。
在半导体制造中,光学测试可以用于检测芯片的缺陷和表面平整度等。
在医疗器械制造中,光学测试可以用于检测医疗器械的成像质量和光学参数等。
光学测试还在日常生活中得到了广泛应用。
在摄影和摄像中,光学测试可以用于调节相机的焦距和曝光等参数,以获得清晰和高质量的图像。
在眼镜制造中,光学测试可以用于检测眼镜的度数和矫正效果,以提供适合的视觉辅助产品。
在安全检测中,光学测试可以用于检测物体的透明度和材料成分等,以保障产品质量和安全性。
物理学实验中的光学测试技术指南光学实验是物理学中非常重要的实验之一。
通过光学实验,我们可以深入研究光的传播和相互作用规律,探索光学原理。
而在进行光学实验时,我们需要借助一些光学测试技术来确保实验的准确性和可靠性。
本文将为您介绍一些常见的光学测试技术,并提供如何应用这些技术的指南。
一、光源选择光源是光学实验中的关键因素之一。
我们需要选择适当的光源以满足实验需求。
常见的光源包括激光器、白炽灯和LED等。
激光器具有高亮度、高单色性和高方向性等特点,适用于精细实验和高精度测量。
白炽灯光源的光谱连续性较好,适合一些光谱实验和光学成像实验。
LED光源则具有小尺寸、低功耗和长寿命等优点,适合一些便携和低成本的实验。
二、光学元件的校准在进行光学实验之前,我们需要对所使用的光学元件进行校准,以确保它们的准确性和稳定性。
校准的过程包括定标、调整和检验等环节。
定标是指根据已知标准进行量化,建立起一个参考标准,从而用于后续的测量和判断。
调整是指对光学元件进行调节,使其满足实验的要求。
检验则是在调整完成之后,使用相应的测试仪器对光学元件进行验证和检测。
三、光学路径的设计与调整在进行光学实验时,我们需要设计一个合适的光学路径来保证光线的传播和成像。
光学路径的设计需要考虑实验的需求,并遵循光的传播规律。
在设计完成之后,我们需要进行光学路径的调整,以确保光线的准直、聚焦和有效传输。
调整光学路径时,可以借助调焦镜、反射镜和透镜等光学元件,通过移动和旋转等操作来实现。
四、光学测量技术的应用光学测量技术在物理学实验中发挥着重要的作用。
以下将介绍几种常见的光学测量技术及其应用:1. 干涉测量法干涉测量法是一种基于光波的干涉现象来进行测量和分析的技术。
常见的干涉测量法包括弗洛克干涉仪、迈克尔逊干涉仪和马赫-曾德尔干涉仪等。
这些仪器能够用于测量光的相位差、薄膜的厚度和加速度等,并在实验中获得精确的测量结果。
2. 散射测量法散射测量法是一种通过测量物质对光的散射特性来分析物质本身性质的技术。
光学测量技术的高效应用光学测量技术是一种应用光学原理和方法进行精确测量的技术。
随着科技的不断发展,光学测量技术已经在各个领域得到了广泛的应用,并且在实际生产和科学研究中发挥了重要作用。
本文将从三个方面探讨光学测量技术的高效应用。
一、光学测量技术在制造业中的应用光学测量技术在制造业中有着广泛的应用。
例如,光学测量技术可以用于检测产品的精度和表面质量。
在汽车工业中,光学测量技术可以通过激光测距和三维成像等方法,精确测量车身零部件的尺寸和形状。
这对于确保汽车制造的精度和质量至关重要。
在航空航天领域,光学测量技术可以用于检测飞行器的结构和零部件的变形。
通过光学测量技术,可以实时监测飞机的结构变形情况,从而及时发现并修复潜在的结构问题,确保飞行器的安全性。
此外,在微电子制造中,光学测量技术也起到了关键作用。
例如,通过显微镜和光学放大技术,可以对微电子器件内部的结构进行非破坏性检测,从而保证其性能和可靠性。
二、光学测量技术在科学研究中的应用光学测量技术在科学研究中也有着广泛的应用。
光学干涉技术是一种非常重要的光学测量方法,它可以用于测量物体的形状、表面粗糙度等参数。
光学干涉技术在物理学中的应用非常广泛。
例如,在光学实验中,可以利用干涉技术来测量光的相位差和波长,在研究光的传播和干涉现象时起到重要的作用。
在生物医学领域,光学测量技术也发挥了重要作用。
例如,在眼科学中,可以利用光学相干断层扫描技术(OCT)来检测眼部疾病,并进行诊断和治疗。
这种非接触式的光学测量技术给医生和患者带来了便利,并且提高了眼科疾病的诊断准确性。
三、光学测量技术的创新发展随着科学技术的不断进步,光学测量技术也在不断创新和发展。
例如,利用计算机视觉和人工智能技术,可以实现光学图像的智能分析和处理。
这不仅提高了测量的精确度,还节省了人力和时间成本。
另外,光学传感器的发展也为光学测量技术的应用带来了新的机遇。
例如,一种基于光学传感器的智能测量系统可以应用于智能建筑的环境监测和控制中,提高建筑的能源利用效率。
实验一:数字干涉测量方法及实验一、实验目的和实验内容(1) 了解激光干涉的近代方法——数字干涉技术的原理和方法;(2)掌握干涉的实时检测技术;(3)了解数字干涉方法的特点及应用场合。
二、基本原理随着电子技术与计算机技术的发展,并与传统的干涉检测方法结合,产生了一种新的位相检测技术——数字干涉技术,这是一种位相的实时检测技术。
这种方法不仅能实现干涉条纹的实时提取,而且可以利用波面数据的存储功能消除干涉仪系统误差,消除或降低大气扰动及随机噪声,使干涉技术实现λ/100的精度,这是目前干涉仪精度最高的近代方法其原理如下图所示。
图中的实验系统仍采用T-G干涉仪,但参考镜2由压电陶瓷PZT驱动,产生位移。
此位移的频率与移动量由计算机控制。
设参考镜的瞬时位移为li,被测表面的形貌(面形)为w(x,y),则参考光路和测试光路可分别用下式表示:U R=a·exp[i2k s+li] (1)U t=b·exp{ i2k s+w(x,y)} (2)式中a,b为光振幅常数。
参考光与测试光相干产生干涉条纹,其瞬时光强由式1与式2,可得:I(x,y,li)=1+rcos2k[w x,y−li] (3) 式中r=2ab(a2+b2)是干涉条纹的对比度。
式3说明,干涉场中任意一点的光强都是li 的余弦函数。
由于li 随时间变化,因此式3的光强是一个时间周期函数,可用傅里叶级数展开。
设r=1,则I x,y,li=a0+a1cos2kli+b1sin2kli(4)式中:a0=a2+b2,a1=2abcos2kw x,y,b1=2absin2lw x,y由三角函数的正交性,可求出Fourier 级数的各个系数,即从而求得被测波面,由下式给出:式中为进一步降低噪声,提高测量精度,可用P个周期进行驱动扫描,测量数据作累加平均,即式7 说明孔径内任意一点的位相可由该点上的n×p个光强的采样值计算出来,因此,可获得整个孔径上的位相。
非球面检测设计摘要:根据非球面的参数要求,设计非球面干涉检测中的Offne 补偿器。
并分析设计方案、光路和误差。
最终确定一个可用于工程实际的补偿检验设计方案,其剩余波像差小于λ/60。
关键词:非球面;补偿器;ZemaxDesigning for non - spherical detectingProfessional: optical engineering Number: 07S021001 Name: WangFengAbstract: According to index require of non-spherical, design for Offne compensation in non-spherical detecting. And analyse its ’ designing project, optical track and error. A possible compensation for the actual test results of the design, less than its remaining wave aberration λ/60, finally. Keywords: non-spherical; compensation; Zemax 0课程设计要求本课程设计要求完成一个非球面干涉检测及非球面干涉检测中零补偿器的设计方法,该方案需包括以下内容:1) 任务要求及分析; 2) 干涉检测方法设计及分析;3) 干涉检测中涉及到的光路(如零补偿器参数等)设计结果及分析; 4) 误差分析及结论;本课程设计中被测的凹高次非球面的具体参数为:基圆曲率半径R =336.6mm ;口径Φ=220mm ;非球面的二次项系数k =-0.1156,四次项系数A =-6.326e-11,六次项系数B =1.449e-16。
1干涉检测方法设计及分析非球面的面型方程为: 64222)1(11By Ay y c k cy z +++-+=(1.1)其中c =1/336.6,k =-e 2=-0.1156,A =-6.326e-11,B =1.449e-16。
热辐射:组成物质的诸微观粒子在热运动时都要使物体辐射电磁波,产生辐射场。
这种与温度有关的辐射现象,称为热辐射。
特点:(1)物质在任何温度下都有热辐射。
(2)温度越高,发射的能量越大,发射的电磁波的波长越短。
单色辐射度Mλ(T)单位时间内从物体单位表面发出的波长在λ附近单位波长间隔内的电磁波的能量M λ(T )称单色辐射本领。
(或单色辐射度)单色辐射度反映了在不同温度下辐射能按波长分布的情况。
不同的物体,不同的表面(如光滑程度)其单色辐射度是大不相同的。
吸收比:物体吸收的能量和入射总能量的比值,α(λ,T)基尔霍夫定律基尔霍夫在1860 年从理论上推得物体单色辐射度与单色吸收比之间的关系:所有物体的单色辐射度Mλ(T) 与该物体的单色吸收比的比值为一恒量。
这个恒量与物体的性质无关,而只与物体的温度和辐射能的波长有关。
•说明单色吸收比大的物体,其单色辐出度也大。
(例如黑色物体,吸热能力强,其辐出本领也大)•若物体不能发射某一波长的辐射能,那么该物体也就不能吸收这一波长的辐射能。
黑体:能完全吸收照射到它上面的各种波长的光的物体。
它的M λ(T)最大且只和温度有关。
绝对黑体就是吸收系数α(λ,T)=1的物体。
任何物体的单色辐射本领和单色吸收比等于一个恒量,而这个恒量就是同温度下绝对黑体的单色辐射本领。
•若知道了绝对黑体的单色辐射本领,就可了解所有物体的辐射规律,因此,研究绝对黑体的辐射规律就对研究热辐射极为重要。
绝对黑体单色辐射本领按波长分布曲线MBλ(T) 只和温度有关维恩假设:从经典热力学的思想出发,黑体的辐射可看成是由许多具有带电的简谐振子(分子,原子的振动)所发射,辐射能按频率(波长)分布的规律类似于麦克斯韦分子速度分布律,于1896 年得出绝对黑体的单色辐出度与波长、温度关系的一个半经验公式。
因为辐射是电磁波,而大家已经都知道,电磁波是一种波动,用经典粒子的方法去分析,有一种南辕北辙的味道。
按照这个函数绘制出的曲线,其在高频(短波) 部份与实验曲线能很好地相符,但在低频(长波) 部份与实验曲线相差较远。