近代光学测试技术
- 格式:doc
- 大小:27.50 KB
- 文档页数:3
一、实验目的1. 了解光学近代物理学的基本实验原理和方法。
2. 掌握光学近代物理学实验的基本操作技能。
3. 通过实验,加深对光学近代物理学理论知识的理解。
二、实验内容本次实验共分为四个部分:光纤通讯、光学多道与氢氘、法拉第效应、液晶物性。
1. 光纤通讯(1)实验目的:探究光纤的一些特性,包括光纤耦合效率的测量,光纤数值孔径的测定。
(2)实验原理:利用光纤的传输特性,通过测量光信号在光纤中的传输损耗,计算光纤的耦合效率。
(3)实验步骤:①搭建实验装置,包括光源、光纤、探测器等。
②调节光源,使其发出特定波长的光信号。
③将光信号输入光纤,通过探测器测量光信号在光纤中的传输损耗。
④根据传输损耗计算光纤的耦合效率。
2. 光学多道与氢氘(1)实验目的:观察光学多道仪的工作原理,测量氢原子和氘原子的能级。
(2)实验原理:利用光学多道仪,通过测量光子的能量,确定氢原子和氘原子的能级。
(3)实验步骤:①搭建实验装置,包括激光器、光学多道仪、探测器等。
②调节激光器,使其发出特定波长的光信号。
③将光信号输入光学多道仪,测量光子的能量。
④根据测量结果,确定氢原子和氘原子的能级。
3. 法拉第效应(1)实验目的:观察法拉第效应,研究光在磁场中的传播特性。
(2)实验原理:根据法拉第效应,当光在磁场中传播时,光偏振面的旋转角度与磁场强度成正比。
(3)实验步骤:①搭建实验装置,包括激光器、法拉第盒、探测器等。
②调节激光器,使其发出特定波长的光信号。
③将光信号输入法拉第盒,测量光偏振面的旋转角度。
④根据测量结果,研究光在磁场中的传播特性。
4. 液晶物性(1)实验目的:观察液晶的光学特性,研究液晶在不同温度下的液晶态。
(2)实验原理:液晶具有液体的流动性和晶体的各向异性,其光学特性受温度、电场等因素影响。
(3)实验步骤:①搭建实验装置,包括液晶样品、激光器、探测器等。
②调节温度,观察液晶的光学特性变化。
③在液晶样品上施加电场,观察液晶的光学特性变化。
实验8基于线扩散函数测量光学系统MTF值8.1 引言光学传递函数理论是在傅里叶分析理论的基础上发展起来的。
最早在1938年,德国人弗里塞对鉴别率法进行了改进,提出用亮度呈正弦分布的分划板来检验光学系统,并且证实了这种鉴别率板经照相系统成像后像的亮度分布仍然是同频率的正弦分布,只是振幅受到了削弱。
1946年法国科学家P.M.Duffheux正式出版了一本阐述傅立叶方法在光学中的应用的书,并首次提出传递函数的概念,从此开拓了像质评价的新领域。
8.2 实验目的1.学习了解光学传递函数理论;2.光学调制传递函数(MTF)测量。
8.3 实验原理调制传递函数(Modular Transfer Function,简称MTF)是信息光学领域引入的概念。
光学成像系统作为最基本的光学信息处理系统,可以用来传递二维的图像信息。
对于一个给定的光学系统而言,输入图像信息经过光学系统后,输出的图像信息取决于光学系统的传递特性。
由于光学系统是线性系统,而且在一定条件下还是线性空间不变系统,因此可以沿用通信理论中的线性系统理论来研究光学成像系统性能。
对于相干与非相干照明下的衍射受限系统,可以分别给出它们的本征函数,把输入信息分解为由这些本征函数构成的频率分量,并考察每个空间频率分量经过系统后的振幅衰减和相位移动情况,可以得出系统的空间频率特性,即传递函数。
这是一种全面评价光学系统传递光学信息能力的方法,当然也可以用来评价光学系统的成像质量。
与传统的光学系统像质评价方法(如星点法和分辨率法)相比,用光学传递函数方法来评价光学系统成像能力更加全面,且不依赖于观察个体的区别,评价结果更加客观,有着明显优越性。
随着近年来微型计算机及高精度光电测试工具的发展,测量光学传递函数的方法日趋完善,已成为光学成像系统的频谱分析理论的一种重要应用。
另外,光学成像系统的传递函数分析方法作为光学信息处理技术的理论基础,有得于推动光学信息处理技术在信息科学中得到广泛的应用。
实验名称:干涉现象与光的波动性实验日期:2023年11月10日实验地点:近代物理实验室实验人员:张三、李四、王五一、实验目的1. 了解干涉现象的原理及其在光学中的应用。
2. 通过实验验证光的波动性。
3. 掌握使用干涉仪进行实验的方法和技巧。
二、实验原理干涉现象是光波叠加时产生的现象,当两束或多束相干光波叠加时,会形成明暗相间的干涉条纹。
干涉现象是光的波动性的重要证据之一。
三、实验仪器1. 干涉仪2. 光源(激光器)3. 平面镜4. 透镜5. 分束器6. 光电传感器7. 数据采集系统四、实验步骤1. 将干涉仪组装好,确保所有部件连接牢固。
2. 将光源(激光器)连接到干涉仪的输入端口。
3. 将分束器放置在干涉仪的光路上,用于将激光束分成两束。
4. 将第一束光照射到平面镜上,反射后与第二束光发生干涉。
5. 调整透镜,使干涉条纹清晰可见。
6. 使用光电传感器和数据采集系统记录干涉条纹的变化。
五、实验数据1. 记录干涉条纹的间距和形状。
2. 记录干涉条纹的变化规律。
3. 记录光电传感器的输出信号。
六、实验结果与分析1. 通过观察干涉条纹,我们可以看到明暗相间的干涉条纹,这表明光具有波动性。
2. 当改变干涉仪的光路长度时,干涉条纹的间距也会发生变化,这表明光具有波长。
3. 通过光电传感器的输出信号,我们可以得到干涉条纹的变化规律,进一步验证了光的波动性。
七、实验结论1. 通过实验,我们验证了干涉现象的存在,这表明光具有波动性。
2. 通过实验,我们掌握了使用干涉仪进行实验的方法和技巧。
3. 通过实验,我们加深了对光的波动性的理解。
八、实验讨论1. 干涉现象在光学中的应用非常广泛,如光学干涉仪、激光干涉仪等。
2. 光的波动性是光学研究的基础,对于理解光的性质和现象具有重要意义。
3. 在实验过程中,我们需要注意调整光路,确保干涉条纹清晰可见。
九、实验反思1. 在实验过程中,我们遇到了一些问题,如干涉条纹不清晰、光电传感器输出信号不稳定等。
近代光学测试技术
随着激光技术、光波导技术、光电子技术、光纤技术、计算机技术的发展,以及傅里叶光学、现代光学、二元光学和微光学的出现与发展,光学测试技术无论从测试方法、原理、准确度、效率,还是适用的领域范围都得到了巨大的发展,是现在科学技术与社会生产快速发展的重要技术支撑和高新技术之一。
光学测试技术的复杂性随着科学的发展而日渐增加,大量需要处理的数据更加远离使用者的直观感觉。
因此必须发展面向科学实践的、能对现代光学测试技术产生深入的了解
其中运用先进的实验手段和方法来开展内燃机缸内燃烧过程的研究,获得缸内燃咦产焰的有关信息(例如温度场·浓度场·速度场),具有十分重要的学术价值和广阔的应用前景。
内燃机缸内燃烧的光学测试方法是目前最有效的研究手段之一,在国内外得到越来越广泛的运用。
采用这种方法来研究内燃机的燃烧过程,能够进一步加深对燃烧过程的理解,为燃烧系统的评价和改进提供依据,对于指导内燃机燃烧系统的设计,提高内燃机工业整体水平具有重要的现实意义。
在内燃机燃烧的各种光学测试方法中,主要有双色法(Two一ColorMethod)、全息法(Holo脚phMeth-od)、吸收光谱法(Abso甲tionSpeetroseopyMeth-od)、激光诱导荧光法(肠ser一IndueedFluores-cenceSpectroscopy,简称LIF法)、喇曼散射光谱法(RamanSeatteringSpeetroseopy)和相干反斯托克斯光谱法(CoherentAnti
一StokesRamanscattering,简称CARS法)等。
这些光学测试方法的应用,使内燃机缸内燃烧的研究向微观化、定量化和可视化方向发展[z]。
双色法
双色法是一种传统的测高温的方法。
热辐射是自然界中普遍存在的现象,一切物体,只要其温度高于绝对零度,都要不同程度地产生辐射。
双色法的基本原理在于,通过测量两个波长的发光强度拟合黑体辐射曲线,从而可以推断物体的温度。
与其它测量方法相比较,双色法有以下不足之处:
温度测量值仅是统计平均值,而且得不到温度的空间分布;·试验装置比较复杂,试验结果还必须进行标定;·双色法是利用物质的发射谱测量的,当波长落在红外和可见光波段时,由于与火焰高温辐射谱重叠,使得测量精度受到影响。
全息法
全息照相术是根据物理化学原理,利用光波的干涉现象,在感光底片上同时记录下物光波的振幅和位相,并通过衍射现象再现出物体的立体像,或者说把物体光波重新显示出来。
采用激光全息干涉法,同时与高速摄影机相结合,可以连续记录燃烧室内温度场的变化过程,获得二维温度图像;但是,这种试验装置一般须在减展台上进行,抗震性极差,严重影响其实际使用。
吸收光谱法
吸收光谱法是利用光通过燃烧介质时,介质对光的吸收效应来测量温度和浓度的方法。
激光诱导荧光法(llr)
激光诱导荧光法是一种高灵敏度的检测浓度和温度的方法。
其原理是当激光波长调谐到分子的某两个特定能级时,分子就发生共振并吸收光子能量而激发到高能态,在从高能态返回基态过程中,分子就会发出荧光;荧光用光电倍增管接收,
喇曼散射光谱法
当光通过气体分子时,部分光会被分子散射,并且发生频移
相干反斯托克斯光谱法【CARS)
相干反斯托克斯光谱法的原理为,当两束频率为。
;和。
2的高能激光束聚在一点人射到某一介质中时,如果。
=201一。
2正好是分子的某一共振谱线,且满足非线性光学中的相位匹配条件,那么。
3频率的光会极大地增强。
用这一信号就可以对燃气成分和浓度进行鉴别,这就是cARs法。
综上所述,双色法、全息法、吸收光谱法、激光诱导荧光法(UF)、喇曼散射光谱法和相干反斯托克斯光谱法(CARS)等方法各有特点,在实际应用中,必须根据实际情况,合理选择。
近年来,国外对激光诱导荧光法(LIF)的研究和运用格外活跃,这代表了一种发展趋势,其主要原因在于激光诱导荧光法灵敏度极高,且可获得高空间分辨率的二维图像。
因此,在未来内燃机缸内燃烧测试的方法中,激光诱导荧光法将占据重要的一席,有着广阔的前途。
同时,双色法作为一种传统的测高温的方法,在迅速发展的新技术的带动下,也勃发出新的生机。
最新发展的光纤传像技术和高速图像采集及处理技术与双色法相结合,使得人们可以简便、迅速地获得内燃机燃烧过程的二维温度图像闹,克服了以往传统的方法只能获得空间少数点的温度值,而不能获得二维温度分布的困难。
因而,双色法以其简便易行和对燃烧室本身的影响极小等优越性,也得到广泛应用。
通过对现代光学测试技术的基本原理和实际应用系统的讲授和讨论,是我们了解了现代光学测试技术是发展历史、现状和趋势,建立光学测量的基本概念,掌握现代光学测试技术的基本原理和方法,熟悉常用光电检测系统和仪器,具备近代现代光学测试系统分析和设计的能力。