等差数列的对称性
- 格式:pptx
- 大小:396.23 KB
- 文档页数:5
第2课时等差数列的性质必备知识·素养奠基1.等差中项:如果x,A,y 是等差数列,那么称A 是x与y的等差中项,且A=。
2。
等差数列中项与序号的关系(1)两项关系a n=a m+(n-m)d(m,n∈N+).(2)多项关系若s+t=p+q(p,q,s,t∈N+),则a s+a t=a p+a q.特别地,若2s=p+q,则2a s=a p+a q.如何证明若m+n=p+q(m,n,p,q∈N+),则a m+a n=a p+a q?提示:因为a m=a1+(m-1)d,a n=a1+(n-1)d。
所以a m+a n=2a1+(m+n—2)d.同理,a p+a q=2a1+(p+q-2)d,因为m+n=p+q,所以a m+a n=a p+a q. 3。
等差数列的项的对称性文字叙述在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和符号表示n为偶数n≥2a1+a n=a2+a n-1=…=+n为奇数n≥3a1+a n=a2+a n—1=…=24.由等差数列构成的新等差数列(1)条件{a n},{b n}分别是公差为d1,d2的等差数列。
(2)结论数列结论{c+a n}公差为d1的等差数列(c为任一常数){c·a n}公差为cd1的等差数列(c为任一常数){a n+a n+k}公差为2d1的等差数列(k为常数,k∈N+){pa n+qb n}公差为pd1+qd2的等差数列(p,q为常数)5。
等差数列的单调性等差数列{a n}的公差为d,(1)当d〉0时,数列{a n}为递增数列。
(2)当d<0时,数列{a n}为递减数列.(3)当d=0时,数列{a n}为常数列。
1。
思维辨析(对的打“√”,错的打“×”)(1)若{a n}是等差数列,则{|a n|}也是等差数列. ()(2)若数列{a n}是等差数列,则a1,a3,a5,a7,a9也是等差数列。
()(3)在等差数列{a n}中,若a m+a n=a p+a q,则m+n=p+q也能成立(m,n,p,q∈N+ ). ()(4)在等差数列{a n}中,若m+n=r,m,n,r∈N+,则a m+a n=a r。
等差数列求和技巧在数学中,等差数列是指数列中任意两个相邻数之间的差值保持恒定的数列。
求解等差数列的和是数学中常见的问题之一。
本文将介绍几种常用的等差数列求和技巧,帮助读者更好地理解和应用这一概念。
一、等差数列求和公式对于一个等差数列,我们可以使用求和公式来计算其总和。
假设等差数列的首项为a,公差为d,共有n项,则等差数列的求和公式可以表示为:Sn = (n/2)(2a + (n-1)d)其中,Sn表示等差数列的和。
二、等差数列求和通用步骤下面是一般情况下求解等差数列和的通用步骤:1. 确定数列的首项a、公差d以及项数n。
2. 使用求和公式Sn = (n/2)(2a + (n-1)d)计算出总和Sn。
三、等差数列求和技巧除了以上的通用步骤外,我们还可以运用一些技巧来简化等差数列求和的计算过程。
1. 利用对称性对于等差数列来说,如果其项数为奇数,那么数列的中间项与首项和末项的和是相等的。
我们可以直接使用这个性质来求和,而不需要使用求和公式。
例如:1 + 3 + 5 + 7 + 9 = (1 + 9) + (3 + 7) + 5 = 10 + 10 + 5 = 252. 利用求和公式的性质我们可以对等差数列进行逆序求和,并与原始的求和公式相加,从而得到每一项的和。
例如:1 +2 +3 + ... + n = n(n+1)/2n + (n-1) + (n-2) + ... + 1 = n(n+1)/2将两个等式相加,得到:2(1 + 2 + 3 + ... + n) = n(n+1)得出等差数列的和为:1 +2 +3 + ... + n = n(n+1)/23. 利用倍数关系如果一个等差数列的公差为1,那么该等差数列的和可以简化为项数n的平方。
例如:1 +2 +3 + ... + n = n(n+1)/2 = n^2/2 + n/2 ≈ n^2/2 (当n足够大时)四、实例演算为了更好地理解和掌握等差数列求和技巧,下面我们以几个实例来进行演算。
二次函数图像的对称性与满足sm =sn 的等差数列
曲线有许多种形状,其中最具有视觉吸引力的形状之一就是二次函数的图像。
二次函数
的图像具有一系列的美丽特性,包括非常明显的对称性和等差梯度。
其中,最常见的一种对称性是对称图像,也就是由一条直线划分图像,两边图像完全相同。
通常称之为对称轴,即使仔细观察,也无法发现任何差异。
例如,下面的图像有一个明
显的对称性,尽管是从右上角开始,可以看出它有一个对称轴,位于x轴上。
另一个显著的特性是等差数列梯度。
二次函数图像的梯度表示两个连续的X值之间的Y
值的变化,并且可以用标准化的数学表达式表示:sm = sn,其中sm是当前X值到下一个
X值之间的Y值的变化,而sn是当前X值到上一个X值之间的Y值的变化。
改变变量的值将改变梯度的值,但既然保留等差数列,就可以使用等差数列线性函数来描
述变化梯度。
由此可见,在满足该等式的情况下,二次函数图像具有明显的梯度,从而
形成一条连续的曲线。
总而言之,二次函数图像非常令人印象深刻,它具备非常明显的对称性和等差梯度。
为
达到这些目标,这种图像必须满足sm = sn的等差数列,以确保线性梯度的平滑性和明显
的对称性。
二次函数的图像的特征使其成为一种有趣而又优雅的函数,它可以用来描述
各种各样的运动和现象,使其变得更加清晰加以表示。
等差、等比数列的判断和证明一、 1、等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
即)2,*(1≥∈=--n N n d a a n n 且.(或)*(1N n d a a n n ∈=-+). 2、等差数列的判断方法:①定义法:)(1常数d a a n n =-+⇔{}a n 为等差数列。
②中项法:等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
a a a n n n 212+++=⇔{}a n 为等差数列。
③通项公式法:等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
公式变形为:b an a n +=. 其中a=d, b= a 1-d.b an a n +=(a,b 为常数)⇔{}a n 为等差数列。
④前n 项和公式法:等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
公式变形为Sn=An 2+Bn 其中A=2d ,B=21da -. Bn n A s n +=2(A,B 为常数)⇔{}a n 为等差数列。
3.等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 项和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0.(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
(3)对称性:若{}a n 是有穷数列,则与首末两项等距离的两项之和都等于首末两项之和.当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=(4) ①项数成等差,则相应的项也成等差数列.即),,...(,,*2N m k a a a m k m k k ∈++成等差,公差为md ;②若{}n a 是等差数列,则﹛ka n +p ﹜(k 、p 是非零常数)为等差数列,公差为kd.③若{}n a 、{}n b 是等差数列,则{}n n ka pb + (k 、p 是非零常数)为等差数列,公差为kd 1+pd 2 (d 1、d 2 分别为{}n a 、{}n b 的公差)④232,,n n n n n S S S S S -- 也成等差数列.⑤{}n a a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列.(5)在等差数列{}n a 中,当项数为偶数2n 时, )(1a a n n n n s ++=;nd s s =-奇偶;a a n n s s 1+=奇偶. 当项数为奇数21n -时, a n n n s )12(12-=-;a s s 1-=-奇偶 ;nn s s 1-=奇偶(6)项数间隔相等或连续等长的片段和仍构成等差数列,eg :a 1,a 3,a 5…构成等差数列,a 1+a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9…也构成等差数列.二、1、等比数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫等比数列的公比,即)2,(*1≥∈=-n n q N a a n n2、等比数列的判断方法: ①定义法:1(n na q q a +=为常数),其中0,0n q a ≠≠⇔{}a n 为等比数列。
数学中的等差数列求和技巧等差数列是数学中较为基础的一种数列类型,由于其特殊的规律性,在数学的许多领域中都有重要的应用。
求等差数列的和是等差数列应用的一种基本操作,下面将介绍一些在求等差数列和时的常用技巧。
等差数列的概念等差数列是指数列中每一项与它的前一项的差都相等的数列。
若这个常数差为d,则有an= a1 + (n-1)d。
等差数列求和的基本公式求等差数列的和,最基本的公式就是:Sn=na1+n(n-1)d/2 ,其中Sn表示等差数列的和,a1表示等差数列的首项,d表示等差数列的公差,n表示等差数列的项数。
这个公式可以通过代入数值来求出等差数列的和,在大多数情况下可以得到正确的结果。
但在一些特殊情况下,这个公式可能需要做一些适当的变形才能得到正确的答案。
等差数列求和的技巧1. 等差数列对数列求和在求一个等差数列的和时,如果这个数列是排列成等差数列对的形式,那么就可以通过对每一组相邻的两项求和来得到总和,从而避免去计算更加繁琐的公式。
例如:有一个等差数列:1 + 3 + 5 + 7 + 9。
将这个数列分为两组,分别是1 + 9和3 + 7,它们的和分别为10和10。
然后将这两个和加起来,即得到1 + 3 + 5 + 7 + 9的和为20。
2. 重复利用求和公式有时候,在一个问题中有多个等差数列需要求和,如果这些数列的首项、公差和项数不相同,那么每个数列都需要使用公式进行计算。
但是,如果这些数列可以通过一些变形来变成相同的等差数列,那么就可以在计算中重复利用求和公式。
例如:需要求解两个等差数列2, 5, 8, …, 50和3, 9, 15, …, 99的总和,这两个数列都可以通过乘以3和加1的变形来得到另外一个数列:7, 16, 25, …, 148。
这个新的数列利用求和公式,可以得到其总和为1232。
然后再根据这个公式的性质,通过减去第一个数列和第二个数列相加的和,计算出原本的两个数列的和。
3. 逆向思维在一些具有挑战性的问题中,可以运用逆向思维的方法来解决问题。
等差数列的性质总结一、等差数列的定义备注:递推公式中最小的下脚标不小于1二、等差数列的通项公式:公式推广:(类比斜率)三、等差数列的前n项和公式:备注:其中五个量,知三求二四、等差中项:任意两个实数有且仅有一个等差中项(平均数)如果a、A、b成等差数列,那么A叫做a、b的等差中项。
也即或者。
等差中项推广:在等差数列中五、等差数列的单调性:d>0是递增数列(d<0是递减数列(1d=0是常数列()知识交汇:等差数列的通项公式是关于n的一元一次函数。
其中d是斜率,类比其中k为斜率六、等差数列的证明方法:①定义法:或者②等差中项法:是等差数列③通项公式法:是等差数列④前n项和法:是等差数列七、等差数列的性质:①若②若③如果那么④若是等差数列,则也是等差数列。
(线性表达式)⑤若是等差数列,每隔k项取出一项也成等差数列2八、等差数列前n项和的性质:①若是等差数列,则也成等差数列。
②(1)当项数为偶数项2n时当项数为奇数项2n+1时③若是等差数列,他们的前n项和分别是如果请根据试着推导下列性质④等差数列的前n项和是,若3⑤等差数列的前n项和是⑥等差数列的前n项和是则也是差数列。
⑦求的最值:方法1:直接利用一元二次函数的对称性,由于等差数列的前n项和公式是关于n的一元二次函数,故n取离二次函数对称轴最近的整数时,取得最大值或者最小值.(就近原则)方法2:(1)“首正”的递减等差数列中,所有非负项的和是的最大值(2)“首负”的递增等差数列中,所有非正项的和是的最小值4。
明目标、知重点 1.能依据等差数列的定义推出等差数列的重要性质.2.能运用等差数列的性质解决有关问题.1.等差数列的图象等差数列的通项公式a n =a 1+(n -1)d ,当d =0时,a n 是一固定常数;当d ≠0时,a n 的相应函数是一次函数;点(n ,a n )分布在以d 为斜率的直线上,是这条直线上的一列孤立的点. 2.等差数列的项与序号的关系(1)等差数列通项公式的推广:在等差数列{a n }中,已知a 1,d, a m, a n (m ≠n ),则d =a n -a 1n -1=a n -a m n -m ,从而有a n=a m +(n -m )d .(2)项的运算性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . 3.等差数列的性质 (1)等差数列的项的对称性在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和. 即a 1+a n =a 2+a n -1=a 3+a n -2=….(2)若{a n }、{b n }分别是公差为d ,d ′的等差数列,则有数列 结论{c +a n } 公差为d 的等差数列(c 为任一常数) {c ·a n } 公差为cd 的等差数列(c 为任一常数) {a n +a n +k } 公差为2d 的等差数列(k 为常数,k ∈N *) {pa n +qb n }公差为pd +qd ′的等差数列(p ,q 为常数)(3){a n }的公差为d ,则d >0⇔{a n }为递增数列;d <0⇔{a n }为递减数列;d =0⇔{a n }为常数列.[情境导学]在等差数列{a n }中,若已知首项a 1和公差d 的值,由通项公式a n =a 1+(n -1)d 可求出任意一项的值,假如已知a m 和公差d 的值,有没有一个公式也能求任意一项的值?由等差数列的通项公式能得到等差数列的哪些性质?本节我们连续探讨.探究点一 等差数列通项公式的推广思考1 等差数列的通项公式a n =a 1+(n -1)d 是由等差数列的前几项归纳得出的,公式只是一个猜想,那么,如何证明公式对全部正整数n 都成立?答 (1)叠加法:由等差数列的定义知: a n -a n -1=d (n ≥2,n ∈N *),⎭⎪⎬⎪⎫a 2-a 1=da 3-a 2=da 4-a 3=d …a n-a n -1=d (n -1)个 将以上(n -1)个等式两边分别相加,可得a n -a 1=(n -1)d ,即a n =a 1+(n -1)d . (2)迭代法:{a n }是等差数列,则:a n =a n -1+d =a n -2+2d =a n -3+3d =…=a 1+(n -1)d . 所以a n =a 1+(n -1)d .思考2 已知等差数列{a n }的首项a 1和公差d 能表示出通项a n =a 1+(n -1)d ,假如已知第m 项a m 和公差d ,又如何表示通项a n?答 设等差数列的首项为a 1,则a m =a 1+(m -1)d , 变形得a 1=a m -(m -1)d ,则a n =a 1+(n -1)d =a m -(m -1)d +(n -1)d =a m +(n -m )d .思考3 对于任意的正整数m 、n 、p 、q ,若m +n =p +q .则在等差数列{a n }中,a m +a n 与a p +a q 之间有怎样的关系?为什么?答 a m +a n =a p +a q .由于a m +a n =a 1+(m -1)d +a 1+(n -1)d =2a 1+(n +m -2)d ,而a p +a q =a 1+(p -1)d +a 1+(q -1)d =2a 1+(p +q -2)d ,又因m +n =p +q ,所以a m +a n =a p +a q .小结 (1)等差数列的其次通项公式:a n =a m +(n -m )d ;(2)对于任意的正整数m 、n 、p 、q ,若m +n =p +q .则在等差数列{a n }中,a m +a n 与a p +a q 之间的关系为a m +a n =a p +a q . 例1 在等差数列{a n }中,已知a 2=5,a 8=17,求数列的公差及通项公式.解 由于a 8=a 2+(8-2)d ,所以17=5+6d ,解得d =2. 又因a n =a 2+(n -2)d ,所以a n =5+(n -2)×2=2n +1.反思与感悟 利用等差数列的其次通项公式及等差数列的性质,不难得出等差数列另外一些性质:(1){a n }为有穷等差数列,则与首末两项“等距离”的两项之和都相等,且等于首末两项之和. (2)下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…(k ,m ∈N *)组成公差为md 的等差数列. (3)若数列{a n }和{b n }均为等差数列,则{a n ±b n },{pa n +qb n }(p 、q 为常数)也为等差数列.跟踪训练1 已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=______.答案 12解析 由题意设这4个根为14,14+d ,14+2d ,14+3d .则14+⎝⎛⎭⎫14+3d =2,∴d =12, ∴这4个根依次为14,34,54,74,∴n =14×74=716,m =34×54=1516或n =1516,m =716,∴|m -n |=12.探究点二 等差数列与一次函数的关系思考 等差数列{a n }的通项公式a n =a 1+(n -1)d 整理成a n 关于n 的函数后,其相应的一次函数图象的斜率及在y 轴上的截距各是什么?答 等差数列{a n }的通项公式变形为a n =dn +a 1-d ,其图象为一条直线上孤立的一系列点,d 为直线的斜率,在y 轴上的截距为a 1-d .例2 已知数列{a n }的通项公式a n =pn +q ,其中p 、q 为常数,那么这个数列确定是等差数列吗?若是,首项和公差分别是多少?解 取数列{a n }中任意相邻两项a n 和a n -1(n >1),求差得a n -a n -1=(pn +q )-[p (n -1)+q ]=pn +q -(pn -p +q )=p . 它是一个与n 无关的常数,所以{a n }是等差数列. 首项a 1=p +q ,公差d =p .反思与感悟 推断数列{a n }是不是等差数列,可以利用等差数列的定义,即a n -a n -1(n >1)是不是一个与n 无关的常数;也可以利用等差中项,即若a n +1=a n +a n +22成立,则说明{a n }是等差数列.跟踪训练2 已知a ,b ,c 成等差数列,证明a 2(b +c ),b 2(c +a ),c 2(a +b )也能构成等差数列. 证明 ∵a ,b ,c 成等差数列,∴a +c =2b . ∴a 2(b +c )+c 2(a +b ) =a 2b +a 2c +c 2a +c 2b =(a 2b +c 2b )+(a 2c +c 2a ) =b (a 2+c 2)+ac (a +c ) =b (a 2+c 2)+2abc =b (a 2+c 2+2ac )=b (a +c )2=b ·(a +c )·(a +c ) =2·b 2(a +c ).∴a 2(b +c ),b 2(c +a ),c 2(a +b )能构成等差数列. 探究点三 等差数列性质的应用例3 已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式. 解 由于a 1+a 7=2a 4,a 1+a 4+a 7=3a 4=15, 所以a 4=5.又由于a 2a 4a 6=45,所以a 2a 6=9,即(a 4-2d )(a 4+2d )=9,(5-2d )(5+2d )=9, 解得d =±2.若d =2,a n =a 4+(n -4)d =2n -3; 若d =-2,a n =a 4+(n -4)d =13-2n .反思与感悟 解决本类问题一般有两种方法:一是运用等差数列{a n }的性质:若m +n =p +q =2w ,则a m +a n =a p +a q =2a w (m ,n ,p ,q ,w 都是正整数);二是利用通项公式转化为数列的首项与公差的结构完成运算,属于通性通法,两种方法都运用了整体代换与方程的思想.跟踪训练3 在等差数列{a n }中,已知a 1+a 4+a 7=39,a 2+a 5+a 8=33,求a 3+a 6+a 9的值. 解 方法一 ∵a 1+a 4+a 7=(a 1+a 7)+a 4=3a 4=39, ∴a 4=13,∵a 2+a 5+a 8=(a 2+a 8)+a 5=3a 5=33.∴a 5=11,∴d =a 5-a 4=-2. ∵a 3+a 6+a 9=(a 3+a 9)+a 6 =2a 6+a 6=3a 6=3(a 5+d )=3(11-2)=27.方法二 ∵a 1+a 4+a 7=a 1+(a 1+3d )+(a 1+6d ) =3a 1+9d =39, ∴a 1+3d =13,①∵a 2+a 5+a 8=(a 1+d )+(a 1+4d )+(a 1+7d ) =3a 1+12d =33. ∴a 1+4d =11,②由①②联立⎩⎪⎨⎪⎧ a 1+3d =13,a 1+4d =11,得⎩⎪⎨⎪⎧d =-2,a 1=19.∴a 3+a 6+a 9=(a 1+2d )+(a 1+5d )+(a 1+8d ) =3a 1+15d =3×19+15×(-2)=27.例4 三个数成等差数列,和为6,积为-24,求这三个数.解 方法一 设等差数列的中间一项为a ,公差为d ,则这三个数分别为a -d ,a ,a +d , 依题意得,3a =6且a (a -d )(a +d )=-24, 所以a =2,代入a (a -d )(a +d )=-24, 化简得d 2=16,于是d =±4, 故三个数为-2,2,6或6,2,-2.方法二 设首项为a ,公差为d ,这三个数分别为a ,a +d ,a +2d , 依题意得,3a +3d =6且a (a +d )(a +2d )=-24, 所以a =2-d ,代入a (a +d )(a +2d )=-24, 得2(2-d )(2+d )=-24,4-d 2=-12,即d 2=16,于是d =±4,三个数为-2,2,6或6,2,-2.反思与感悟 当等差数列{a n }的项数n 为奇数时,可设中间一项为a ,再用公差为d 向两边分别设项:…,a-2d ,a -d ,a ,a +d ,a +2d ,…;当项数为偶数项时,可设中间两项为a -d ,a +d ,再以公差为2d 向两边分别设项:…,a -3d ,a -d ,a +d ,a +3d ,…,这样可削减计算量.跟踪训练4 四个数成递增等差数列,中间两数的和为2,首末两数的积为-8,求这四个数. 解 方法一 设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ). 依题意得,2a =2,且(a -3d )(a +3d )=-8, 即a =1,a 2-9d 2=-8, ∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0, ∴d =1,故所求的四个数为-2,0,2,4.方法二 设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ), 依题意得,2a +3d =2,且a (a +3d )=-8, 把a =1-32d 代入a (a +3d )=-8,得(1-32d )(1+32d )=-8,即1-94d 2=-8,化简得d 2=4,所以d =2或-2. 又四个数成递增等差数列,所以d >0, 所以d =2,a =-2. 故所求的四个数为-2,0,2,4.1.等差数列{a n }中,已知a 3=10,a 8=-20,则公差d 等于( ) A .3 B .-6 C .4 D .-3 答案 B解析 由等差数列的性质,得a 8-a 3=(8-3)d =5d ,所以d =-20-105=-6.2.在等差数列{a n }中,已知a 4=2,a 8=14,则a 15等于( ) A .32 B .-32 C .35 D .-35 答案 C解析 由a 8-a 4=(8-4)d =4d ,得d =3,所以a 15=a 8+(15-8)d =14+7×3=35.3.等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( ) A .3 B .-3 C.32 D .-32答案 A解析 由数列的性质,得a 4+a 5=a 2+a 7,所以a 2=15-12=3.4.已知三个数成等差数列并且数列是递增的,它们的和为18,平方和为116,求这三个数. 解 设这三个数为a -d ,a ,a +d ,由已知得⎩⎪⎨⎪⎧(a -d )+a +(a +d )=18 ①(a -d )2+a 2+(a +d )2=116 ②由①得a =6,代入②得d =±2. ∵该数列是递增数列, ∴d >0,即d =2. ∴这三个数依次为4,6,8. [呈重点、现规律]1.在等差数列{a n }中,当m ≠n 时,d =a m -a n m -n 为公差公式,利用这个公式很简洁求出公差,还可变形为a m =a n +(m -n )d .2.等差数列{a n }中,每隔相同的项抽出来的项依据原来的挨次排列,构成的新数列照旧是等差数列. 3.等差数列{a n }中,若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *),特殊地,若m +n =2p ,则a n +a m =2a p .4.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,假如条件与结论间的联系不明显,则均可化成有关a 1、d 的关系列方程组求解,但是,要留意公式的变形及整体计算,以削减计算量.一、基础过关1.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( ) A .12 B .8 C .6 D .4 答案 B解析 由等差数列性质a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32,∴a 8=8,又d ≠0,∴m =8.2.设公差为-2的等差数列{a n },假如a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( ) A .-182 B .-78 C .-148 D .-82 答案 D解析 a 3+a 6+a 9+…+a 99=(a 1+2d )+(a 4+2d )+(a 7+2d )+…+(a 97+2d ) =(a 1+a 4+…+a 97)+2d ×33 =50+2×(-2)×33=-82.3.下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4答案 D解析 a n =a 1+(n -1)d ,d >0, ∴a n -a n -1=d >0,命题p 1正确. na n =na 1+n (n -1)d ,∴na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小关系和a 1的取值状况有关. 故数列{na n }不愿定递增,命题p 2不正确. 对于p 3:a n n =a 1n +n -1n d ,∴a n n -a n -1n -1=-a 1+dn (n -1), 当d -a 1>0,即d >a 1时,数列{a nn}递增,但d >a 1不愿定成立,则p 3不正确. 对于p 4:设b n =a n +3nd , 则b n +1-b n =a n +1-a n +3d =4d >0.∴数列{a n +3nd }是递增数列,p 4正确. 综上,正确的命题为p 1,p 4.4.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为( )A .4B .6C .8D .10 答案 C解析 由a 2+a 4+a 6+a 8+a 10=5a 6=80,∴a 6=16,∴a 7-12a 8=12(2a 7-a 8)=12(a 6+a 8-a 8)=12a 6=8.5.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为( ) A .0 B .1 C .2 D .1或2 答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2. 6.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案 20解析 设公差为d ,则a 3+a 8=2a 1+9d =10, ∴3a 5+a 7=4a 1+18d =2(2a 1+9d )=20.7.在等差数列{a n }中,已知a m =n ,a n =m ,求a m +n 的值. 解 方法一 设公差为d , 则d =a m -a n m -n =n -mm -n=-1,从而a m +n =a m +(m +n -m )d =n +n ·(-1)=0.方法二 设等差数列的通项公式为a n =an +b (a ,b 为常数),则⎩⎪⎨⎪⎧a m =am +b =n ,a n =an +b =m ,得a =-1,b =m +n .所以a m +n =a (m +n )+b =0. 二、力气提升8.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( ) A .45 B .75 C .180 D .300答案 C解 ∵a 3+a 4+a 5+a 6+a 7=(a 3+a 7)+(a 4+a 6)+a 5 =5a 5=450,∴a 5=90. ∴a 2+a 8=2a 5=180.9.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( ) A. 3 B .± 3 C .-33D .-3 答案 D解析 由等差数列的性质得a 1+a 7+a 13=3a 7=4π, ∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan8π3=tan 2π3=- 3. 10.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________. 答案 105解析 ∵a 1+a 2+a 3=3a 2=15,∴a 2=5. ∵a 1a 2a 3=(a 2-d )a 2(a 2+d )=5(25-d 2)=80, 又d 为正数,∴d =3.∴a 11+a 12+a 13=3a 12=3(a 2+10d )=3(5+30)=105.11.成等差数列的四个数之和为26,其次个数与第三个数之积为40,求这四个数. 解 设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题设得⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40, ∴⎩⎪⎨⎪⎧4a =26,a 2-d 2=40.解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.12.正项数列{a n }中,a 1=1,a n +1-a n +1=a n +a n .(1)数列{a n }是否为等差数列?说明理由. (2)求a n . 解 (1)∵a n +1-a n +1=a n +a n ,∴a n +1-a n =a n +1+a n ,∴(a n +1+a n )·(a n +1-a n )=a n +1+a n ,∴a n +1-a n =1,∴{a n }是等差数列,公差为1. (2)由(1)知{a n }是等差数列,且d =1, ∴a n =a 1+(n -1)×d =1+(n -1)×1=n , ∴a n =n 2. 三、探究与拓展13.已知数列{a n },满足a 1=2,a n +1=2a na n +2.(1)数列{1a n }是否为等差数列?说明理由.(2)求a n .解 (1)数列{1a n }是等差数列,理由如下:∵a 1=2,a n +1=2a na n +2,∴1a n +1=a n +22a n=12+1a n ,∴1a n +1-1a n =12,即{1a n }是首项为1a 1=12,公差为d =12的等差数列.(2)由上述可知1a n =1a 1+(n -1)d =n2,∴a n =2n .。