大学物理下第12章-3分解
- 格式:ppt
- 大小:1.53 MB
- 文档页数:39
第四篇 振动与颠簸第十二章机械振动§ 12-1 简谐振动1、弹簧振子运动如图所取坐标,原点 O 在 m 均衡地点。
现将 m 略向右移到 A ,而后松开,此时,由于弹簧伸长而出现指向均衡地点的弹性力。
在弹性 力作用下,物体向左运动,当经过地点O 时,作用在 m 上弹性力等于 0,可是因为惯性作用, m 将持续向 O 左侧运动,使弹簧压缩。
此时,因为弹簧被压缩, 而出现了指向均衡地点的弹性力并将阻挡物体向左 运动,使 m 速率减小,直至物体静止于B (刹时静止),以后物体在弹性力作用下改变方向,向右运动。
这样在弹性力作用下物体左右来去运动,即作机械振动。
图 12-12、简谐振动运动方程由上剖析知, m 位移为 x (相对均衡点 O )时,它遇到弹性力为(胡克定律) :Fkx(12-1)式中: 当x即位移沿 +x 时,F 沿 -x ,即F0 当 x即位移沿 -x 时,F 沿+x ,即F 0k为弹簧的倔强系数, “—”号表示力 F 与位移 x (相对 O 点)反向。
定义:物体受力与位移正比反向时的振动称为简谐振动。
由定义知,弹簧振子做谐振动。
由牛顿第二定律知,m加快度为aF kxmm( m为物体质量)ad 2 xd 2 x k x∵dt 2∴ dt2mk2∵ k、 m均大于 0,∴可令m可有:d 2 x2 x 0(12-2)dt 2式 (12-2) 是谐振动物体的微分方程。
它是一个常系数的齐次二阶的线性微分方程,它的解为x Asin t'(12-3)或x Acos t(12-4)'2式 (12-3)(12-4) 是简谐振动的运动方程。
所以,我们也能够说位移是时间t 的正弦或余弦函数的运动是简谐运动。
本书顶用余弦形式表示谐振动方程。
3、谐振动的速度和加快度物体位移:xAcos tdxAsin tV(12-5)速度:dtd 2 xa2 Acos t 2 x加快度:dt 2(12-6)可知:Vmax A amax 2 Ax t、V t 、 at 曲线以下图 12-2图 12-3第十二章机械振动沈阳工业大学郭连权(教授)说明:(1)Fkx 是谐振动的动力学特点;(2) a2 x是谐振动的运动学特点;(3)做谐振动的物体往常称为谐振子。
第十二章 电磁感应及电磁场基本方程12–1 如图12-1所示,矩形线圈abcd 左半边放在匀强磁场中,右半边在磁场外,当线圈以ab 边为轴向纸外转过60º过程中,线圈中 产生感应电流(填会与不会),原因是 。
解:线圈以ab 边为轴向纸外转过60º过程中,尽管穿过磁感应线的线圈面积发生了变化,但线圈在垂直于磁场方向的投影的面积并未发生变化,因而穿过整个线圈的磁通量并没有发生变化,所以线圈中不会产生感应电流。
因而应填“不会”;“通过线圈的磁通量没有发生变化”。
12–2 产生动生电动势的非静电力是 力,产生感生电动势的非静电力是 力。
解:洛仑兹力;涡旋电场力(变化磁场激发的电场的电场力)。
12–3 用绝缘导线绕一圆环,环内有一用同样材料导线折成的内接正方形线框,如图12-2所示,把它们放在磁感应强度为B 的匀强磁场中,磁场方向与线框平面垂直,当匀强磁场均匀减弱时,圆环中与正方形线框中感应电流大小之比为___________。
解:设圆环的半径为a,圆环中的感应电动势1E 大小为2111d d d πd d d ΦB BS a t t t===E 同理,正方形线框中的感应电动势2E 大小为2212d d d 2d d d ΦB BS a t t t===E而同材料的圆环与正方形导线的电阻之比为12R R ==。
所以圆环与正方形线框中的感应电流之比为122I I a ==12–4 如图12-3所示,半径为R 的3/4圆周的弧形刚性导线在垂直于均匀磁感强度B 的平面内以速度v 平动,则导线上的动生电动势E = ,方向为 。
图12–5图12–4abdc图12–1Ba图12–2图12–3解:方法一:用动生电动势公式()d l =⨯⋅⎰B l v E 求解。
选积分路径l 的绕行方向为顺时针方向,建立如图12-4所示的坐标系,在导体上任意处取导体元d l ,d l 上的动生电动势为d ()d cos d B R θθ=⨯⋅B l =v v E所以导线上的动生电动势为3π3πd cos d 0BRBR θθ-===>⎰⎰v E E由于ε>0,所以动生电动势的方向为顺时方向,即bca 方向。
12章习题参考答案12-1答案:1-5 DBADC 6-10 CDDAD 11-15 DDDAB 12-2 1、E R 221π 2、Sq 022ε3、略4、3028Rqdεπ,方向为从O 点指向缺口中心点5、aq 08πε-12-3真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。
[解] 建立如图所示的坐标系Ox ,在距O 点为x 处取电荷元x Lqx q d d d ==λ,它在P 点产生的电场强度为()()x x d L Lq x d L qrq E d 41d 414d d 202020-+=-+==πεπεπε则整个带电直导线在P 点产生的电场强度为()d L d q x x d L Lq E L+=-+=⎰2041d 41πεπε故 ()i d L d qE+=04πε12-4用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心处点O 的电场强度。
[解] 建立坐标系如图,在半圆环上取微元d l ,θd d R l =,则 l RQq d d π=, q d 在O 点的场强 20204d 4d d R lR Q R q E πεππε== 从对称性分析,y 方向的场强相互抵消,只存在x 方向的场强Ed Oxxq d d λ=θεπθθεπθd 4sin d sin 4sin d d 202302x RQ l RQ E E =⋅=⋅= 2020202x x 2d 4sin d R QR Q E E επθεπθπ===⎰⎰i R Q E o 222επ=12-5一半径为R 的无限长半圆柱面形薄筒,均匀带电,单位长度上的带电量为λ,试求圆柱面轴线上一点的电场强度E 。
[解] 建立坐标系如图,在无限长半圆柱面形薄筒上取l d 的窄条,l d 对应的无限长直线单位长度所带的电量为θπλθπλd d d ==R R q 它在轴线O 产生的场强的大小为RR qE 0202d 2d d επθλπε==因对称性y d E 成对抵消。
习题十二12-1 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?解: υ不变,为波源的振动频率;n n 空λλ=变小;υλn u =变小.12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由. (1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中; (4)光源作平行于1S ,2S 联线方向上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝.解: 由λd D x =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动.12-3 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式∆λπϕ∆2=中,光波的波长要用真空中波长,为什么?解:nr =∆.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为C t ∆=∆.因为∆中已经将光在介质中的路程折算为光在真空中所走的路程。
12-4 如题12-4图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)]; (2) A 绕棱边逆时针转动[见图(b)].题12-4图解: (1)由l 2λθ=,2λke k =知,各级条纹向棱边方向移动,条纹间距不变; (2)各级条纹向棱边方向移动,且条纹变密.12-5 用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度.解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为2λ=∆e ,这也是工件缺陷的程度.题12-5图 题12-6图12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中 心收缩,问透镜是向上还是向下移动?解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动.12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk d Dx =明知,λ22.01010.63⨯⨯=,∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为 e n e ne )1(-=-=δ按题意 λδ7=∴610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为 22)(12λλδ+=+-=D x dr r第一明纹处,对应λδ=∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000 oA 这两个波长的单色光在反射中消失.试求油膜层的厚度. 解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ①当50001=λoA 时,有2500)21(21111+=+=λλk k ne ②当70002=λoA 时,有3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足 33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④ 由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ得 31=k2112=-=k k可由②式求得油膜的厚度为67312250011=+=n k e λoA12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得122021612380033.14124-=-⨯⨯=-=k k k ne λ2=k , 67392=λoA (红色)3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k所以k k ne 101082==λ当2=k 时, λ =5054oA (绿色)故背面呈现绿色.12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k ∴222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k oA令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求: (1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少?(4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ故43100.41012.0048.0-⨯=⨯==L d θ(弧度)(2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0=mm (4)141≈=∆l LN 条12-14 用=λ5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的 棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =1.5).求: (1)膜下面媒质的折射率2n 与n 的大小关系;(2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解: (1)n n >2.因为劈尖的棱边是暗纹,对应光程差2)12(22λλ+=+=∆k ne ,膜厚0=e 处,有0=k ,只能是下面媒质的反射光有半波损失2λ才合题意;(2)3105.15.12500092929-⨯=⨯⨯==⨯=∆n e n λλmm (因10个条纹只有9个条纹间距)(3)膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm21100.55.12105.3243=⨯⨯⨯⨯='∆=∆--n e N λ现被第21级暗纹占据.12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k 个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.解: (1)由牛顿环暗环公式λkR r k =据题意有21)1(λλR k kR r +== ∴212λλλ-=k ,代入上式得2121λλλλ-=R r10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯=31085.1-⨯=m (2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有2)12(2)12(2211λλR k R k r -=-=∴4091500016215212121212=⨯-⨯-⨯=--=λλk k oA 12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空n R k D r 2)12(22λ-==液两式相除得n D D =21,即22.161.196.12221≈==D D n12-17 利用迈克耳逊干涉仪可测量单色光的波长.当1M 移动距离为0.322mm时,观察到干涉条纹移动数为1024条,求所用单色光的波长. 解: 由2λNd ∆=∆得 102410322.0223-⨯⨯=∆∆=N d λ710289.6-⨯=m 6289=oA12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ=5000oA ,求此玻璃片的厚度. 解: 设插入玻璃片厚度为d ,则相应光程差变化为λN d n ∆=-)1(2∴)1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm。