大学物理课后习题答案第十二章
- 格式:docx
- 大小:372.43 KB
- 文档页数:11
第十二章 磁介质中的磁场12-1 一螺绕环的平均半径为R =0.08m, 其上绕有N =240匝线圈, 电流强度为I=0.30A 时充满管内的铁磁质的相对磁导率µr =5000, 问管内的磁场强度和磁感强度各为多少?分析 螺绕环磁场几乎都集中在环内, 磁场线是一系列圆心在对称轴上的圆.如果圆环的截面积很小,可认为环内各点的磁场强度大小相等,等于以平均半径R 为半径的圆上的磁场强度.解 H=nI A/m 2.143A/m 08.0230.02402=⨯⨯==ππR NI T 90.0T 2.14350001047r 0=⨯⨯⨯===-πμμμH H B12-2 在图12-6所示的实验中,环形螺线管共包含500匝线圈, 平均周长为50cm, 当线圈中的电流强度为2.0A 时, 用冲击电流计测得介质内的磁感强度为2.0T , 求这时(1)待测材料的相对磁导率r μ,(2)磁化面电流线密度s j .分析 磁场强度和磁感强度B 的关系为H H B r 0μμμ==,从而可求出r μ. 解 (1) A/m 2000A/m 5.02500=⨯==L NI nI H7961021040.270r =⨯⨯⨯==-πμμH B (2)由于磁化面电流产生的附加磁感强度为B '=B-B 0,得s 00)(j nI B μμμ=-='则 A /m 1059.1)1(6r 0s ⨯=-=-=nI nI j μμμμ 12-3 将一直径为10cm 的薄铁圆盘放在B 0=0.4×10-4 T 的均匀磁场中, 使磁感线垂直于盘面, 已知盘中心的磁感强度为B c =0.1T, 假设盘被均匀磁化,磁化面电流可视为沿圆盘边缘流动的一圆电流.求(1)磁化面电流大小;(2)盘的轴线上距盘心0.4m 处的磁感强度.分析 铁盘在外磁场B 0中要被磁化, 产生附加磁场.附加磁场与外磁场B 0同向,所以盘中心的磁感强度B c =B 0+B c ˊ.如果将磁化面电流I s 视为沿圆盘边缘流动的圆电流.解 (1)磁化面电流I s 在环心c 处产生的附加磁场的磁感强度为RI B sc20μ='盘中心的总磁感强度为cc B B B '+=0 从已知条件可见,对于铁磁质,有c B B <<0,即cc B B '≈,得 A 1096.72230cs ⨯=='=μμRB B R I c(2)距c 点x 处的磁场可视为外磁场B 0与磁化面电流磁场B ˊ的叠加,即有T 1091.1)(242/32220-⨯=+='x R R I B s μ401031.2-⨯='+=B B B T12-4 半径为R 的载流长直导线,电流强度为I ,外面裹有一层厚度为b 的磁介质,其相对磁导率为r μ,(1)求磁介质中任一点的磁场强度H 和磁感强度B 的大小;(2)若沿磁介质的内外表面流动的磁化面电流方向与轴线平行,试证明二电流等大反向并求其大小.分析 长直载流直导线的磁场线是以轴线为中心的一系列同心圆.应用有磁介质的安培环路定理时只须计算闭合回路所包围的传导电流,而应用真空中的安培环路定理时应计算闭合回路所包围的传导电流和磁化面电流. 解 (1) 介质内rIH B rI H πμμπ2 2===(2) 假设介质为顺磁质,介质内表面磁化面电流I s 方向如图12-4所示,在介质内任一点磁感强度B=B 0+B ’,因rIB πμ2= =0B r I πμ20 r I B πμ2s 0='得rIr I B s πμμπμ2)(200-=='即有 I I )1(r s -=μ设介质外表面磁化面电流为I s ˊ,应用介质中的安培环路定律,可得介质外任一点磁场强度为rI H π2=应用真空中的安培环路定理,介质外有)(d s s 0I I I '++=⋅⎰μl B即 )(2s s 0I I I rB '++=μπrI I I B πμ2)(s s 0'++=又因 B=µ0H=rIπμ20 由以上两式得I I I )1(r s s --=-='μ即介质内外表面磁化面电流大小相等, 方向相反.。
习题十二12-1 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?解: υ不变,为波源的振动频率;nn 空λλ=变小;υλn u =变小.12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由. (1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中; (4)光源作平行于1S ,2S 联线方向上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝. 解: 由λdDx =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动. 12-3 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式∆λπϕ∆2= 中,光波的波长要用真空中波长,为什么?解:nr =∆.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为Ct ∆=∆. 因为∆中已经将光在介质中的路程折算为光在真空中所走的路程。
12-4 如题12-4图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)]; (2) A 绕棱边逆时针转动[见图(b)].题12-4图 解: (1)由l2λθ=,2λke k =知,各级条纹向棱边方向移动,条纹间距不变;(2)各级条纹向棱边方向移动,且条纹变密.12-5 用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度.解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为2λ=∆e ,这也是工件缺陷的程度.题12-5图 题12-6图12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中 心收缩,问透镜是向上还是向下移动?解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动. 12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk d D x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度. 解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为 22)(12λλδ+=+-=D x dr r 第一明纹处,对应λδ=∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000oA 这两个波长的单色光在反射中消失.试求油膜层的厚度.解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ① 当50001=λoA 时,有2500)21(21111+=+=λλk k ne ②当70002=λoA 时,有3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④ 由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ 得 31=k2112=-=k k可由②式求得油膜的厚度为67312250011=+=nk e λo A12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λoA (红色)3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求:(1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少? (4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm (4)141≈=∆lLN 条 12-14 用=λ 5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的 棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =1.5).求: (1)膜下面媒质的折射率2n 与n 的大小关系; (2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解: (1)n n >2.因为劈尖的棱边是暗纹,对应光程差2)12(22λλ+=+=∆k ne ,膜厚0=e 处,有0=k ,只能是下面媒质的反射光有半波损失2λ才合题意; (2)3105.15.12500092929-⨯=⨯⨯==⨯=∆n e nλλ mm (因10个条纹只有9个条纹间距)(3)膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm21100.55.12105.3243=⨯⨯⨯⨯='∆=∆--n e N λ 现被第21级暗纹占据.12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.解: (1)由牛顿环暗环公式λkR r k =据题意有 21)1(λλR k kR r +==∴212λλλ-=k ,代入上式得2121λλλλ-=R r10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯= 31085.1-⨯=m(2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有 2)12(2)12(2211λλR k R k r -=-=∴ 4091500016215212121212=⨯-⨯-⨯=--=λλk k o A12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空 nR k D r 2)12(22λ-==液 两式相除得n D D =21,即22.161.196.12221≈==D D n12-17 利用迈克耳逊干涉仪可测量单色光的波长.当1M 移动距离为0.322mm 时,观察到干涉条纹移动数为1024条,求所用单色光的波长. 解: 由 2λNd ∆=∆得 102410322.0223-⨯⨯=∆∆=N d λ 710289.6-⨯=m 6289=oA12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ= 5000oA ,求此玻璃片的厚度. 解: 设插入玻璃片厚度为d ,则相应光程差变化为λN d n ∆=-)1(2∴ )1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm。
第十二章 电磁感应及电磁场基本方程12–1 如图12-1所示,矩形线圈abcd 左半边放在匀强磁场中,右半边在磁场外,当线圈以ab 边为轴向纸外转过60º过程中,线圈中 产生感应电流(填会与不会),原因是 。
解:线圈以ab 边为轴向纸外转过60º过程中,尽管穿过磁感应线的线圈面积发生了变化,但线圈在垂直于磁场方向的投影的面积并未发生变化,因而穿过整个线圈的磁通量并没有发生变化,所以线圈中不会产生感应电流。
因而应填“不会”;“通过线圈的磁通量没有发生变化”。
12–2 产生动生电动势的非静电力是 力,产生感生电动势的非静电力是 力。
解:洛仑兹力;涡旋电场力(变化磁场激发的电场的电场力)。
12–3 用绝缘导线绕一圆环,环内有一用同样材料导线折成的内接正方形线框,如图12-2所示,把它们放在磁感应强度为B 的匀强磁场中,磁场方向与线框平面垂直,当匀强磁场均匀减弱时,圆环中与正方形线框中感应电流大小之比为___________。
解:设圆环的半径为a,圆环中的感应电动势1E 大小为2111d d d πd d d ΦB BS a t t t===E 同理,正方形线框中的感应电动势2E 大小为2212d d d 2d d d ΦB BS a t t t===E而同材料的圆环与正方形导线的电阻之比为12R R ==。
所以圆环与正方形线框中的感应电流之比为122I I a ==12–4 如图12-3所示,半径为R 的3/4圆周的弧形刚性导线在垂直于均匀磁感强度B 的平面内以速度v 平动,则导线上的动生电动势E = ,方向为 。
图12–5图12–4abdc图12–1Ba图12–2图12–3解:方法一:用动生电动势公式()d l =⨯⋅⎰B l v E 求解。
选积分路径l 的绕行方向为顺时针方向,建立如图12-4所示的坐标系,在导体上任意处取导体元d l ,d l 上的动生电动势为d ()d cos d B R θθ=⨯⋅B l =v v E所以导线上的动生电动势为3π3πd cos d 0BRBR θθ-===>⎰⎰v E E由于ε>0,所以动生电动势的方向为顺时方向,即bca 方向。
第十二章 气体动理论12-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。
为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子?解:由式nkT p =,有3202352/1068.15731038.1760/10013.1100.1m kT p n 个⨯≈⨯⨯⨯⨯⨯==-- 因而器壁原来吸附的气体分子数为个183201068.110101068.1⨯=⨯⨯⨯==∆-nV N12-2 一容器内储有氧气,其压强为1.01⨯105 Pa ,温度为27℃,求:(l )气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。
(设分子间等距排列)分析:在题中压强和温度的条件下,氧气可视为理想气体。
因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。
又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。
解:(l )单位体积分子数325m 1044.2-⨯==kT p n(2)氧气的密度3m kg 30.1-⋅===RT pM V m ρ(3)氧气分子的平均平动动能J 1021.62321k -⨯==kT ε(4)氧气分子的平均距离m1045.3193-⨯==n d12-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。
试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。
分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。
因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-⋅⨯=v 应是对应于氢气分子的最概然速率。
第12章 习题与答案12-1 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为[ ]A. 1.5λ.B. 1.5λ/n .C. 1.5n .D. 3λ. [答案:A ]12-2 平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为[ ]A. 2πn 2e / ( n 1λ1).B. 4πn 1e / ( n 2λ1)] +π.C. 4πn 2e / ( n 1λ1) ]+π.D. 4πn 2e / ( n 1λ1).[答案: C ]12-3 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ]A. 间隔变小,并向棱边方向平移.B. 间隔变大,并向远离棱边方向平移.C. 间隔不变,向棱边方向平移.D.间隔变小,并向远离棱边方向平移. [答案: A ]12-4 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如题12-4图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分[ ]A. 凸起,且高度为4λ.B. 凸起,且高度为2λ.C. 凹陷,且深度为2λ.D. 凹陷,且深度为4λ.[答案: C ]12-5 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]A .中心暗斑变成亮斑. B. 间距变大. C. 间距变小. D. 间距不变. [答案: C ]题12-4图12-6 在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为[ ] A. =3a b . B. =2a b . C. =a b . D. =0.5a b [答案: C ]12-7 对某一定波长的垂直入射光 衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该[ ]A. 换一个光栅常数较小的光栅.B. 换一个光栅常数较大的光栅.C. 将光栅向靠近屏幕的方向移动.D. 将光栅向远离屏幕的方向移动.[答案: B ]12-8如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为[ ]A. I 0 / 8.B. I 0 / 4.C. 3 I 0 / 8.D. 3 I 0 / 4.[答案: A ]12-9一束自然光自空气射向一块平板玻璃(如题12-9图),设入射角等于布儒斯特角i 0,则在上表面的出射光2是[ ]A. 自然光.B. 线偏振光且光矢量的振动方向平行于入射面.C. 线偏振光且光矢量的振动方向垂直于入射面.D. 部分偏振光.[答案: C ]12-10相干光的必要条件为________________________,________________________,________________________。
习题十二12-1 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?解: υ不变,为波源的振动频率;n n 空λλ=变小;υλn u =变小. 12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由.(1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中; (4)光源作平行于1S ,2S 联线方向上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝.解: 由λd D x =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动.12-3 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式∆λπϕ∆2=中,光波的波长要用真空中波长,为什么?解:nr =∆.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为C t ∆=∆.因为∆中已经将光在介质中的路程折算为光在真空中所走的路程。
12-4 如题12-4图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)]; (2) A 绕棱边逆时针转动[见图(b)].题12-4图解: (1)由l 2λθ=,2λke k =知,各级条纹向棱边方向移动,条纹间距不变; (2)各级条纹向棱边方向移动,且条纹变密.12-5 用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度.解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为2λ=∆e ,这也是工件缺陷的程度.题12-5图 题12-6图12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中 心收缩,问透镜是向上还是向下移动?解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动.12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk d Dx =明知,λ22.01010.63⨯⨯=,∴3106.0-⨯=λmm oA 6000=(2)3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为 e n e ne )1(-=-=δ按题意 λδ7=∴610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为22)(12λλδ+=+-=D x dr r第一明纹处,对应λδ=∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000 oA 这两个波长的单色光在反射中消失.试求油膜层的厚度. 解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ①当50001=λoA 时,有2500)21(21111+=+=λλk k ne ②当70002=λoA 时,有3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足33)21(2λ+=k ne 式即不存在132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④ 由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ得 31=k2112=-=k k可由②式求得油膜的厚度为67312250011=+=n k e λoA12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22),2,1(⋅⋅⋅=k 得122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λoA (红色) 3=k , 40433=λoA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k所以k k ne 101082==λ当2=k 时, λ =5054oA (绿色)故背面呈现绿色.12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k∴222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k oA令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求: (1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少?(4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ故43100.41012.0048.0-⨯=⨯==L d θ(弧度)(2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0=mm (4)141≈=∆l LN 条12-14 用=λ5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =1.5).求: (1)膜下面媒质的折射率2n 与n 的大小关系;(2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解: (1)n n >2.因为劈尖的棱边是暗纹,对应光程差2)12(22λλ+=+=∆k ne ,膜厚0=e 处,有0=k ,只能是下面媒质的反射光有半波损失2λ才合题意;(2)3105.15.12500092929-⨯=⨯⨯==⨯=∆n e n λλmm (因10个条纹只有9个条纹间距)(3)膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm21100.55.12105.3243=⨯⨯⨯⨯='∆=∆--n e N λ现被第21级暗纹占据.12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k 个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.解: (1)由牛顿环暗环公式λkR r k =据题意有21)1(λλR k kR r +== ∴212λλλ-=k ,代入上式得 2121λλλλ-=R r10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯=31085.1-⨯=m (2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有2)12(2)12(2211λλR k R k r -=-=∴4091500016215212121212=⨯-⨯-⨯=--=λλk k oA 12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空 n R k D r 2)12(22λ-==液 两式相除得n D D =21,即22.161.196.12221≈==D D n12-17 利用迈克耳逊干涉仪可测量单色光的波长.当1M 移动距离为0.322mm干涉条纹移动数为1024条,求所用单色光的波长. 解: 由2λNd ∆=∆得102410322.0223-⨯⨯=∆∆=N d λ 710289.6-⨯=m 6289=oA12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ=5000oA ,求此玻璃片的厚度. 解: 设插入玻璃片厚度为d ,则相应光程差变化为λN d n ∆=-)1(2∴)1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm。
第四篇 气体动理论 热力学基础求解气体动理论和热力学问题的基本思路和方法热运动包含气体动理论和热力学基础两部分.气体动理论从物质的微观结构出发,运用统计方法研究气体的热现象,通过寻求宏观量与微观量之间的关系,阐明气体的一些宏观性质和规律.而热力学基础是从宏观角度通过实验现象研究热运动规律.在求解这两章习题时要注意它们处理问题方法的差异.气体动理论主要研究对象是理想气体,求解这部分习题主要围绕以下三个方面:(1) 理想气体物态方程和能量均分定理的应用;(2) 麦克斯韦速率分布率的应用;(3)有关分子碰撞平均自由程和平均碰撞频率.热力学基础方面的习题则是围绕第一定律对理想气体的四个特殊过程(三个等值过程和一个绝热过程)和循环过程的应用,以及计算热力学过程的熵变,并用熵增定理判别过程的方向.1.近似计算的应用一般气体在温度不太低、压强不太大时,可近似当作理想气体,故理想气体也是一个理想模型.气体动理论是以理想气体为模型建立起来的,因此,气体动理论所述的定律、定理和公式只能在一定条件下使用.我们在求解气体动理论中有关问题时必须明确这一点.然而,这种从理想模型得出的结果在理论和实践上是有意义的.例如理想气体的内能公式以及由此得出的理想气体的摩尔定容热容2/m V,iR C =和摩尔定压热容()2/2m P,R i C +=都是近似公式,它们与在通常温度下的实验值相差不大,因此,除了在低温情况下以外,它们还都是可以使用的.在实际工作时如果要求精度较高,摩尔定容热容和摩尔定压热容应采用实验值.本书习题中有少数题给出了在某种条件下m V,C 和m P,C 的实验值就是这个道理.如习题中不给出实验值,可以采用近似的理论公式计算.2.热力学第一定律解题过程及注意事项热力学第一定律E W Q Δ+=,其中功⎰=21d V V V ρW ,内能增量T R i M m E Δ2Δ⋅=.本章习题主要是第一定律对理想气体的四个特殊过程(等体、等压、等温、绝热)以及由它们组成的循环过程的应用.解题的主要过程:(1) 明确研究对象是什么气体(单原子还是双原子),气体的质量或物质的量是多少? (2) 弄清系统经历的是些什么过程,并掌握这些过程的特征.(3) 画出各过程相应的p -V 图.应当知道准确作出热力学过程的p -V 图,可以给出一个比较清晰的物理图像.(4) 根据各过程的方程和状态方程确定各状态的参量,由各过程的特点和热力学第一定律就可计算出理想气体在各过程中的功、内能增量和吸放热了.在计算中要注意Q 和W 的正、负取法.3.关于内能的计算理想气体的内能是温度的单值函数,是状态量,与过程无关,而功和热量是过程量,在两个确定的初、末状态之间经历不同的过程,功和热量一般是不一样的,但内能的变化是相同的,且均等于()12m V,ΔT T C Mm E -=.因此,对理想气体来说,不论其经历什么过程都可用上述公式计算内能的增量.同样,我们在计算某一系统熵变的时候,由于熵是状态量,以无论在始、末状态之间系统经历了什么过程,始、末两个状态间的熵变是相同的.所以,要计算始末两状态之间经历的不可逆过程的熵变,就可通过计算两状态之间可逆过程熵变来求得,就是这个道理.4.麦克斯韦速率分布律的应用和分子碰撞的有关讨论深刻理解麦克斯韦速率分布律的物理意义,掌握速率分布函数f (v )和三种统计速率公式及物理意义是求解这部分习题的关键.三种速率为M RT /2P =v ,M RT π/8=v ,M RT /32=v .注意它们的共同点都正比于M T /,而在物理意义上和用途上又有区别.P v 用于讨论分子速率分布图.v 用于讨论分子的碰撞;2v 用于讨论分子的平均平动动能.解题中只要抓住这些特点就比较方便.根据教学基本要求,有关分子碰撞内容的习题求解比较简单,往往只要记住平均碰撞频率公式v n d Z 22=和平均自由程n d Z λ2π2/1/==v ,甚至只要知道n Z ⋅∝v ,n /1∝λ及M T /∝v 这种比值关系就可求解许多有关习题.第十二章 气体动理论12 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强(C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强 分析与解 理想气体分子的平均平动动能23k /kT =ε,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程nkT p =,当两者分子数密度n 相同时,它们压强也相同.故选(C).12 -2 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比()()()4:2:1::2/12C 2/12B 2/12A =v v v ,则其压强之比C B A ::p p p 为( )(A) 1∶2∶4 (B) 1∶4∶8(C) 1∶4∶16 (D) 4∶2∶1分析与解 分子的方均根速率为M RT /3=2v ,因此对同种理想气体有3212C 2B 2A ::::T T T =v v v ,又由物态方程nkT ρ,当三个容器中分子数密度n 相同时,得16:4:1::::321321==T T T p p p .故选(C). 12 -3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ ,当气体温度升高为04T 时,气体分子的平均速率v 、平均碰撞频率Z 和平均自由程λ分别为( ) (A) 004,4,4λλZ Z ===0v v (B) 0022λλ===,,Z Z 0v v (C) 00422λλ===,,Z Z 0v v (D) 0042λλ===,,Z Z 0v v 分析与解 理想气体分子的平均速率M RT π/8=v ,温度由0T 升至04T ,则平均速率变为0v 2;又平均碰撞频率v n d Z 2π2=,由于容器体积不变,即分子数密度n 不变,则平均碰撞频率变为0Z 2;而平均自由程n d λ2π2/1=,n 不变,则珔λ也不变.因此正确答案为(B).12 -4 已知n 为单位体积的分子数,()v f 为麦克斯韦速率分布函数,则()v v d nf 表示( )(A) 速率v 附近,dv 区间内的分子数(B) 单位体积内速率在v v v d +~区间内的分子数(C) 速率v 附近,dv 区间内分子数占总分子数的比率(D) 单位时间内碰到单位器壁上,速率在v v v d ~+ 区间内的分子数分析与解 麦克斯韦速率分布函数()()v v d /d N N f =,而v /N n =,则有()V N nf /d d =v v .即表示单位体积内速率在v v v d ~+ 区间内的分子数.正确答案为(B).12 -5 一打足气的自行车内胎,在C 07o1.=t 时,轮胎中空气的压强为Pa 100451⨯=.p ,则当温度变为C 037o2.=t 时,轮胎内空气的压强2p 2p 为多少?(设内胎容积不变)分析 胎内空气可视为一定量的理想气体,其始末状态均为平衡态,由于气体的体积不变,由理想气体物态方程RT Mm pV =可知,压强p 与温度T 成正比.由此即可求出末态的压强.解 由分析可知,当K 15310037152732...=+=T ,轮胎内空气压强为Pa 1043451122⨯==./T p T p可见当温度升高时,轮胎内气体压强变大,因此,夏季外出时自行车的车胎不宜充气太足,以免爆胎.12 -6 有一个体积为35m 1001⨯.的空气泡由水面下m 050.深的湖底处(温度为C 4o )升到湖面上来.若湖面的温度为C 017o.,求气泡到达湖面的体积.(取大气压强为Pa 10013150⨯=.p ) 分析 将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态.利用理想气体物态方程即可求解本题.位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出, 其中ρ为水的密度( 常取33m kg 1001⋅⨯=.ρ).解 设气泡在湖底和湖面的状态参量分别为(p 1 ,V 1 ,T 1 )和(p 2 ,V 2 ,T 2 ).由分析知湖底处压强为gh ρp gh ρp p +=+=021,利用理想气体的物态方程222111T V p T V p = 可得空气泡到达湖面的体积为()3510120121212m 1011.6//-⨯=+==T p V T gh ρp T p V T p V12 -7 氧气瓶的容积为32m 1023-⨯.,其中氧气的压强为Pa 10317⨯.,氧气厂规定压强降到Pa 10016⨯.时,就应重新充气,以免经常洗瓶.某小型吹玻璃车间,平均每天用去3m 400.压强为Pa 100115⨯.的氧气,问一瓶氧气能用多少天? (设使用过程中温度不变)分析 由于使用条件的限制,瓶中氧气不可能完全被使用.为此,可通过两条不同的思路进行分析和求解:(1) 从氧气质量的角度来分析.利用理想气体物态方程RT Mm pV =可以分别计算出每天使用氧气的质量3m 和可供使用的氧气总质量(即原瓶中氧气的总质量1m 和需充气时瓶中剩余氧气的质量2m 之差),从而可求得使用天数()321m m m n /-=.(2) 从容积角度来分析.利用等温膨胀条件将原瓶中氧气由初态(Pa 1030171⨯=.p , 321m 1023-⨯=.V )膨胀到需充气条件下的终态(Pa 1000162⨯=.p ,2V 待求),比较可得2p 状态下实际使用掉的氧气的体积为12V V -.同样将每天使用的氧气由初态(Pa 1001153⨯=.p ,33m 400.=V )等温压缩到压强为p 2的终态,并算出此时的体积V′2 ,由此可得使用天数应为()212V V V n '-=/. 解1 根据分析有RT V Mp m RT V Mp m RT V Mp m /;/;/333222111===则一瓶氧气可用天数()()5.9//33121321===-=V p V p p m m m n解2 根据分析中所述,由理想气体物态方程得等温膨胀后瓶内氧气在压强为Pa 1000162⨯=.p 时的体积为 2112p V p V /=每天用去相同状态的氧气容积2332p V p V /='则瓶内氧气可用天数为()()5.9//33121212=-='-=V p V p p V V V n12 -8 设想太阳是由氢原子组成的理想气体,其密度可当作是均匀的.若此理想气体的压强为Pa 1035114⨯..试估计太阳的温度.(已知氢原子的质量Pa 1067127H -⨯=.m ,太阳半径kg 1067127H -⨯=.m ,太阳质量kg 1099130S ⨯=.m )分析 本题可直接运用物态方程nkT p =进行计算.解 氢原子的数密度可表示为()⎥⎦⎤⎢⎣⎡⋅==3S H S H S π34//R m m V m m n S 根据题给条件,由nkT p = 可得太阳的温度为()K 1016.13/π4/7S 3S H ⨯===k m R pm nk p T说明 实际上太阳结构并非本题中所设想的理想化模型,因此,计算所得的太阳温度与实际的温度相差较大.估算太阳(或星体)表面温度的几种较实用的方法在教材第十五章有所介绍.12 -9 一容器内储有氧气,其压强为Pa 100115⨯.,温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能;(4) 分子间的平均距离.(设分子间均匀等距排列)分析 在题中压强和温度的条件下,氧气可视为理想气体.因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解.又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知n V /10=,d 即可求出.解 (1) 单位体积分子数325m 10442⨯==./kT p n(2) 氧气的密度-3m kg 301⋅===.//RT pM V m ρ(3) 氧气分子的平均平动动能J 102162321k -⨯==./kT ε(4) 氧气分子的平均距离m 10453193-⨯==./n d通过对本题的求解,我们可以对通常状态下理想气体的分子数密度、平均平动动能、分子间平均距离等物理量的数量级有所了解.12 -10 2.0×10-2 kg 氢气装在4.0×10-3 m 3 的容器内,当容器内的压强为3.90×105Pa 时,氢气分子的平均平动动能为多大?分析 理想气体的温度是由分子的平均平动动能决定的,即23k /kT =ε.因此,根据题中给出的条件,通过物态方程pV =m/MRT ,求出容器内氢气的温度即可得k ε.解 由分析知氢气的温度mRMPV T =,则氢气分子的平均平动动能为 ()8932323k ./===mR pVMk kT ε12 -11 温度为0 ℃和100 ℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1eV ,气体的温度需多高?解 分子在0℃和100 ℃时平均平动动能分别为J 10655232111-⨯==./kT εJ 10727232122-⨯==./kT ε由于1eV =1.6×10-19 J ,因此,分子具有1eV 平均平动动能时,气体温度为K 10737323k ⨯==./k T ε这个温度约为7.5 ×103 ℃.12 -12 某些恒星的温度可达到约1.0 ×108K ,这是发生聚变反应(也称热核反应)所需的温度.通常在此温度下恒星可视为由质子组成.求:(1) 质子的平均动能是多少? (2) 质子的方均根速率为多大?分析 将组成恒星的大量质子视为理想气体,质子可作为质点,其自由度 i =3,因此,质子的平均动能就等于平均平动动能.此外,由平均平动动能与温度的关系2/32/2kT m =v ,可得方均根速率2v .解 (1) 由分析可得质子的平均动能为 J 1007.22/32/3152k -⨯===kT m εv(2) 质子的方均根速率为1-62s m 1058.132⋅⨯==mkT v 12 -13 试求温度为300.0 K 和2.7 K(星际空间温度)的氢分子的平均速率、方均根速率及最概然速率.分析 分清平均速率v 、方均根速率2v 及最概然速率p v 的物理意义,并利用三种速率相应的公式即可求解.解 氢气的摩尔质量M =2 ×10-3kg·mol -1 ,气体温度T 1 =300.0K ,则有 1-31s m 1078.18⋅⨯==M πRT v 1-312s m 1093.13⋅⨯==M RT v 1-31p s m 1058.12⋅⨯==MRT v 气体温度T 2=2.7K 时,有 1-31s m 1069.18⋅⨯==M πRT v 1-322s m 1083.13⋅⨯==MRT v1-31p s m 1050.12⋅⨯==MRT v 12 -14 如图所示,Ⅰ、Ⅱ两条曲线分别是氢气和氧气在同一温度下的麦克斯韦分子速率分布曲线.试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2) 两种气体所处的温度;(3) 若图中Ⅰ、Ⅱ分别表示氢气在不同温度下的麦克斯韦分子速率分布曲线.则哪条曲线的气体温度较高?分析 由MRT 1p 2=v 可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率v p 也就不同.因22O H M M <,故氢气比氧气的v p 要大,由此可判定图中曲线Ⅱ所标v p =2.0 ×103 m·s -1 应是对应于氢气分子的最概然速率.从而可求出该曲线所对应的温度.又因曲线Ⅰ、Ⅱ所处的温度相同,故曲线Ⅰ中氧气的最概然速率也可按上式求得.同样,由M RT2p =v 可知,如果是同种气体,当温度不同时,最概然速率v p 也不同.温度越高,v p 越大.而曲线Ⅱ对应的v p 较大,因而代表气体温度较高状态.解 (1) 由分析知氢气分子的最概然速率为()13H p s m 100.222H 2-⋅⨯==M RT v利用M O2 /M H2 =16 可得氧气分子最概然速率为()()12H p O p s m 100.54/22-⋅⨯==v v (2) 由M RT2p =v 得气体温度K 1081.42/22p⨯==R M T v (3) Ⅱ代表气体温度较高状态.12 -15 日冕的温度为2.0 ×106K ,所喷出的电子气可视为理想气体.试求其中电子的方均根速率和热运动平均动能.解 方均根速率16e2s m 105.93-⋅⨯==m kT v 平均动能J 10142317k -⨯==./kT ε 12 -16 在容积为2.0 ×10-3m 3 的容器中,有内能为6.75 ×102J 的刚性双原子分子某理想气体.(1) 求气体的压强;(2) 设分子总数为5.4×1022 个,求分子的平均平动动能及气体的温度.分析 (1) 一定量理想气体的内能RT i M m E 2=,对刚性双原子分子而言,i =5.由上述内能公式和理想气体物态方程pV =mM RT 可解出气体的压强.(2)求得压强后,再依据题给数据可求得分子数密度,则由公式p =nkT 可求气体温度.气体分子的平均平动动能可由23k /kT ε=求出.解 (1) 由RT i M m E 2=和pV =mM RT 可得气体压强 ()Pa 1035125⨯==./iV E p(2) 分子数密度n =N/V ,则该气体的温度()()Pa 106235⨯===.//nk pV nk p T气体分子的平均平动动能为J 104972321k -⨯==./kT ε12 -17温度相同的氢气和氧气,若氢气分子的平均平动动能为6.21×10-21J ,试求(1) 氧气分子的平均平动动能及温度;(2) 氧气分子的最概然速率. 分析 (1) 理想气体分子的平均平动动能23k /kT ε=,是温度的单值函数,与气体种类无关.因此,氧气和氢气在相同温度下具有相同的平均平动动能,从而可以求出氧气的温度.(2) 知道温度后再由最概然速率公式M RT 2p =v 即可求解v p . 解 (1) 由分析知氧气分子的平均平动动能为J 102162321k -⨯==./kT ε,则氧气的温度为:K 30032k ==k εT /(2) 氧气的摩尔质量M =3.2 ×10-2 kg·mol -1 ,则有 12p s m 1095.32-⋅⨯==M RTv12 -18 声波在理想气体中传播的速率正比于气体分子的方均根速率.问声波通过氧气的速率与通过氢气的速率之比为多少? 设这两种气体都是理想气体并具有相同的温度.分析 由题意声波速率u 与气体分子的方均根速率成正比,即2v ∝u ;而在一定温度下,气体分子的方均根速率M /12∝v ,式中M 为气体的摩尔质量.因此,在一定温度下声波速率M u /1∝.解 依据分析可设声速M A u /1=,式中A 为比例常量.则声波通过氧气与氢气的速率之比为2502222O H O H .==M M u u12 -19 已知质点离开地球引力作用所需的逃逸速率为gr v 2=,其中r 为地球半径.(1) 若使氢气分子和氧气分子的平均速率分别与逃逸速率相等,它们各自应有多高的温度;(2) 说明大气层中为什么氢气比氧气要少.(取r =6.40 ×106 m)分析 气体分子热运动的平均速率MπRT 8=v ,对于摩尔质量M 不同的气体分子,为使v 等于逃逸速率v ,所需的温度是不同的;如果环境温度相同,则摩尔质量M 较小的就容易达到逃逸速率.解 (1) 由题意逃逸速率gr 2=v ,而分子热运动的平均速率M πRT 8=v .当v v = 时,有RMrg πT 4= 由于氢气的摩尔质量13H mol kg 10022--⋅⨯=.M ,氧气的摩尔质量12O mol kg 10232--⋅⨯=.M ,则它们达到逃逸速率时所需的温度分别为K 10891K,101815O 4H 22⨯=⨯=..T T(2) 根据上述分析,当温度相同时,氢气的平均速率比氧气的要大(约为4倍),因此达到逃逸速率的氢气分子比氧气分子多.按大爆炸理论,宇宙在形成过程中经历了一个极高温过程.在地球形成的初期,虽然温度已大大降低,但温度值还是很高.因而,在气体分子产生过程中就开始有分子逃逸地球,其中氢气分子比氧气分子更易逃逸.另外,虽然目前的大气层温度不可能达到上述计算结果中逃逸速率所需的温度,但由麦克斯韦分子速率分布曲线可知,在任一温度下,总有一些气体分子的运动速率大于逃逸速率.从分布曲线也可知道在相同温度下氢气分子能达到逃逸速率的可能性大于氧气分子.故大气层中氢气比氧气要少.12 -20 容积为1m 3 的容器储有1mol 氧气,以v =10m·s -1 的速度运动,设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能.试求气体的温度及压强各升高了多少.分析 容器作匀速直线运动时,容器内分子除了相对容器作杂乱无章的热运动外,还和容器一起作定向运动.其定向运动动能(即机械能)为m v 2/2.按照题意,当容器突然停止后,80%定向运动动能转为系统的内能.对一定量理想气体内能是温度的单值函数,则有关系式:()T R M m mv E Δ25%80Δ2⋅=⋅=成立,从而可求ΔT .再利用理想气体物态方程,可求压强的增量. 解 由分析知T R M m m E Δ252/8.0Δ2⋅==v ,其中m 为容器内氧气质量.又氧气的摩尔质量为12m ol kg 1023--⋅⨯=.M ,解得ΔT =6.16 ×10-2 K当容器体积不变时,由pV =mRT/M 得Pa 51.0ΔΔ==T VR M m p 12 -21 有N 个质量均为m 的同种气体分子,它们的速率分布如图所示.(1) 说明曲线与横坐标所包围的面积的含义;(2) 由N 和0v 求a 值;(3) 求在速率0v /2到30v /2 间隔内的分子数;(4) 求分子的平均平动动能.分析 处理与气体分子速率分布曲线有关的问题时,关键要理解分布函数()v f 的物理意义. ()v v d /d N N f =,题中纵坐标()v v d /d N Nf =,即处于速率v 附近单位速率区间内的分子数.同时要掌握()v f 的归一化条件,即()1d 0=⎰∞v v f .在此基础上,根据分布函数并运用数学方法(如函数求平均值或极值等),即可求解本题.解 (1) 由于分子所允许的速率在0 到20v 的范围内,由归一化条件可知图中曲线下的面积()1d 0=⎰∞v v f 即曲线下面积表示系统分子总数N .(2 ) 从图中可知, 在0 到0v 区间内,()0/v v v a Nf ;而在0 到20v 区间,()αNf =v .则利用归一化条件有v v v v v ⎰⎰+=000200d d v v a a N (3) 速率在0v /2到30v /2间隔内的分子数为12/7d d Δ2/300000N a a N =+=⎰⎰v v v v v v v (4) 分子速率平方的平均值按定义为()v v f v v v d /d 02022⎰⎰∞∞==N N 故分子的平均平动动能为20220302K 3631d d 2121000v v v v v v v v v v m N a N a m m ε=⎥⎦⎤⎢⎣⎡+==⎰⎰ 12 -22 试用麦克斯韦分子速率分布定律导出方均根速率和最概然速率. 分析 麦克斯韦分子速率分布函数为()⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=kT m kT m f 2exp π2π4222/3v v v 采用数学中对连续函数求自变量平均值的方法,求解分子速率平方的平均值,即⎰⎰=N Nd d 22v v , 从而得出方均根速率.由于分布函数较复杂,在积分过程中需作适当的数学代换.另外,最概然速率是指麦克斯韦分子速率分布函数极大值所对应的速率,因而可采用求函数极值的方法求得.解 (1) 根据分析可得分子的方均根速率为2/1242/302/1022d 2exp π2π4/d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎰⎰∞v v v v v kT m kT m N N N令222/x kT m =v ,则有 2/12/12/104273.13d 2π42⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡=⎰∞-m RT m kT x e x m kT x v(2) 令()0d d =v v f ,即 02exp 222exp 2π2π42222/3=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛kT m kT m kT m T k m v v v v v 得 2/12/141.12⎪⎭⎫ ⎝⎛≈⎪⎭⎫ ⎝⎛==m RT m kT P v v12 -23 导体中自由电子的运动可看作类似于气体分子的运动(故称电子气).设导体中共有N 个自由电子,其中电子的最大速率为v F (称为费米速率).电子在速率v v v d ~+之间的概率为()()⎪⎩⎪⎨⎧>>>=v v v v v v 0,0 d π4d F 2A N A N N (1)画出分布函数图;(2) 用N 、v F 定出常数A ;(3) 证明电子气中电子的平均动能53F /εε=,其中22F F /mv =ε.分析 理解速率分布函数的物理意义,就不难求解本题.速率分布函数()vv d d 1N N f =,表示在v 附近单位速率区间的粒子数占总粒子数的百分比.它应满足归一化条件()()⎰⎰=∞F 00d d v v v v v f f , 因此根据题给条件可得()v v ~f 的函数关系,由此可作出解析图和求出A .在()v v ~f 函数关系确定的情况下,由()v v v v d 22f ⎰=可以求出v2 ,从而求出2/2v m ε=. 解 (1) 由题设可知,电子的速率分布函数()()()⎪⎩⎪⎨⎧>>>=F F 2 00 π4v v v v v v N A f ,其分布函数图如图所示. (2) 利用分析中所述归一化条件,有1d π4F02=⎰v v v NA 得 3F π4/3v N A = (3) ()53d N 4ππd 2F 20022F v v v v v v v v ===⎰⎰∞f 5/32/F 2εm ε==v12 -24 一飞机在地面时,机舱中的压力计指示为Pa 100115⨯.,到高空后压强降为Pa 101184⨯..设大气的温度均为27.0 ℃.问此时飞机距地面的高度为多少?(设空气的摩尔质量为2.89 ×10-2 kg·mol -1 )分析 当温度不变时,大气压强随高度的变化主要是因为分子数密度的改变而造成.气体分子在重力场中的分布满足玻耳兹曼分布.利用地球表面附近气压公式()kT mgh p p /ex p 0-=,即可求得飞机的高度h .式中p 0 是地面的大气压强.解 飞机高度为 ()()m 1093.1/ln /ln 300⨯===p p MgRT p p mg kT h 12 -25 在压强为Pa 1001.15⨯下,氮气分子的平均自由程为6.0×10-6cm,当温度不变时,在多大压强下,其平均自由程为1.0mm 。
第12章 机械振动 习题及答案1、什么是简谐振动?哪个或哪几个是表示质点作简谐振动时加速度和位移关系的? (1)a =8x ;(2)a =12x 2 ;(3) a =−24x ;(4)a =−2x 2 .答:系统在线性回复力的作用下,作周期性往复运动,即为简谐振动。
对于简谐振动,有a =−ω02x ,故(3)表示简谐振动。
2、对于给定的弹簧振子,当其振幅减为原来的1/2时,下列哪些物理量发生了变化?变化为原来的多少倍?(1)劲度系数;(2)频率;(3)总机械能;(4)最大速度;(5)最大加速度。
解:当 A ′=12A 时,(1)劲度系数k 不变。
(2)频率不变。
(3)总机械能 E ′=12kA ‘2=14E(4)最大速度 V ’=−A ′ω0sin(ω0t +φ)∴ V m ′=−A ′ω=12V m (5) 最大加速度 a′=−A′ω02cos(ω0t +φ)∴ a m ′=−A′ω02=12a m3、劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题图所示的两种方式连接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k Fx +==串 所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k mT +===ππωπ串 (2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有 2211x k x k x k +=并 故 21k k k +=并 同上理,其振动周期为212k k mT +='π4. 完全相同的弹簧振子,t =0 时刻的状态如图所示,其相位分别为多少?解:对于弹簧振子,t =0时,x =A cos φ ,v =−Asinφ (a ) x =x max ,故 cos φ=1v =0 ,故 sinφ=0 ∴ φ=0 (b )x =0 ,故 cosφ=0v <0 ,故 sinφ>0 ∴ φ=π2(c )x =0 ,故 cosφ=0(a)(b)(c)(d)v >0 ,故 sinφ<0 ∴ φ=3π2(d )x =−x max ,故 cos φ=−1v =0 ,故 sinφ=0 ∴ φ=π5、如图所示,物体的质量为m ,放在光滑斜面上,斜面与水平面的夹角为θ,弹簧的倔强系数为k ,滑轮的转动惯量为I ,半径为R 。
第12章 机械振动 习题及答案1、什么是简谐振动?哪个或哪几个是表示质点作简谐振动时加速度和位移关系的? (1)a =8x ;(2)a =12x 2 ;(3) a =−24x ;(4)a =−2x 2 .答:系统在线性回复力的作用下,作周期性往复运动,即为简谐振动。
对于简谐振动,有a =−ω02x ,故(3)表示简谐振动。
2、对于给定的弹簧振子,当其振幅减为原来的1/2时,下列哪些物理量发生了变化?变化为原来的多少倍?(1)劲度系数;(2)频率;(3)总机械能;(4)最大速度;(5)最大加速度。
解:当 A ′=12A 时,(1)劲度系数k 不变。
(2)频率不变。
(3)总机械能 E ′=12kA ‘2=14E(4)最大速度 V ’=−A ′ω0sin(ω0t +φ)∴ V m ′=−A ′ω=12V m (5) 最大加速度 a′=−A′ω02cos(ω0t +φ)∴ a m ′=−A′ω02=12a m3、劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题图所示的两种方式连接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k Fx +==串 所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k mT +===ππωπ串 (2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有 2211x k x k x k +=并 故 21k k k +=并 同上理,其振动周期为212k k mT +='π4. 完全相同的弹簧振子,t =0 时刻的状态如图所示,其相位分别为多少?解:对于弹簧振子,t =0时,x =A cos φ ,v =−Asinφ (a ) x =x max ,故 cos φ=1v =0 ,故 sinφ=0 ∴ φ=0 (b )x =0 ,故 cosφ=0v <0 ,故 sinφ>0 ∴ φ=π2(c )x =0 ,故 cosφ=0kmx =x max(a)km vx =0(b)km vx =0(c)kmx =−x max (d)v >0 ,故 sinφ<0 ∴ φ=3π2(d )x =−x max ,故 cos φ=−1v =0 ,故 sinφ=0 ∴ φ=π5、如图所示,物体的质量为m ,放在光滑斜面上,斜面与水平面的夹角为θ,弹簧的倔强系数为k ,滑轮的转动惯量为I ,半径为R 。
先把物体托住,使弹簧维持原长,然后由静止释放,试证明物体作简谐振动,并求振动周期.解:分别以物体m 和滑轮为对象,其受力如题图(b)所示,以重物在斜面上静平衡时位置为坐标原点,沿斜面向下为x 轴正向,则当重物偏离原点的坐标为x 时,有221d d sin t xm T mg =-θ ①βI R T R T =-21 ②βR tx=22d d )(02x x k T += ③ 式中k mg x /sin 0θ=,为静平衡时弹簧之伸长量,联立以上三式,有kxR txR I mR -=+22d d )(令 ImR kR +=222ω则有0d d 222=+x txω 故知该系统是作简谐振动,其振动周期为)/2(22222K R I m kRI mR T +=+==ππωπ6、质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值; (2)最大的回复力、振动能量,在哪些位置上动能与势能相等? 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m ma FJ 1016.32122-⨯==m mv E 当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x 7、一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程. 解:因为 ⎩⎨⎧-==0000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x8. 物体沿x 轴作简谐振动,在t =0时刻,其坐标为x 0=−8.50 cm ,速度v 0=−0.92 cm/s ,加速度a 0=47 m/s 2 ,试求:(1)弹簧振子的角频率和周期; (2)初相位和振幅。
解:设x =Acos(ω0t +φ) ,则t =0时x 0=Acosφ ,v 0=−Aω0sinφa 0=−Aω02cosφ=−ω02x 0(1)ω0=√−a 0x 0=√−47.0−0.085=23.5 rad/s T =2πω0=2×3.1423.5=0.27 s (2)5.85.230092.0085.0222202020=+=+=ωv x A cm 00461.0)085.0(5.230092.0tan 000-=-⨯--=-=x v ωϕ01.95=ϕ9、两质点作同方向、同频率的简谐振动,振幅相等。
当质点1在x 1=A/2 处,且向左运动时,另一个质点2在x 2=−A/2 处,且向右运动。
求这两个质点的相位差。
解:由旋转矢量图可知,当质点1在x 1=A/2处,且向左运动时,相位为π/3; 而质点2在x 2=−A/2处,且向右运动,相位为4π/3(如图)。
所以他们的相位差为π。
10、一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E 11、图为两个谐振动的t x -曲线,试分别写出其谐振动方程.解:由题图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 1=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+=12、一物块在水平面上作简谐振动,振幅为10 cm ,当物块离开平衡位置6 cm 时,速度为24 cm/s 。
问:(1)此简谐振动的周期是多少?(2)物块速度为±12 cm/s 时的位移是多少? 解:设x =Acos(ω0t +φ),已知A =10 cm ,故 x =10cos(ω0t +φ) ,v =−10ω0sin(ω0t +φ)∴ x 2100+v 2100ω02=1 (1)当x =6 cm ,v =24 cm/sω0=√v 2100−x 2=√242100−62=3 rad/s T =2πω0=2×3.143=2.09 s (2)当v =±12 cm/s 时x =±√100−v 2ω02=±√100−12232=±9.16 cm13、一长方形木块浮于静水中,其浸入部分高为a ,今用手指沿竖直方向将其慢慢压下,使其浸入部分高度为b ,然后放手任其运动。
试证明若不计阻力,木块的运动为简谐振动,并求出振动周期和振幅。
解:设木块质量为m ,底面积为S ,水的密度为ρ水,木块受到重力mg ⃑ 和浮力 f ⃑. 平衡时,mg =f =ρ水gSa ,以水面上某点为原点,向上为x 轴建立坐标系,则当木块在图示位置时,合力为F =f −mg =ρ水gS |b |−ρ水gS |a |=−ρ水gSx由牛顿第二定律 F =ma =m d 2x dt 2故 md 2x dt 2=−ρ水gSx∴ d 2x dt 2+ρ水gSxmx =0可见,木块作简谐振动,振幅为b −a ,ω0=√ρ水gS m ⁄, T =2π√m ρ水gS ⁄=2π√a g ⁄14、有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量14s m kg 100.1--⋅⋅⨯=∆t F ,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程. 解:由动量定理,有0-=∆⋅mv t F∴ 1-34s m 01.01010100.1⋅=⨯⨯=∆⋅=--m t F v按题设计时起点,并设向右为x 轴正向,则知0=t 时,100s m 01.0,0-⋅==v x >0 ∴2/30πφ=xbamg ⃑f⃑ OSx又 1s rad 13.30.18.9-⋅===l g ω ∴ m 102.313.301.0)(302020-⨯===+=ωωv v x A 故其角振幅rad 102.33-⨯==ΘlA小球的振动方程为rad )2313.3cos(102.33πθ+⨯=-t15、有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动的位相差为6π,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差.解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A ∴ m 1.02=A 设角θ为O AA 1,则θcos 22122212A A A A A -+=即 01.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ 即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π. 16、已知两简谐振动的振动方程分别为x 1=5cos (10t +34)π cm 和 x 2=6cos (10t +14π) cm ,试求其合成运动的振幅及初相。