功图计算动液面的方法初步研究和应用
- 格式:pdf
- 大小:664.21 KB
- 文档页数:5
动液面测试原理及计算方法原理:动液面测试的原理基于静力学和浮力定律。
当一个管浸入液体中,液体会上升到管的高度,直至液体的重力与液体的浮力相平衡。
根据浮力定律,液体对浸入其中的柱体的浮力与柱体所排斥的液体的重力相等。
因此,测量柱体的高度即可得到液位的高度。
计算方法:通常使用的计算方法有六种。
分别是:差压计算法、液面抽吸法、压力计算法、质量法、电容法和声波法。
1.差压计算法:该方法基于现象当一个管浸入液体中时,液体会上升到一个高度,并且液面高度会例如的在两边液面的差压。
通过测量液体的差压,可以计算出液位的高度。
2.液面抽吸法:该方法使用负压来抽吸液体。
当管浸入液体中,通过抽吸管中的空气创建一个负压,液体会上升到一个高度。
通过测量抽吸管中漂浮液体的高度,可以计算出液位的高度。
3.压力计算法:该方法基于现象当一个管浸入液体中时,液体会对管壁产生一个压力。
通过测量液体对管壁的压力,可以计算出液位的高度。
4.质量法:该方法基于现象当管浸入液体中时,液体会对管内柱体产生一个浮力。
通过测量柱体的质量,可以计算出液位的高度。
5.电容法:该方法通过测量液体对电容器的影响来计算液位的高度。
当液体上升到电容器的高度时,液体会使得电容器的电容值发生变化。
通过测量电容值的变化,可以计算出液位的高度。
6.声波法:该方法通过发送声波到液体中,当声波遇到液体表面时,会发生反射。
通过测量声波的反射时间,可以计算出液位的高度。
通过以上六种计算方法,可以准确地测量液体的液位。
不同方法的适用范围和精度有所不同,选择合适的方法取决于测量条件和需求。
2011-06-11 08:01:52 2楼油井的动液面参数直接反映了地层的供液情况及井下供排关系, 是进行采油工艺适应性评价和优化的关键数据之一[ 1- 3] 。
动液面测试传统的方法是利用声波进行测试, 但是, 这种方法有两方面的缺点, 一是回声的技术受井筒的情况制约产生误差; 二是不能实时在线测量。
文献[ 3- 4] 通过地面功图推算动液面, 但是由于悬点载荷的确定比较复杂和繁琐, 而且在计算过程中忽略了一些阻力因素, 也存在误差。
有杆泵主要由泵简、柱塞、游动阀( T V) 、固定阀( SV) 等组成。
把地面示功图或悬点载荷与时间的关系用计算机进行数学处理之后, 由于消除了抽油杆柱的变形、杆柱的粘滞阻力、振动和惯性等的影响, 将会得到形状简单而又能真实反映泵工作状况的井下泵示功图[ 8- 9] 。
井下泵相对于悬点受力简单、动载荷的影响小。
泵工作工程中, 泵筒内压力p ( t ) 随柱塞运动方向的改变, 由吸入压力p i 升至排出压力p o 或由p o 降至p i , 柱塞完成卸载或加载: 当SV 开启后, 液体经SV 孔吸入泵腔, 此时p ( t ) = p i , 柱塞加载完成, 泵载保持不变; 当TV 开启后, 液体经T V 孔排出泵腔, 此时p ( t ) = p o , 柱塞卸载完成, 泵载保持不变,当SV、T V 均处于关闭状态时, p i< p ( t ) < p o 。
如果忽略柱塞与液体的惯性力, 则作用于柱塞上的平衡方程应是: Fp ( t) = p p ( f p - f r ) - p ( t ) f p + Wp f ( 1)其中, Fp ( t ) ! ! ! 泵的载荷, N; p p ! ! ! 游动阀上部的压力, Pa; p ( t ) ! ! ! 泵筒内压力, Pa; Wp ! ! ! 柱塞重量, N; f ! ! ! 柱塞与泵筒间的摩擦阻力, N ; f p、f r ! ! ! 柱塞、抽油杆的截面积, m2。
用示功图计算抽油机井井口产液量方法研究一、本文概述本文旨在探讨和研究利用示功图计算抽油机井井口产液量的方法。
随着石油工业的发展,抽油机井作为重要的石油开采设备,其运行状态的监测和产液量的准确计量对于油田的开发与管理具有至关重要的意义。
示功图作为一种反映抽油机工作状态的图形化工具,能够直观地展示抽油机的工作过程和性能参数,因此,研究如何利用示功图计算抽油机井井口产液量具有重要的实践价值和理论意义。
本文将首先介绍抽油机井的工作原理和示功图的基本原理,为后续的研究提供理论基础。
然后,详细阐述利用示功图计算抽油机井井口产液量的方法,包括相关的数学模型、计算步骤和注意事项。
在此基础上,通过案例分析,验证所提方法的可行性和有效性。
总结研究成果,指出存在的问题和未来的研究方向,为石油工业的可持续发展提供有益参考。
本文的研究方法结合了理论与实践,旨在提高抽油机井井口产液量的计算精度和效率,为油田的日常管理和决策提供有力支持。
本文的研究也有助于推动石油工业技术的进步,促进我国石油工业的健康发展。
二、示功图基本原理示功图是一种用于描述抽油机井工作状态的重要工具,它反映了抽油机在一个完整冲程中,驴头悬点载荷随位移变化的封闭曲线。
示功图的基本原理基于抽油机的工作过程,即抽油泵在上下冲程中的液体吸入、压缩和排出过程。
在抽油机工作过程中,驴头悬点的载荷会随着抽油泵的工作状态而变化。
在抽油泵吸入液体时,由于液柱的重力作用,悬点载荷会减小;而在压缩和排出液体时,由于液柱的压缩和排出阻力,悬点载荷会增大。
这种载荷的变化会被示功图记录下来,形成一条封闭的曲线。
示功图的形状和大小可以反映抽油机井的工作状态。
例如,示功图的面积可以表示抽油泵在一个冲程中所做的功,从而反映出泵的效率和能耗情况。
示功图还可以用于计算抽油机井的井口产液量。
在计算井口产液量时,我们需要根据示功图中的数据,结合抽油泵的几何尺寸和流体的物理性质,进行一系列的计算和推导。
抽油机井实测示功图与动液面分析摘要:抽油井实测示功图和动液面是油井工况诊断的一项非常重要措施,通过油井示功图,结合动液面资料能够将深井泵泵况通过图形和数据的方式直观的展示出来,为技术人员分析、判断并采取有效的油井管控措施提供保障。
本文将根据现场实测示功图及动液面数据在油井泵况判断中的应用做一简要分析。
关键词:示功图;实测示功图;动液面;管理措施一、实测示功图与动液面分析(一)、油井正常工作示功图与动液面油井正常工作示功图与理论示功图非常接近,其上下增载线和活塞移动线都呈平行状,形成近似的平行四边形,此类油井工作的特点是油层供液充足,气体影响小,一般动液面都大于两百米以上,沉没度大、泵充满程度好,没有砂、蜡、气体的影响,产量高。
(二)、供液不足油井示功图与动液面供液不足油井实测示功图为一种形似“”菜刀“”形状的功图,但是这个“刀把”始终是处于图形右上的位置,这种油井功图由于油层供液差,沉没度小,所以泵经常处于半充满状态,甚至在某一段时间内不进油。
也就是所谓的“间歇出液”。
所以当活塞上行时光杆正常加载,但下行时由于活塞接触不到泵内的液体,不能正常减载,所以在图形上显示减载线始终处于接近上载荷线处形成“刀把”当活塞下行接触到液面时则迅速减载,形成“刀”头,这类油井的油层供液差,或有堵塞,动液面非常低沉没度几十米到几米。
(三)、气体影响功图与动液面气体影响示功图形状与供液不足类似,但油层供液能力相对较好,由于原油气油比过大,套气压力控制过高,使泵内进入大量气体,下冲程时泵内气体受到活塞压缩,减载缓慢,图形上减载线表现为弧状下行,这类井动液面相对较高,现场动液面一般为一百米至四五百米之间,换算沉没度较高。
(四)、气锁影响功图与动液面当进入泵的气量很大时,活塞在上下冲程中始终是气体在压缩与膨胀,井口不出液或出液很少,由于泵内高压气体的顶托作用,使得光杆加载缓慢,图线呈现缓慢上行,下行时,气体同样的顶托作用使得卸载线变缓,这类井油层供液能力较好,原油气油比大,液面一般较高,但有些供液不足油井由于套管闸门常关,套气压力太大也会造成气锁功图,对于下封隔器的油井来说,由于油层产生的气体被封堵在油套环空里,所以有一部分产气量大的井也有气锁现象。
抽油机井示功图法计算动液面的修正算法张胜利;罗毅;吴赞美;王丽娜;赵磊;章莎莉【摘要】Calculating dynamic fluid level with indicator diagram of rob-pumped well has become a hot topic in recent years for studying closed-loop control of production wells. Based on further analyzing the model of dynamic fluid level computation, this paper establish a corrected algorithm method connecting the actual measured fluid level with annular pressure gradient by statistical regressing site-tested data of annulus pressure gradient in 10 wells. Using this calculating model, the basic method of using indicator diagram to calculate dynamic fluid level is corrected, with which the relatively much more precise results are reached. The success is a useful trial method to carry out intellectual injection-production adjustment of oil wells by calculating dynamic fluid level with indicator diagram in Huabei Oilfield.%通过抽油机井示功图计算动液面是近年来油井闭环控制的研究方向.在研究功图法计算动液面模型的基础上,通过对10口井的环空压力梯度现场测试数据的统计回归,建立了实测动液面与环空压力梯度关联的修正计算模型,利用上述计算模型修正了根据示功图计算动液面的基础方法,获得了相对准确的计算结果.对于华北油田现场应用示功图计算动液面实现油井智能供排协调是一种有益的尝试.【期刊名称】《石油钻采工艺》【年(卷),期】2011(033)006【总页数】3页(P122-124)【关键词】示功图;载荷;计算;动液面【作者】张胜利;罗毅;吴赞美;王丽娜;赵磊;章莎莉【作者单位】华北油田公司采油工艺研究院,河北任丘062552;华北油田公司采油工艺研究院,河北任丘062552;华北油田公司采油工艺研究院,河北任丘062552;华北油田公司采油工艺研究院,河北任丘062552;华北油田公司采油一厂,河北任丘062552;华北油田公司采油工艺研究院,河北任丘062552【正文语种】中文【中图分类】TE355.5抽油机井动液面是了解油井的供液情况、诊断油井故障的重要参数。
示功图计算动液面方法研究和应用刘作鹏王海文杨道永摘要:本文通过对当前动液面测试存在问题的分析,探讨了利用示功图解决该问题的途径与方法。
目前油田测量动液面经常碰到套管放气阀出油,无法测试动液面的问题。
动液面测试值显示液面距井口很近,而示功图又显示供液不足,使新措施失去判断下泵深度的依据。
动液面作为油田生产一个重要数据每个月都要进行测量,而测量常常受到多种因素干扰,结果测试误差较大,准确得到油井动液面成为油田需要解决的一个重要问题。
示功图是油田日常管理的基础测试数据,可以方便的取得。
示功图包含了油井多重信息:油井的产量,生产状况,井下流体的流动特性,杆柱的受力状况,动液面的影响程度,砂蜡气等多种干扰因素等都会在示功图上显示出来。
动液面对油井上冲程影响较大,动液面的数据就包含在上冲程的载荷线内,利用示功图下冲程载荷线提供的载荷信息剔出上冲程中非动液面影响因素,结合泵径,井液密度等参数就可以计算出油井动液面。
采用此方法求出的动液面去掉了狗腿脚、障碍物和气泡等的影响,更能真实的反映地层供液能力。
通过现场应用和实际油井对比,准确率较高。
关键词:动液面示功图载荷引言(introduction)1目前测量动液面的方法,存在的问题目前油田测量动液面的主要方法仍然为回声仪,回声仪测试动液面,利用声波在环形空间中传播速度和测得的反射时间来计算其位置的。
声波的传递速度和质量由2新技术的应用带来的问题,远程监控动液面的测量问题3此技术的意义及应用在那里,大体怎么样示功图与静载荷(Dynamometer card And The Static Polished-rod Load Curves)首先假设抽油杆是均匀直径杆,在井筒中不发生弯曲;井筒中的液体密度认为上下一致,油套环空中的液体主要为原油。
以此建立模型推导公式,应用到工程中再修改其误差。
图1 示功图与理论静载荷线示意图图1是一个实际的油井示功图,由功图可以判断该井受气体影响。
运用示功图计算动液面深度方法研究运用示功图计算动液面深度方法研究摘要:随着安塞油田的信息化建设,对动液面资料的录取要求更高,传统的液面资料录取方式已不能适应油田发展,且传统的油井管柱接箍计算声速法,存在误差大的弊端。
本文通过理论研究,结合目前数字化系统现有功图资料,分析功图计算液面的可行性,尝试通过功图数据确定一个相对准确的动液面数据,并用于实际生产。
关键词:安塞油田示功图计算动液面一、前言油井动液面是了解油井的供液情况、诊断油井故障的重要参数,能直接反映地层的供液情况及井下供排关系,是进行采油工艺适应性评价和优化的关键数据之一。
在传统管理模式下,动液面的测量是利用声波法,需由测井工定期到井口进行测量,除了劳动强度大,测量误差也相对较大,同时不能实现实时监测。
随着安塞油田数字化、智能化油田建设进程的推进,对于实现油井动液面的实时监控迫在眉睫。
在目前的运行系统下,油井示功图的录取已经实现了实时化和自动化,并且录取有井下泵功图。
在此基础上,开展利用示功图计算动液面的理论研究,初步建立计算模型,主要利用实测功图计算油井动液面。
在油井生产过程中,液面数据根据抽油泵示功图能够切实反映液面的实际情况,计算出一个合理的液面,对油田生产有着举足轻重的作用。
二、功图计算动液面的理论依据随着安塞油田数字化、智能化油田建设进程的推进,示功图录取实现了实时性,示功图的录取包括了光杆示功图和井下泵示功图,且井下泵相对于悬点受力简单、动载荷的影响小,根据油井泵功图分析阀门开闭点,确定泵载,求出泵沉没压力,即抽油泵沉没在油井动液面以下泵吸入口处流体的压力,进而求出动液面深度。
计算原理:泵沉没度对应的沉没压力与上冲程时泵的吸入压力之间存在一定关系,因此可由泵示功图求出沉没压力,再由沉没压力推算动液面深度。
三、计算动液面深度的应用为验证计算的精度和敏感性,选取了部分井进行实例计算和效果分析,运用数字化系统下示功图,结合2012年现场环空测试数据,应用以上方法对3口井进行了动液面计算结果表明,3口油井动液面的计算数据误差率小于8%,满足油田需求,可以代替声波法测试动液面并应用于现场实际中。
示功图智能校核动液面方法在油田数字化项目中的应用
刘欢
【期刊名称】《自动化应用》
【年(卷),期】2024(65)10
【摘要】大庆油田第三采油厂1#油田开采位置特殊,地下油位深、井口造斜孔浅、井斜角大、井口至抽油泵距离较长、设备井油管构造复杂,同时井口结蜡严重,导致
油井动液面声波数据测定失效,严重影响其油井产能分析、油位动态检测、日常管
理等。
为解决该问题,基于示功图智能分析技术,结合杆管运动力学理论,构建示功图智能校核动液面试验模型,获取1#油田深斜井示功图及动液面的适配参数,再将其与标准井进行校正,经计算,得出深斜井准确液位深度。
试验证明,该方法可将绝对误差控制在20 m范围内,可为类似油田的油井动液面测算提供一定指导。
【总页数】3页(P154-156)
【作者】刘欢
【作者单位】大庆油田第三采油厂数字化运维中心自控仪表室
【正文语种】中文
【中图分类】TF31
【相关文献】
1.示功图计算抽油井动液面模型及提高精度方法研究
2.利用示功图计算动液面方法研究及应用
3.低渗透油田示功图实时计算动液面方法
4.低渗透油田示功图实时计
算动液面方法5.深斜井示功图智能校核动液面方法研究
因版权原因,仅展示原文概要,查看原文内容请购买。
抽油机井动液面资料录取方法的探索与应用摘要:为掌握抽油井生产动态及判断井下设备的工作状况,测试动液面是生产现场经常而必要的一项工作。
测试方法一般采用回声探测仪来进行测试。
现场上应用过程中,由于受设备、环境及人力资源因素限制,存在液面测试率低、测试成功率低、准确程度不高及安全隐患多等诸多问题。
一是液面测试操作繁琐,安全隐患多,测试率较低;二是环形空间狭窄(掺油井套管结蜡或小套管井)及液面偏深,声波衰减幅度大,测试成功率低;三是音速指标影响因素多且变化幅度大,采用同一音速计算,液面准确程度低。
种种因素致使液面资料测试率、准确率偏低,难以满足现场生产需要。
为此,提出了液面资料录取方法与应用的这个课题,通过研究与应用,即减少了测试工作量,规避了安全风险,又可以提高液面资料的全准率,为实时了解及掌握油井生产状况提供了技术保证。
关键词:液面录取探索应用一、技术路线确定动液面计算方法,求准动液面资料;利用动液面与泵充满系数的协调关系,制作关系图版;通过功图资料推导动液面,从而实现减少测试工作量、提高动液面资料全准率的目的。
1.动液面计算方法的确定目前动液面计算方法有三种方式,即音标法、接箍法及音速法。
①音标法在油管已知位置上安装音标,在声波反射曲线上,通过比例关系可以计算动液面位置。
②接箍法利用油管接箍数计算动液面深度,即在测试曲线上选出连续、一定数量的接箍波,通过比例关系可以计算液面深度。
③音速法声波速度与介质压力存在函数关系,利用音标井求得不同压力下的液面,通过下式即可计算不同压力下声波速度和动液面。
以雷64-18-17C为例,该井2010年6月25日下入音标,位置1198.15米。
对该井进行系统测试,取得不同压力下液面及对应声波速度资料(见表1)。
确定声波速度即可求准动液面,可作为本地区动液面计算的主要方法。
2.供排关系图版的建立沉没度水平反映地层供液能力,充满系数反映深井泵排液状况,二者结合在一起可以反映油井供、排的协调关系。