数学符号
- 格式:doc
- 大小:51.50 KB
- 文档页数:2
常用数学符号大全数学,作为一门精确而又充满逻辑的学科,有着丰富多样的符号来表达各种数学概念和运算。
这些符号就像是数学世界的语言,让数学的表达更加简洁、准确和高效。
下面就让我们一起来了解一些常用的数学符号吧!一、基本运算符号1、加号(+):用于表示两个或多个数相加的运算。
例如:2 + 3 = 5。
2、减号():表示减法运算,如 5 2 = 3。
3、乘号(×或):指示乘法操作,比如 2 × 3 = 6 或者 2 3 = 6。
4、除号(÷或/):用于表示除法运算,像 6 ÷ 2 = 3 或者 6 / 2 = 3。
二、关系符号1、等于号(=):表明左右两边的量相等,比如 2 + 3 = 5 。
2、大于号(>):表示左边的量大于右边的量,例如 5 > 3 。
3、小于号(<):与大于号相反,意味着左边的量小于右边的量,像 3 < 5 。
4、大于等于号(≥):表示左边的量大于或等于右边的量,例如 5 ≥ 3 。
5、小于等于号(≤):表示左边的量小于或等于右边的量,比如 3 ≤ 5 。
三、集合符号1、属于(∈):如果一个元素属于某个集合,就用这个符号表示。
例如,若集合 A ={1, 2, 3},2 ∈ A 。
2、不属于(∉):与属于相反,如果一个元素不属于某个集合,就用这个符号。
比如 4 ∉ A 。
3、并集(∪):表示两个集合中所有元素组成的新集合。
例如,集合 A ={1, 2, 3},集合 B ={3, 4, 5},则 A ∪ B ={1, 2, 3, 4, 5} 。
4、交集(∩):表示两个集合中共同元素组成的集合。
比如,集合 A ={1, 2, 3},集合 B ={2, 3, 4},则A ∩ B ={2, 3} 。
四、代数符号1、未知数(通常用 x、y、z 等表示):在方程中代表需要求解的值。
例如,在方程 2x + 3 = 7 中,x 就是未知数。
2、系数(用数字与未知数相乘的数字):比如在式子 5x 中,5 就是系数。
数学符号大全1. 数字和基本运算符号•0, 1, 2, 3, 4, 5, 6, 7, 8, 9:十进制数字。
•+:加法运算符。
•-:减法运算符。
•× 或 *:乘法运算符。
•÷ 或 /:除法运算符。
•%:取余运算符。
2. 算术表达式符号•( ):括号。
用于改变运算顺序。
•{ }:花括号。
常用于集合符号。
•[ ]:方括号。
常用于向量和数组的表示。
•|:绝对值符号。
•√:平方根符号。
•^:乘方符号,表示乘方运算。
3. 特殊数学符号•π:圆周率。
•∞:无穷大。
•e:自然对数的底数。
•i:虚数单位,表示根号下-1。
•≈:约等于符号,表示两个数值大致相等。
•≡ :全等符号,表示恒等于。
4. 比较符号•=:等于符号。
•≠:不等于符号。
•<:小于符号。
•:大于符号。
•≤:小于或等于符号。
•≥:大于或等于符号。
5. 代数符号•x, y, z:常用的代数变量。
•a, b, c:常用的系数或常数。
•n:整数变量。
•α, β, γ:希腊字母符号,常用于表示角度或系数。
•∑:求和符号。
•∏:求积符号:•∴:因此符号。
6. 集合和逻辑符号•∅:空集符号。
•∈:属于符号,表示元素属于集合。
•∉:不属于符号,表示元素不属于集合。
•∪:并集符号,表示两个或多个集合的并集。
•∩:交集符号,表示两个或多个集合的交集。
•⊂:子集符号,表示一个集合是另一个集合的子集。
7. 几何符号•∠:角度符号,用于表示角度。
•∥:平行符号,表示两条线段平行。
•⊥:垂直符号,表示两条线段垂直。
•≅:全等符号,表示两个图形全等。
8. 微积分符号•∂:偏导符号,用于表示偏导数。
•∫:积分符号,表示定积分。
•∬:重积分符号,表示二重积分。
•∭:三重积分符号,表示三重积分。
•∮:曲线积分符号,表示沿曲线的积分。
9. 统计学符号•μ:总体均值。
•σ:总体标准差。
•x̄:样本均值。
•s:样本标准差。
•P:概率。
•Z:正态分布的标准化变量。
1、几何符号≱∥∠≲≰≡(恒等号)≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ≱∸△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §≳≴≵≶≷≸≹≺≻≼ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεδεζηθικλμνπξζηυθχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∸≈≌≒≠≡≤≥≦≧≮≯⊕≰≱≨≲℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∸”是相似符号,“≌”是全等号,“∥”是平行符号,“≱”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r 个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号C-组合数A-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5×4×3×2×1=120C-Combination- 组合A-Arrangement-排列13、离散数学符号├ 断定符(公式在L中可证)╞ 满足符(公式在E上有效,公式在E上可满足)┐ 命题的“非”运算∧命题的“合取”(“与”)运算∨命题的“析取”(“或”,“可兼或”)运算→ 命题的“条件”运算A<=>B 命题A与B 等价关系A=>B 命题A与B的蕴涵关系A* 公式A的对偶公式wff 合式公式iff 当且仅当↑ 命题的“与非” 运算(“与非门” )↓ 命题的“或非”运算(“或非门” )□ 模态词“必然”◇模态词“可能”θ 空集∈属于(??不属于)P(A)集合A的幂集|A| 集合A的点数R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”(或下面加≠)真包含∪集合的并运算∩ 集合的交运算- (~)集合的差运算〡限制[X](右下角R) 集合关于关系R的等价类A/ R 集合A上关于R的商集[a] 元素a 产生的循环群I (i大写) 环,理想Z/(n) 模n的同余类集合r(R) 关系R的自反闭包s(R) 关系的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:X→Y f是X到Y的函数GCD(x,y) x,y最大公约数LCM(x,y) x,y最小公倍数aH(Ha) H 关于a的左(右)陪集Ker(f) 同态映射f的核(或称f同态核)[1,n] 1到n的整数集合d(u,v) 点u与点v间的距离d(v) 点v的度数G=(V,E) 点集为V,边集为E的图W(G) 图G的连通分支数k(G) 图G的点连通度△(G) 图G的最大点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C 复数集N 自然数集(包含0在内)N* 正自然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴+plus 加号;正号-minus 减号;负号±plus or minus 正负号×is multiplied by 乘号÷is divided by 除号=is equal to 等于号≠is not equal to 不等于号≡is equivalent to 全等于号≌is approximately equal to 约等于≈is approximately equal to 约等于号<is less than 小于号>is more than 大于号≤is less than or equal to 小于或等于≥is more than or equal to 大于或等于%per cent 百分之…∞infinity 无限大号√(square) root 平方根X squared X的平方X cubed X的立方∵since; because 因为∴hence 所以∠angle 角≲semicircle 半圆≰circle 圆○circumference 圆周△triangle 三角形≱perpendicular to 垂直于∪intersection of 并,合集∩union of 交,通集∫the integral of …的积分∑(sigma) summation of 总和°degree 度′minute 分〃second 秒#number …号@at 单价。
数学符号大全数学符号是数学语言的核心部分,它们用于表示数学概念、关系和操作。
以下是一些基本且常见的数学符号大全分类:1. 几何符号:-⊥(垂直符号)-∥(平行符号)-∠(角符号)-⌒(弧线或弧度符号)-⊙(圆的符号)-≡(恒等于或全等符号)-≌(几何图形全等符号)-△(三角形符号)-∽(相似符号)2. 代数符号:-∝(正比符号)-∧(逻辑与,集合论中的交集符号在特定上下文中)-∨(逻辑或,集合论中的并集符号在特定上下文中)- ~(同余或相关性符号,也可能表示逆元素或相似)-∫(积分符号)-≠(不等于符号)-≤(小于等于符号)-≥(大于等于符号)-≈(约等于或近似等于符号)-∞(无穷大符号)-∶(比例符号或比率)3. 集合符号:-∪(集合并运算符)-∩(集合交运算符)-∈(属于符号,表示元素属于某个集合)-∅(空集符号)4. 运算符号:- +(加号)--(减号或负号)-×或·(乘号)-÷或/(除号)-√(平方根符号)- ^ 或∙∙∙(幂运算符,例如a^2 表示a 的平方)- !(阶乘符号)-∑(求和符号,表示对一系列数进行求和)-π(圆周率)-∏(乘积符号,表示对一系列数进行连乘)5. 推理和逻辑符号:-⇒或→(蕴含符号)-⇔或↔(双箭头,表示逻辑上的等价)- ¬(逻辑非符号)-∀(全称量词,对于所有)-∃(存在量词,存在某一个)-⊢(推导出符号,表示从前提可以得出结论)-⊤和⊥(真和假命题符号,在逻辑学中使用)6. 其他符号:- lim(极限符号)-∂(偏导数符号)-Δ(增量或变化量符号)-θ、α、β、γ等希腊字母常用于数学表达式中的变量-⊂、⊃(子集和超集符号)-≡(定义或同构符号,在某些上下文中)以上列出的是许多常用的数学符号,实际数学领域中的符号远不止这些,还包括了更高级的分析、概率论、统计学、拓扑学以及其他分支学科中的特殊符号。
常用数学符号大全1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
(完整版)常用数学符号大全1. 加号(+):表示两个数相加,例如 2 + 3 = 5。
2. 减号():表示两个数相减,例如 5 3 = 2。
3. 乘号(×):表示两个数相乘,例如2 × 3 = 6。
4. 除号(÷):表示两个数相除,例如6 ÷ 2 = 3。
5. 等号(=):表示两个数相等,例如 2 + 3 = 5。
6. 不等号(≠):表示两个数不相等,例如2 + 3 ≠ 6。
7. 大于号(>):表示一个数大于另一个数,例如 5 > 3。
8. 小于号(<):表示一个数小于另一个数,例如 3 < 5。
9. 大于等于号(≥):表示一个数大于或等于另一个数,例如 5 ≥ 3。
10. 小于等于号(≤):表示一个数小于或等于另一个数,例如3 ≤ 5。
11. 分数(/):表示两个数相除,例如 1/2 表示 1 除以 2。
12. 平方根(√):表示一个数的平方根,例如√4 = 2。
13. 立方根(∛):表示一个数的立方根,例如∛8 = 2。
14. 开方(^):表示一个数的指数,例如 2^3 = 8。
15. 对数(log):表示一个数的对数,例如 log10(100) = 2。
16. 倒数(1/x):表示一个数的倒数,例如 1/2 表示 2 的倒数。
17. 绝对值(|x|):表示一个数的绝对值,例如 | 3 | = 3。
18. 三角函数(sin, cos, tan):表示正弦、余弦和正切函数,例如sin(30°) = 0.5。
19. 反三角函数(arcsin, arccos, arctan):表示反正弦、反余弦和反正切函数,例如arcsin(0.5) = 30°。
20. 积分(∫):表示求一个函数的不定积分,例如∫(x^2)dx= (1/3)x^3 + C。
21. 微分(d/dx):表示求一个函数的导数,例如 d/dx(x^2) =2x。
以下是常见的特殊数学符号的大全:加号(+):表示两个数相加。
减号(-):表示一个数减去另一个数。
乘号(×):表示两个数相乘。
除号(÷):表示一个数除以另一个数。
等号(=):表示两个数相等。
大于号(>):表示一个数大于另一个数。
小于号(<):表示一个数小于另一个数。
大于等于号(≥):表示一个数大于或等于另一个数。
小于等于号(≤):表示一个数小于或等于另一个数。
不等号(≠):表示两个数不相等。
正无穷(∞):表示无限大。
负无穷(-∞):表示无限小。
累加符号(∑):表示求和。
累乘符号(∏):表示求积。
平方根(√):表示一个数的平方根。
绝对值(|x|):表示一个数的非负值。
百分号(%):表示一个数除以100的结果。
π(pi):表示圆周率,约等于3.14159。
阶乘(!):表示一个正整数的阶乘,例如5!表示5的阶乘,等于5 ×4 ×3 ×2 ×1 = 120。
无穷小量(ε):表示一个无限接近于零的数。
集合符号:并集(∪):表示两个集合的并集。
交集(∩):表示两个集合的交集。
子集(⊆):表示一个集合是另一个集合的子集。
真子集(⊂):表示一个集合是另一个集合的真子集,即子集但不等于。
为空集(∅):表示一个集合中没有任何元素。
全集(U):表示所有可能元素的集合。
逻辑符号:逻辑与(∧):表示逻辑与操作。
逻辑或(∨):表示逻辑或操作。
非(∼):表示逻辑非操作。
蕴含(→):表示逻辑蕴含关系。
等价(≡):表示逻辑等价关系。
否定(∄):表示不存在。
微积分符号:微分符号(d):表示微分操作。
积分符号(∫):表示积分操作。
偏导数(∂):表示偏导数。
极限符号(lim):表示极限操作。
级数符号(∑):表示级数求和。
梯度(∇):表示向量的梯度。
整除符号(|):表示一个数能够整除另一个数。
微分号(δ):表示微小变化。
取整符号(⌊x⌋):表示向下取整。
取余符号(mod):表示取余操作。
常用数学符号大全1、几何符号ⅷⅶ↋ↆↄ△2、代数符号ⅴⅸⅹ~ⅼↅↇↈↃⅵↀ3、运算符号如加号(+),减号(-),乘号(³或²),除号(÷或/),两个集合的并集(ⅻ),交集(ⅺ),根号(ⅳ),对数(log,lg,ln),比(:),微分(dx),积分(ⅼ),曲线积分(ⅽ)等。
4、集合符号ⅻⅺⅰ5、特殊符号ⅲπ(圆周率)6、推理符号|a| ↂ△ⅶⅺⅻↅↆ±ↈↇⅰⅬⅭⅮⅯ↖↗↘↙ⅷⅸⅹ&; §←↑→↓↔↕↖↗ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεδεζηθικλμνπξζηυθχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰⅱⅲ↚ⅳⅴⅵ↛ⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↀↁↂↃↄ↝ↅↆↇↈ↞↟↉↊⊕↋↠℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“Ↄ”是近似符号,“ↅ”是不等号,“>”是大于符号,“<”是小于符号,“ↈ”是大于或等于符号(也可写作“↉”),“ↇ”是小于或等于符号(也可写作“↊”),。
“Ⅾ”表示变量变化的趋势,“ↂ”是相似符号,“ↄ”是全等号,“ⅷ”是平行符号,“”是垂直符号,“ⅴ”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“ⅰ”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(ⅶ),ⅿ因为,(一个脚站着的,站不住)ⅾ所以,(两个脚站着的,能站住)总和(ⅲ),连乘(ⅱ),从n个元素中每次取出r 个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号C-组合数A-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5³4³3³2³1=120C-Combination- 组合A-Arrangement-排列13、离散数学符号├断定符(公式在L中可证)╞满足符(公式在E上有效,公式在E上可满足)┐命题的“非”运算ⅸ命题的“合取”(“与”)运算ⅹ命题的“析取”(“或”,“可兼或”)运算Ⅾ命题的“条件”运算A<=>B 命题A 与B 等价关系A=>B 命题A与B的蕴涵关系A* 公式A 的对偶公式wff 合式公式iff 当且仅当Ⅽ命题的“与非”运算(“与非门”)Ⅿ命题的“或非”运算(“或非门”)□模态词“必然”◇模态词“可能”θ空集ⅰ属于(??不属于)P(A)集合A的幂集|A| 集合A的点数R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”(或下面加ↅ)真包含ⅻ集合的并运算ⅺ集合的交运算- (~)集合的差运算〡限制[X](右下角R) 集合关于关系R的等价类A/ R 集合A上关于R的商集[a] 元素a 产生的循环群I (i大写) 环,理想Z/(n) 模n的同余类集合r(R) 关系R的自反闭包s(R) 关系的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:XⅮY f是X到Y的函数GCD(x,y) x,y最大公约数LCM(x,y) x,y最小公倍数aH(Ha) H 关于a的左(右)陪集Ker(f) 同态映射f的核(或称f同态核)[1,n] 1到n的整数集合d(u,v) 点u与点v间的距离d(v) 点v的度数G=(V,E) 点集为V,边集为E的图W(G) 图G的连通分支数k(G) 图G的点连通度△(G) 图G的最大点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C 复数集N 自然数集(包含0在内)N* 正自然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴上述符号所表示的意义和读法(中英文参照)+plus 加号;正号-minus 减号;负号±plus or minus 正负号³is multiplied by 乘号÷is divided by 除号=is equal to 等于号ↅis not equal to 不等于号ↆis equivalent to 全等于号ↄis approximately equal to 约等于Ↄis approximately equal to 约等于号<is less than 小于号>is more than 大于号ↇis less than or equal to 小于或等于ↈis more than or equal to 大于或等于%per cent 百分之…ⅵinfinity 无限大号ⅳ(square) root 平方根X squared X的平方X cubed X的立方ⅿsince; because 因为ⅾhence 所以ⅶangle 角semicircle 半圆↋circle 圆○circumference 圆周△triangle 三角形perpendicular to 垂直于ⅻintersection of 并,合集ⅺunion of 交,通集ⅼthe integral of …的积分ⅲ(sigma) summation of 总和°degree 度′minute 分〃second 秒#number …号@at 单价。