材料物理性能-功能晶体材料概要
- 格式:ppt
- 大小:1.43 MB
- 文档页数:76
<<材料物理性能>>基本要求(一)一,基本概念:1.摩尔热容: 使1摩尔物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为摩尔热容。
它反映材料从周围环境吸收热量的能力。
2.比热容:质量为1kg的物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为比热容。
它反映材料从周围环境吸收热量的能力。
3.比容:单位质量(即1kg物质)的体积,即密度的倒数(m3/kg)。
4.格波:由于晶体中的原子间存在着很强的相互作用,因此晶格中一个质点的微振动会引起临近质点随之振动。
因相邻质点间的振动存在着一定的位相差,故晶格振动会在晶体中以弹性波的形式传播,而形成“格波”。
5.声子(Phonon): 声子是中集体激发的准粒子,就是振动中的简谐振子的能量量子。
6.德拜特征温度: 德拜模型认为:晶体对热容的贡献主要是低频弹性波的振动,声频支的频率具有0~ωmax分布,其中,最大频率所对应的温度即为德拜温度θD,即θD=ћωmax/k。
7.示差热分析法(Differential Thermal Analysis, DTA ): 是在测定热分析曲线(即加热温度T与加热时间t的关系曲线)的同时,利用示差热电偶测定加热(或冷却)过程中待测试样和试样的温度差随温度或时间变化的关系曲线ΔT~T(t),从而对材料组织结构进行分析的一种技术。
8.示差扫描量热法(Differential Scanning Calorimetry, DSC): 用示差方法测量加热或冷却过程中,将试样和样的温度差保持为零时,所需要补充的热量与温度或时间的关系。
9.热稳定性(抗热振性):材料承受温度的急剧变化(热冲击)而不致破坏的能力。
10.塞贝克效应:当两种不同的导体组成一个闭合回路时,若在两接头处存在温度差则回路中将有电势及电流产生,这种现象称为塞贝克效应。
11.玻尔帖效应:当有电流通过两个不同导体组成的回路时,除产生不可逆的焦耳热外,还要在两接头处出现吸热或放出热量Q的现象。
一章1、原子间的键合类型有几种?(P1)金属键、离子键、共价键、分子键和氢键2、什么是微观粒子的波粒二象性?(P1)光子这种微观粒子表现出双重性质——波动性和粒子性,这种现象叫做波粒二象性。
3、什么是色散关系?什么是声子?声子的性质?(P20、P25)将频率和波矢的关系叫做色散关系。
声子就是晶格振动中的独立简谐振子的能量量子。
性质:(1)声子的粒子性:声子和光子相似,光子是电磁波的能量量子,电磁波可以认为是光子流,光子携带电磁波的能量和动量。
(2)声子的准粒子性:准粒子性的具体表现:声子的动量不确定,波矢改变一个周期或倍数,代表同一振动状态,所以不是真正的动量。
4、声子概念的意义?(P25)(1)可以将格波雨物质的相互作用过程理解为,声子和物质的碰撞过程,使问题大大简化,得出的结论也正确。
(2)利用声子的性质可以确定晶格振动谱。
5、简述高聚物分子运动的特点。
(P29)(1)运动单元的多重性(2)分子运动时间的依赖性(3)分子运动的温度依赖性6、影响高聚物玻璃化温度的因素(P33)(1)分子链结构的影响(2)分子量的影响(3)增塑剂的影响(4)外界条件的影响7、影响高聚物流动温度的因素(P39)(1) 分子量(2)分子间作用力(3)外力8、线性非晶高聚物的力学状态?(P29)二章1、材料的热学性能的内容。
(P41)材料的热学性能包括热容、热膨胀、热传导、热稳定性、熔化和升华等。
2、什么是热容?(P42)什么是杜隆-柏替定律和奈曼-柯普定律(P43)热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。
杜隆-珀替定律:恒压下元素的原子热容为25J/(k·mol);奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。
3、试述线膨胀系数与体膨胀系数的关系。
(P50)4、请分析热膨胀与其他性能的关系。
(P49)5、影响材料热膨胀系数的因素。
(P50)(1)化学组成、相和结构的影响(2)化学键的影响(3)相变的影响6、简述影响热导率的因素。
材料物理性能概述引言当今世界,材料越来越成为非常重要的社会生产支柱之一,而材料的性能越来越多地被重视和研究。
本文主要介绍一下材料的各种物理性能。
本文主要从六个方面来介绍,分别是材料的电学性能、磁学性能、热学性能、光学性能。
一、材料的电学性能1.概述材料的电学性能包括以下内容:导电性的一般理论处理、金属材料的导电性、半导体材料的导电性、离子晶体导电性与超导电性。
导电性方面,引入电导率、电流密度概念。
2. 导电性的一般理论处理材料依导电性的分类及导电性范围,四类材料的导电性范围,导电性与材料中电子态间的关系;导电性与材料中载流子的浓度、电荷量、移动速度(及迁移率)的一般关系,在半导体、金属(经典自由电子理论)中的具体形式;量子自由电子理论下的导电性,Fermi球漂移,导电电子数,电导率结论()σετ=132N e vF F2的推导,自由电子的自由程;能带理论下的导电性结论,各类材料导电性相对强弱的讨论,Brillouin区边界的限制。
3. 金属材料的导电性机理:实验规律(Matthiessen规则),残余电阻与温度对电阻的影响,电阻根源—周期势场的不规则点,即散射中心(数量、强度)、导电性的微观控制因素—电子的自由程。
影响因素:温度的影响规律;合金成分的影响(固溶态—影响强度与原子半径及化合价差的关系,有序化的影响;多相区);相变的影响。
其它(自学):偏离Matthiessen规则的合金化影响,K状态,其它影响因素;电阻研究的意义:材料分析方法(高纯度分析,相变及转变分析),测温等应用,精密电阻合金、导电材料、电热合金等。
4 . 半导体材料的导电性半导体材料简介(本征—单质、化合物材料,掺杂— n型,p型,材料的电子态特征),导电性(0K下不导电,T>0K时,依靠热激活导电),电子有效质量、电子与空穴。
载流子浓度理论推导,本征半导体的典型数值,掺杂半导体的结构、附近能级的产生、及对载流子浓度的影响;半导体材料的导电性与温度、掺杂的关系,晶体缺陷的影响。
金属物理性能 Physical Properties of Metals and Alloys 1. 结构性指标、功能性指标、结构材料、功能材料 结构性指标:材料的高强度、高韧性、耐高温、抗腐蚀等 功能性指标:原子内部的电子以至原子核间交互作用表现出来的特性结构材料:以强度 刚度 韧性 耐劳性 硬度 疲劳强度等力学性能为特征的材料。
如钢,铁。
功能材料:具有特定物理、化学或生物学特性的材料,如超导材料。
2. 自发辐射、共振吸收、受激辐射或诱发辐射(a) 自发辐射:处于激发态的原子中,电子在激发态能级上只能停留一段很短的时间,就自发地跃迁到较低能级中去,同时辐射出一个光子,这种辐射叫做自发辐射。
(b) 共振吸收:从经典电动力学的观点来看,吸收光和发射光的基本单元是谐振子。
每种谐振子都有它的固有频率,当外来电磁波的频率和谐振子的固有频率相同时,谐振子会对外来的辐射产生很强的吸收,这种吸收称为共振吸收。
(c) 当原子处于激发态E 2时,如果恰好有能量(这里E 2>E 1)的光子射来,在入射光子的影响下,原子会发出一个同样的光子而跃迂到低能级E 1上去,这种辐射叫做受激辐射。
3. 质量为m 、速度为v 、自由运动的微粒的德布罗意波长:A o 25.12ννλ===e m h p h 当加速电压V ≈150V 时,λ≈1Å相当于晶体的点阵常数4. 试述物理性能测试方法与传统的金相、XRD 及电镜分析的区别。
(1) 可以有效地进行材料试验的动态过程研究,较精确地判断材料中发生相变的温度、时间、数量和限度;(2) 可以灵敏地确定一些微量元素对材料结构与性能的影响;(3) 所得结果反映材料的整体效应,可以避免局部微观区域观察或测量可能造成的错觉。
5. 能够用能带理论解释导电性。
导体:如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,见图a ,b ,c 。
绝缘体:若一个满带上面相邻的是一个较宽的禁带,见图d 。
第一章材料的电性能A按压力对金属导电性的影响:金属分为正常金属和反常金属。
B本征电导:源于晶体点阵中基本离子的运动。
玻璃的导电机理:玻璃在通常情况下是绝缘体,但在高温下,玻璃的电阻率却可能大大降低,因此在高温下有些玻璃将成为导体。
玻璃的导电是由于某些离子的可动性导致的,故玻璃是一种电解质的导体。
在钠玻璃中,钠离子在二氧化硅网络中从一个间隙跳到另一个间隙,形成电流。
这与离子晶体中的间隙离子导电类似。
本征半导体:纯净的无结构缺陷的半导体单晶。
本征电导在高温下为导电的主要表现。
半导体导电机理:在绝对零度和无外界影响的条件下,半导体的空带中无运动的电子。
但当温度升高或受光照射时,也就是半导体受到热激发时,共价键中的价电子由于从外界获得了能量,其中部分获得了足够大能量的价电子就可以挣脱束缚,离开原子而成为自由电子。
本征半导体的电学特性:1)本征激发成对产生自由电子和空穴,自由电子浓度与空穴浓度相等;2)禁带宽度Eg 越大,载流子浓度n i 越小;3)温度升高时载流子浓度n i 增大。
4)载流子浓度n i与原子密度相比是极小的,所以本征半导体的导电能力很微弱。
不均匀固溶体(k状态):在合金元素中含有过渡族金属的,这些固溶体中有特殊相变及特殊结构存在,这种组织状态称为k状态。
这些固溶体中原子间距的大小显著地波动,其波动正式组元原子在晶体中不均匀分布的结果,所以也把k状态称之为“不均匀固溶体)。
C畴壁:两铁电畴之间的界壁称为畴壁。
超导电性:在一定低温条件下,金属突然失去电阻的现象叫超导电性。
超导态:金属失去电阻的状态称为超导态,金属具有电阻的状态称为正常态。
超导体三个基本特性:完全导电性,完全抗磁性,通量(flux)量子化。
完全导电性:在室温下把超导体放入磁场中,冷却到低温进入超导态,把原磁场移开,则在超导体中的感生电流,由于没有电阻而将长久存在,成为不衰减电流。
超导现象产生的原因:由于超导材料中的电子双双结成库柏电子对,电子对和晶格间相互作用,而无能量损失,使超导体不产生电阻超导体存在Tc 的原因:当温度或外磁场强度增加时,电子对获得能量,当温度或外磁场强度增加到临界值时,电子对全部被拆开成正常态电子,于是材料即由超导态转变为正常态。
晶体(crystal)是由大量微观物质单位(原子、离子、分子等)按一定规则有序排列的结构,非晶体是指结构无序或者近程有序而长程无序的物质,组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。
晶体与非晶体的区别:1 外形晶体都具有规则的几何形状,而非晶体没有一定的几何外形。
2 各向异性晶体的各种物理性质,在各个方向上都是不同的,即各向异性;非晶体则显各向同性。
3 熔点晶体必须到达熔点时才能熔解,而非晶体在熔解的过程中,没有明确的熔点,随着温度升高,物质首先变软,然后逐渐由稠变稀。
4 对X射线的衍射晶体可对X射线发生,非晶体不可对X射线发生衍射,当单一波长的X-射线通过晶体时,会在记录仪上看到分立的斑点或明锐谱线。
而在同一条件下摄取的非晶体图谱中却看不到分立的斑点或明锐谱线。
晶体与非晶体在一定条件下是可以互相转化的。
由非晶态转化为晶态,这一过程称为晶化或脱玻化。
晶化过程可以自发进行,因为非晶态内能高、不稳定,而晶态内能低、稳定。
相反,晶体也可因内部质点的规则排列遭到破坏而转化为非晶态,这个过程称为非晶化。
非晶化一般需要外能。
大块非晶(BMG)即非晶态合金指的是内部原子排列不存在长程有序的金属和合金,通常也称为玻璃态合金或金属玻璃。
非晶态合金与液态一样具有近程有序而远程无序的结构特征。
特点(1)高强韧性。
其抗拉强度可达到3000 MPa以上,而超高强度钢(晶态)抗拉强度仅为1800~2000 MPa。
另外,许多淬火态的非晶态合金薄带可反复弯曲,即使弯曲180°也不会断裂。
(2)耐腐蚀性。
它具有很强的耐腐蚀性,其主要原因是凝固时能迅速形成致密、均匀、稳定的高纯度钝化膜。
(3)优良的磁性。
与传统的金属磁性材料相比,由于非晶合金原子排列无序,没有晶体的各向异性,而且电阻率高,具有高的磁导率,低的损耗,是优良的软磁材料。
(4)工艺简单、节能、环保。
非晶合金薄带成品的制造是在炼钢之后直接喷带的,只需一步就完成制造,工艺大大简化,节能,无污染,有利于环境保护。