取棋子游戏问题
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
七、取棋子游戏(必胜策略)姓名例题1:桌上有9个棋子,两人轮流取,每人每次取1个或2个,取到最后一个棋子的获胜。
●●●●●●●●●保证获胜的方法是:1、(先取个后取)2、每次取的棋子个数与对手凑成()。
如果对手取1个,我就取个;如果对手取2个,我就取个;例题2:桌上有10个棋子,两人轮流取,每人每次取1个或2个,取到最后一个棋子的获胜。
●●●●●●●●●●保证获胜的方法是:1、(先取个后取)2、每次取的棋子个数与对手凑成()。
如果对手取1个,我就取个;如果对手取2个,我就取个;练习1、桌上有15个棋子,两人轮流取,每人每次取1个或2个,取到最后一个棋子的获胜。
应该怎样取,才能保证获胜?●●●●●●●●●●●●●●●保证获胜的方法是:1、(先取个后取)2、每次取的棋子个数与对手凑成()。
练习2、桌上有17个棋子,两人轮流取,每人每次取1个或2个,取到最后一个棋子的获胜。
应该怎样取,才能保证获胜?●●●●●●●●●●●●●●●●●保证获胜的方法是:1、(先取个后取)2、每次取的棋子个数与对手凑成()。
练习3、桌上有12个棋子,两人轮流取,每人每次可以取1个、2个或3个,取到最后一个棋子的获胜。
应该怎样取,才能保证获胜?●●●●●●●●●●●●保证获胜的方法是: 1、(先取个后取)2、每次取的棋子个数与对手凑成()。
如果对手取1个,我就取个;如果对手取2个,我就取个;如果对手取3个,我就取个;练习4、桌上有13个棋子,两人轮流取,每人每次可以取1个、2个或3个,取到最后一个棋子的获胜。
应该怎样取,才能保证获胜?●●●●●●●●●●●●●保证获胜的方法是:1、(先取个后取)2、每次取的棋子个数与对手凑成()。
小学奥数精讲:对策问题之必胜策略知识点总结:一取余制胜(取棋子,报数游戏)1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)有余则先,拿掉余数,之后总与对手凑成1+n即可无余则后,总与对手凑成1+n即可2. 每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。
所以想赢的关键就在于能不能取到倒数第二枚棋子。
问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。
(总数-1)÷(1+n),之后同1中做法。
二.抢占制胜点(倒推法)1. 能一步到棋子的位置均是不能走的地方即负位2. 处处为别人着想。
自己不能走的地方逼别人走进去即可,即确定制胜点。
三.对称法1. 同等情况下,模仿对方步骤可以达到制胜目的。
2. 不同等情况下,创造对等局面方可制胜。
1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。
规定谁取走最后一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16 (4)有余数,先拿必胜,甲必胜。
(1)甲先拿4个;(2)乙拿a个,甲就拿6-a个2.甲乙两人轮流报数,报出的数只能是1~7的自然数。
同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。
请问必胜的策略是什么?分析:80÷(1+7)=10无余数,后拿必胜。
甲拿a个,乙就拿8-a个必胜3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。
规定将棋子移到最后一格者谁赢。
甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124 (7)有余,先走必胜。
(1)甲先走7格(2)乙走a格,甲就拿8-a个必胜4.5张扑克牌,每人每次只能拿1张到4张。
谁取最后一张谁输。
必胜的策略是什么?分析:先拿4张,留给别人1张就行。
5.现有1000根火柴,甲乙两人轮流去拿,每人每次最少拿1根,最多拿7根,谁取最后一根谁输。
一局游戏在两个游戏人之间如下交替进行:游戏从一空堆开始。
当轮到一个游戏人时,他可以往堆中加进1,2,3或4枚硬币。
往堆中加进第100枚硬币的游戏人为得胜者。
确定在这局游戏中是游戏人A还是游戏人B能够确保取胜。
取胜的策略是什么?在学术论坛有博士家园,组合图论论坛确保取足5个硬币即可例题:两个人玩移火柴的游戏,桌子上有1000根火柴,每个人每次可以拿走1-7根火柴,拿走桌子上最后那根火柴的算输,问第一个人第一次要拿多少根火柴才能保证赢7根。
以后对方拿几根,你都要拿够凑足8根的数。
1000根和8根性质是一样的。
从抢30到NIM游戏的取胜策略(一)倒推法抢30是我国民间的一个两人游戏,具有很强的对抗性和娱乐性。
抢30游戏通常有两种玩法。
(1)两人从1开始轮流报数,每人每次可报一个数或两个连续的数,谁先报到30,谁就为胜方。
(2)两人从1开始轮流报数,每人每次可报一个数或两个连续的数,同时把两个人报出的所有数累加,谁先使这个累加数最先达到30,谁就为胜方。
解决最个问题的一般策略是用倒推法。
以(1)为例,要抢到30,必须抢到27;要抢到27,必须抢到24。
如此倒推回去,可得到一系列关键数30、27、24、21、18、……9、6、3。
根据以上分析,抢30游戏本身并不是一个公平的游戏,初始数和先后顺序已经决定了最后的结果,因为只有后报数者才能抢到3的倍数,后报数者有必胜策略。
(二)关键因子所有这些关键数都是3的倍数。
3是两个报数者年内能够报出的最大数与最小数的和。
在类似游戏中,我们把游戏者所能用到的最大数和最小数之和称之为关键因子k,关键数就是k的倍数.。
在抢30的游戏中,关键因子k等于3。
又例如,抢100报数游戏中,如果每人可报数为1至9个连续的自然数,谁先报到100谁就是胜利者。
这里的关键因子k就是可报最大数9和可报最小数1的和,即k=10。
报数获胜的策略就是:(1)让对方先报数;(2)每次报数为关键因子减去对方所报数。
必胜策略原理公式汇总
一、取余制胜(取棋子,报数游戏)
1、每次取1至n个棋子,总数,取最后一个赢。
策略:总数÷(1+n)。
有余则先,拿掉余数,之后总与对手凑成1+n即可。
无余则后,总与对手凑成1+n即可。
2、每次取1至n个棋子,总数,取最后一个输。
策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。
所以想赢的关键就在于能不能取到倒数第二枚棋子。
问题转化为:每次取1至n个棋子,总数,取倒数第二枚棋子赢。
(总数-1)÷(1+n),之后同1中做法。
二、抢占制胜点(倒推法)
1、能一步到棋子的位置均是不能走的地方即负位。
2、处处为别人着想。
自己不能走的地方逼别人走进去即可,即确定制胜点。
三、对称法
1、同等情况下,模仿对方步骤可以达到制胜目的。
2、不同等情况下,创造对等局面方可制胜。
毕生策略知识点总结:一取余制胜(取棋子,报数游戏)1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)有余则先,拿掉余数,之后总与对手凑成1+n即可无余则后,总与对手凑成1+n即可2. 每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。
所以想赢的关键就在于能不能取到倒数第二枚棋子。
问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。
(总数-1)÷(1+n),之后同1中做法。
二.抢占制胜点(倒推法)1. 能一步到棋子的位置均是不能走的地方即负位2. 处处为别人着想。
自己不能走的地方逼别人走进去即可,即确定制胜点。
三.对称法1. 同等情况下,模仿对方步骤可以达到制胜目的。
2. 不同等情况下,创造对等局面方可制胜。
1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。
规定谁取走最后一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16 (4)有余数,先拿必胜,甲必胜。
(1)甲先拿4个;(2)乙拿a个,甲就拿6-a个2.甲乙两人轮流报数,报出的数只能是1~7的自然数。
同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。
请问必胜的策略是什么?分析:80÷(1+7)=10无余数,后拿必胜。
甲拿a个,乙就拿8-a个必胜3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。
规定将棋子移到最后一格者谁赢。
甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124 (7)有余,先走必胜。
(1)甲先走7格(2)乙走a格,甲就拿8-a个必胜4.5张扑克牌,每人每次只能拿1张到4张。
谁取最后一张谁输。
必胜的策略是什么?分析:先拿4张,留给别人1张就行。
5.现有1000根火柴,甲乙两人轮流去拿,每人每次最少拿1根,最多拿7根,谁取最后一根谁输。
游戏与策略巩固篇知识点总结:一取余制胜(取棋子,报数游戏)1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)有余则先,拿掉余数,之后总与对手凑成1+n即可无余则后,总与对手凑成1+n即可2. 每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。
所以想赢的关键就在于能不能取到倒数第二枚棋子。
问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。
(总数-1)÷(1+n),之后同1中做法。
二.抢占制胜点(倒推法)1. 能一步到棋子的位置均是不能走的地方即负位2. 处处为别人着想。
自己不能走的地方逼别人走进去即可,即确定制胜点。
三.对称法1. 同等情况下,模仿对方步骤可以达到制胜目的。
2. 不同等情况下,创造对等局面方可制胜。
1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。
规定谁取走最后一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16 (4)有余数,先拿必胜,甲必胜。
(1)甲先拿4个;(2)乙拿a个,甲就拿6-a个2.甲乙两人轮流报数,报出的数只能是1~7的自然数。
同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。
请问必胜的策略是什么?分析:80÷(1+7)=10无余数,后拿必胜。
甲拿a个,乙就拿8-a个必胜3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。
规定将棋子移到最后一格者谁赢。
甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124 (7)有余,先走必胜。
(1)甲先走7格(2)乙走a格,甲就拿8-a个必胜4.5张扑克牌,每人每次只能拿1张到4张。
谁取最后一张谁输。
必胜的策略是什么?分析:先拿4张,留给别人1张就行。
5.现有1000根火柴,甲乙两人轮流去拿,每人每次最少拿1根,最多拿7根,谁取最后一根谁输。
毕生策略知识点总结:一取余制胜(取棋子,报数游戏)1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)有余则先,拿掉余数,之后总与对手凑成1+n即可无余则后,总与对手凑成1+n即可2. 每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。
所以想赢的关键就在于能不能取到倒数第二枚棋子。
问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。
(总数-1)÷(1+n),之后同1中做法。
二.抢占制胜点(倒推法)1. 能一步到棋子的位置均是不能走的地方即负位2. 处处为别人着想。
自己不能走的地方逼别人走进去即可,即确定制胜点。
三.对称法1. 同等情况下,模仿对方步骤可以达到制胜目的。
2. 不同等情况下,创造对等局面方可制胜。
1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。
规定谁取走最后一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16 (4)有余数,先拿必胜,甲必胜。
(1)甲先拿4个;(2)乙拿a个,甲就拿6-a个2.甲乙两人轮流报数,报出的数只能是1~7的自然数。
同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。
请问必胜的策略是什么?分析:80÷(1+7)=10无余数,后拿必胜。
甲拿a个,乙就拿8-a个必胜3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。
规定将棋子移到最后一格者谁赢。
甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124 (7)有余,先走必胜。
(1)甲先走7格(2)乙走a格,甲就拿8-a个必胜4.5张扑克牌,每人每次只能拿1张到4张。
谁取最后一张谁输。
必胜的策略是什么?分析:先拿4张,留给别人1张就行。
5.现有1000根火柴,甲乙两人轮流去拿,每人每次最少拿1根,最多拿7根,谁取最后一根谁输。
对策问题之必胜策略 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT对策问题之必胜策略知识点总结:一取余制胜(取棋子,报数游戏) 1.每次取 1~n 个棋子,总数,取最后一个赢策略:总数÷(1+n)有余则先,拿掉余数,之后总与对手凑成 1+n 即可无余则后,总与对手凑成 1+n 即可 2. 每次取 1~n 个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。
所以想赢的关键就在于能不能取到倒数第二枚棋子。
问题转化为:每次取 1~n 个棋子,总数,取倒数第二枚棋子赢。
(总数-1)÷(1+n),之后同 1 中做法。
二.抢占制胜点(倒推法) 1. 能一步到棋子的位置均是不能走的地方即负位 2. 处处为别人着想。
自己不能走的地方逼别人走进去即可,即确定制胜点。
三.对称法 1. 同等情况下,模仿对方步骤可以达到制胜目的。
2. 不同等情况下,创造对等局面方可制胜。
1. 桌子上放着 100 根火柴,甲、乙二人轮流每次取走 1~5 根。
规定谁取走最后一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将获胜分析:100÷(1+5)=16??4 有余数,先拿必胜,甲必胜。
(1)甲先拿 4 个;(2)乙拿 a 个,甲就拿 6-a 个2. 甲乙两人轮流报数,报出的数只能是 1~7 的自然数。
同时把所报数一一累加起来,谁先使这个累加和达到 80,谁就获胜。
请问必胜的策略是什么分析: 80÷(1+7)=10 无余数,后拿必胜。
甲拿 a 个,乙就拿 8-a 个必胜3. 1000 个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动 1~7 格。
规定将棋子移到最后一格者谁赢。
甲为了获胜,第一步必须向右移多少格分析:(1000-1)÷(1+7)=124??7 有余,先走必胜。
(1)甲先走 7 格(2)乙走 a 格,甲就拿8-a 个必胜4. 5 张扑克牌,每人每次只能拿 1 张到 4 张。
取棋子游戏问题
摘要:
棋子是一种很普通的东西,可是我们怎样能在已知的规则之下,取的胜利,这是我们本文的目的。
我们的规则是: ( 1)第一次拿者不可以拿掉所有棋子。
(2)其后两人轮流拿,每次最多拿掉前次拿掉棋子数目的两倍。
本文的特点是简单明了。
关键字:
棋子,分析法
问题重述:
1 先拿胜还是后拿胜
2 赢得策略
模型假设与符号说明:
1 当棋子数量足够多
2 双方每次都拿很少
模型的建立与计算:
现在分析当乙拿完之后的情况,举几种特例,来总结一下。
当然,我们假设双方每次都拿很少,为了不让对方一次全部拿走。
(一)乙拿完之后剩余4个。
这个时候只要甲拿走一个,不管乙怎么拿甲都胜利。
(二)乙拿完之后剩余5个。
因为甲不能拿走全部,所以不管甲怎么拿,乙都胜利。
(三)乙拿完之后剩余6个。
甲拿一个。
(1)之后如果乙拿一个的话,则剩余四个,情况同前面,甲必胜;(2)如果乙拿两个,甲可以拿剩余的三个,甲胜利。
(三)乙拿完之后剩余7个。
甲拿两个。
(1)如果乙拿一个,则剩余四个,甲胜;(2)如果乙拿两个或大于两个,甲可以拿走剩余全部,甲胜。
(四)乙拿完之后剩余8个。
甲不能全部拿走,(1)甲拿一个,乙拿两个,乙胜(2)甲拿两个乙拿1个,乙胜(3)甲拿3个以上,乙就全拿走,乙胜。
剩余8个,乙必胜。
(五)乙拿完之后剩余9个。
甲拿1个,剩余8个,前面分析了,剩余8个的时候如果不能全部拿走,那么轮到谁拿谁就输。
所以甲胜。
(六)乙拿完之后剩余10个。
甲拿两个,还是给乙留8个,还是甲胜。
(七)乙拿完之后剩余11个。
甲拿三个,还是给乙留8个,还是甲胜。
(八)乙拿完之后剩余12个。
甲拿一个,(1)乙拿一个,胜10个,如前所述,甲胜;(2)乙拿两个,剩余9个,还是甲胜。
(九)乙拿完之后剩余13个,还是甲胜,还用多说么。
必胜策略已经出炉了。
当棋子足够多的时候,只要甲每次只拿一个,控制乙,乙只能拿一个或者两个。
那么慢慢拿下去,因为每个轮次最多只拿走三枚棋子,到最后就一定会出现乙拿完之后剩余11,10,9这三种情况之一,就是甲必胜。
结论:
当棋子数量大于8个的时候,甲必胜;当棋子数量为8或者5的时候乙必胜;当棋子数量为4、6、7甲必胜;棋子数量小于4就没有讨论的价值了。
所以,排除特例,当棋子数量大于8的时候,先拿必胜。
策略就是先拿的一方每次只拿一个,一直到出现剩余棋子数量为9或10或11这三种情况之一为止;出现这三种情况之后,甲拿掉棋子,使得剩余棋子数量为8,不管乙怎么拿,都是甲胜利。
参考文献:蒋启元,谢金星等《数学建模》(第三版)【M】高等教育出版社。