例说方向导数与连续
- 格式:pdf
- 大小:145.02 KB
- 文档页数:4
方向导数一、问题的提出实例:一块长方形的金属板,四个顶点的坐标是(1,1),(5,1),(1,3),(5,3).在坐标原点处有一个火焰,它使金属板受热.假定板上任意一点处的温度与该点到原点的距离成反比.在(3,2)处有一个蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快到达较凉快的地点?问题的实质:应沿由热变冷变化最骤烈的方向(即梯度方向)爬行.讨论函数在一点P 沿某一方向的变化率问题.),(y x f z =(如图)它的参数方程为⎩⎨⎧+=+=βαcos cos 00t y y t x x +∞<<∞-t 方向向量的有向直线,为且以面上通过点是为一单位向量,设→→→→e y x P xoy l j βi αe ),(cos +cos =00o y xαl Q ∙x ∆y ∆∙∙Pβ二、定义上任意一点,则有是设l y x Q ),(,)cos ,cos (),(00→→==--=e t t t y y x x PQ βα,t PQ =→的有向距离。
到点为点称Q P t ),()(P f Q f z -=∆当沿着趋于时,Q P l ty x f t y t x f t ),()cos ,cos (lim 00000-++→βα,t z Δ考虑是否存在?.),()cos ,cos (lim 00000),(00ty x f t y t x f l ft y x -++=∂∂→βα记为定义 设函数 z=f(x,y) 在点P(00,y x )的某个邻域内有定义,l 是一非零向量,)cos ,(cos βα=→l e 是与l 同方向的单位向量,如果极限 ty x f t y t x f t ),()cos ,cos (lim 00000-++→βα存在,则称此极限为函数),(y x f z =在P 点处沿l 方向的方向导数(directional derivative),依定义,函数),(y x f 在点P 沿着x 轴正向}0,1{1=e 、y 轴正向}1,0{2=e 的方向导数分别为y x f f ,;沿着x 轴负向、y 轴负向的方向导数是 y x f f --,.所以方向导数是偏导数的推广。
模块十二 多元函数微分学※知识框架一、二重极限及连续 二、偏导数概念 三、可微与全微分 四、相互关系 五、方向导数与梯度※课程脚本:★引入:本章的标题是多元函数微分学,在前面我们介绍过一元函数微分,这里的‘多元’就是自变量为多个,而为了方便,我们一般研究的是二元函数,那么我们首先看看二元函数的概念,一. 二重极限及连续1、 二重极限 ●讲义内容【定义1】:设D 是平面上的一个点集,如果对于任意一点(),x y D ∈,变量z 按照一定的运算法则总有确定的值与之对应,则称z 关于变量,x y 的二元函数,记作(),z f x y =. ★讲解且过渡:给出二元函数定义后,下面不妨我们可以回忆下一元函数微分中的知识点,一块回忆下:一元函数()y f x =中自变量就一个“x ”,而二元函数显然就是自变量为两个,我们一般用,x y 来表示,当然也可以定义三元或者多元的函数,不过对于我们来说研究的对象大多是二元,其定义域也有一元函数时的区间变成了二元函数的平面区域,举个简单的二元函数例子:2z x y =,。
另外在一元函数中我们研究了极限、连续、可导。
可微等,其实这些可以延拓到二元函数中的,下面首先看看二元函数的极限问题,为了显示和一元函数的区别,我们称二元函数的极限为二重极限 ●讲义内容【定义2】:设(),z f x y =是D 上的一个函数,()00,x y D ∈,假设存在实数A ,使得0ε∀>,总0δ∃>,当0δ<时,有()0,f x y A ε<-<.则称当(),x y 趋近于()00,x y 时,函数(),fx y 的二重极限为A .记作()()00(,),lim,x y x y f x y A →=或()00lim ,x x y y f x y A →→=.★讲解且过渡:二重极限是一元函数极限的推广,它的定义要与一元函数的极限对比起来理解.例如,与一元函数一样,(),x y 在趋近于()00,x y 时,也不会等于()00,x y ,只会无限地接近;一元函数极限中x 趋近于0x 仅有两种方式——左或右,所以只要求左右极限存在且相等就能说明极限存在了;而二维平面上(),x y 趋近于()00,x y 的方式可以有无穷多种,另外在一元函数中极限存在的话是左右极限存在且相等,那么在二元函数中关于二重极限存在的内在要求是(),x y 沿任何路径趋近于()00,x y 的极限值都应该存在并且相等,换句话说如果能找到函数按照两种不同的路径逼近某一点的极限不一样,就可以断定函数在该点的极限不存在,其实这也是我们在具体做题的过程中判断极限不存在的思路,那么其他求极限的方法有哪些呢?其实这个时候也可以按照一元函数求极限的方法进行分析,大概有一下几种:1、四则运算。
多元函数微分学的应用引言多元函数微分学是微积分的一个重要分支,通过研究多元函数的极限、连续性、可微性、偏导数、全微分以及二阶偏导数等概念和性质,为解决实际问题提供了强大的工具和方法。
本文将介绍多元函数微分学在实际应用中的一些案例和方法。
1. 函数的极限多元函数的极限是多元函数微分学的基础,它描述了函数在某一点处的趋近性。
在实际应用中,我们常常需要确定一个多元函数在某一点的极限,以便对问题进行分析和计算。
对于给定的多元函数f(x,y),如果当点(x,y)趋近于某一点(a,b)时,f(x,y)趋近于一个常数L,则称f(x,y)在点(a,b)处有极限,记为$\\lim_{(x, y) \\to (a, b)} f(x, y) = L$。
2. 函数的连续性函数的连续性是多元函数微分学的另一个重要概念。
一个多元函数f(x,y)在某一点(a,b)处连续,意味着在点(a,b)的任意一个邻域内,函数值和点(a,b)的距离趋近于零。
连续函数在实际应用中具有重要的意义,因为它们能够准确地描述函数的行为和性质。
3. 偏导数与全微分在实际问题中,我们常常需要计算多元函数的偏导数和全微分,以便分析函数的变化率和方向导数。
对于一个多元函数f(x,y),它的偏导数$\\frac{\\partialf}{\\partial x}$和$\\frac{\\partial f}{\\partial y}$分别表示函数在x方向和y方向上的变化率。
全微分df表示函数的微小变化量,它可以用偏导数表示为$df =\\frac{\\partial f}{\\partial x}dx + \\frac{\\partial f}{\\partial y}dy$。
4. 高阶偏导数在多元函数微分学中,我们还可以计算多元函数的高阶偏导数。
高阶偏导数描述了函数的高阶变化率和曲率性质。
例如,一个二阶偏导数$\\frac{\\partial^2 f}{\\partial x^2}$表示函数在x方向上的曲率,而一个二阶偏导数$\\frac{\\partial^2 f}{\\partial x \\partial y}$表示函数在x和y方向上的变化率的关系。