液体流经孔口和缝隙的流量——压力特性26液压
- 格式:ppt
- 大小:1.87 MB
- 文档页数:29
第1章 液压传动基础知识液体流经小孔和缝隙的流量压力特性小孔在液压与气压传动中的应用非常广泛。
本节主要根据液体经过薄壁小孔、厚壁小孔和细长孔的流动情况,分析它们的流量压力特性,为以后学习节流调速及伺服系统工作原理打下理论基础。
1.5.1 液体流经小孔的流量压力特性1.薄壁小孔的流量压力特性在图1.13中,如果小孔的长度为l ,小孔直径为d ,当长径之比0.5l d≤时,这种小孔称为薄壁小孔。
一般孔口边缘做成刀刃口形式。
各种结构形式阀口一般属于薄壁小孔类型。
液体流过小孔时,因D d ,相比之下,流过断面1—1时的速度较低。
当液流流过小孔时在流体惯性力作用下,使通过小孔后的流体形成一个收缩截面A 2(对圆形小孔,约至离孔口2d 处收缩为最小),然后再扩大,这一收缩和扩大过程便产生了局部能量损失,并以热的形式散发。
当管道直径与小孔直径之比D /d ≥7时,流体的收缩作用不受孔前管道内壁的影响,这时称流体完全收缩;当D /d <7时,孔前管道内壁对流体进入小孔有导向作用,这时称流体不完全收缩。
设收缩截面222π4A d =与孔口截面2π4A d =之比值称为截面收缩系数C c ,即 222c 2A d C A d == (1-41) 在图1.13中,在截面1—1及截面2—2上列出伯努利方程。
由于D d ,12v v ,故v 1可忽略不计。
得221222222p p a v v g g g g ξρρ=++ (1-42) 化简后得2v C == (1-43) 式中,Δp ——小孔前后压差,Δp=p 1- p 2;α2——收缩截面2—2上的动能修正系数;图1.13 薄壁小孔的流量推导简图。
第五节 液体流经小孔和间隙的流量在液压传动系统中常遇到油液流经小孔或间隙的情况,例如节流调速中的节流小孔,液压元件相对运动表面间的各种间隙。
研究液体流经这些小孔和间隙的流量压力特性,对于研究节流调速性能,计算泄漏都是很重要的。
一、小孔流动液体流经小孔的情况可以根据孔长l 与孔径d 的比值分为三种情况:l/d ≤0.5时,称为薄壁小孔;0.5<l/d ≤4时,称为短孔;l/d >4时,称为细长孔。
图2-23液体在薄壁小孔中的流动1. 1. 液流流经薄壁小孔的流量液体流经薄壁小孔的情况如图2-23所示。
液流在小孔上游大约d/2处开始加速并从四周流向小孔。
由于流线不能突然转折到与管轴线平行,在液体惯性的作用下,外层流线逐渐向管轴方向收缩,逐渐过渡到与管轴线方向平行,从而形成收缩截面A c 。
对于圆孔,约在小孔下游d/2处完成收缩。
通常把最小收缩面积Ac 与孔口截面积之比值称为收缩系数Cc ,即Cc =Ac/A 。
其中A液流收缩的程度取决于Re 、孔口及边缘形状、孔口离管道内壁的距离等因素。
对于圆形小孔,当管道直径D 与小孔直径d 之比D/d ≥7时,流速的收缩作用不受管壁的影响,称为完全收缩。
反之,管壁对收缩程度有影响时,则称为不完全收缩。
对于图2-23所示的通过薄壁小孔的液流,取截面1—1和2—2为计算截面,设截面1—1处的压力和平均速度分别为p 1、υ1,截面2—2处的压力和平均速度分别为p 2、υ2。
由于选轴线为参考基准,则Z 1=Z 2,列伯努利方程为:122211222wP a v g p a v g h γ+=++由于小孔前管道的通流截面积A 1比小孔的通流截面积A 大得多,故υ1υ2, υ1可忽略不计。
此外,式中的hw 部分主要是局部压力损失,由于2—2通流截面取在最小收缩截面处,所以,它只有管道突然收缩而引起的压力损失。
22w h v g ζ=将上式代入伯努利方程中,并令Δp =p 1- p 2,求得液体流经薄壁小孔的平均速度υ2为:221()v a ζ=+ρp∇2 (2-60)令C υ=1/(α2+ζ),为小孔流速系数,由于υ2是最小收缩截面上的平均速度,设最小通流截面的面积为Ac ,与小孔通流截面积A 的比值为Ac/A=Cc ,则流经小孔的流量为:2q Acv ==c u C C A ρp∇2=CdA ρp ∇2 (2-61)式中:流量系数C d =C c C υ;Δp 为小孔前后压差。
液体流经小孔和缝隙时的流量计算液压传动中常利用液体流经阀的小孔或间隙来控制流量和压力,达到调速和调压的目的。
液压元件的泄漏也属于缝隙流动。
因而讨论小孔和间隙的流量计算,了解其影响因素对于正确分析液压元件和系统的工作性能是很有必要的。
一、液体流经小孔时的流量计算小孔可分为三种,当小孔的长度与直径的比值≤0.5时,称为薄壁小孔;当>4,称为细长孔;当0.5<≤4时,则称为短孔(厚壁孔)。
1.薄壁小孔流量的计算图2—18所示为液体流过薄壁小孔的情况。
当液体从薄壁小孔流出时,左边大直径处的液体均向小孔汇集,.在惯性力的作用下,在小孔出口处的液流由于流线不能突然改变方向,通过孔口后会发生收缩现象,而后再开始扩散。
这一收缩和扩散过程就产生了很大的压力损失。
图2—18流经薄壁小孔的流量计算图收缩断面积与孔口断面积之比称为断面收缩系数。
即=/。
收缩系数决定于雷诺数、孔口及边缘形状、孔口离管道侧壁的距离等因素。
当管道直径与小孔直径的比值/≥7时,收缩作用不受孔前管道内壁的影响,这时收缩称为完全收缩。
反之,当/<7时,孔前管道对液流进入小孔起导向作用,这时的收缩称为不完全收缩。
现对小孔前后断面1—1和收缩断面C—C列伯努利方程+=++ (2—58)式中为液体流经小孔时流束突然缩小的局部阻力系数。
由于>>,可认为≈0,又由于小孔过流的收缩断面上流速基本均布,故有=1,则得==(2—59) 式中——小孔速度系数,=;——小孔前后压力差,=。
考虑=,由式(2—33)可得通过薄壁小孔的流量公式为===(2—60)式中——小孔流量系数,=;流量系数值由实验确定,当完全收缩时,= 0.61~0.62;当不完全收缩时,= 0.7~0.8。
流经薄壁小孔时,孔短,其摩擦阻力的作用很小,并与压力差的平方根成正比,所以,流量受温度和粘度变化的影响小,流量稳定。
因此,液压系统中常采用薄壁小孔作为节流元件。
2.短孔的流量计算短孔的流量公式仍为式(2—60),但流量系数不同,一般取= 0.82。
液体流经小孔和缝隙时的流量计算液压传动中常利用液体流经阀的小孔或间隙来控制流量和压力,达到调速和调压的目的。
液压元件的泄漏也属于缝隙流动。
因而讨论小孔和间隙的流量计算,了解其影响因素对于正确分析液压元件和系统的工作性能是很有必要的。
一、液体流经小孔时的流量计算小孔可分为三种,当小孔的长度与直径的比值≤0.5时,称为薄壁小孔;当>4,称为细长孔;当0.5<≤4时,则称为短孔(厚壁孔)。
1.薄壁小孔流量的计算图2—18所示为液体流过薄壁小孔的情况。
当液体从薄壁小孔流出时,左边大直径处的液体均向小孔汇集,.在惯性力的作用下,在小孔出口处的液流由于流线不能突然改变方向,通过孔口后会发生收缩现象,而后再开始扩散。
这一收缩和扩散过程就产生了很大的压力损失。
图2—18流经薄壁小孔的流量计算图收缩断面积与孔口断面积之比称为断面收缩系数。
即=/。
收缩系数决定于雷诺数、孔口及边缘形状、孔口离管道侧壁的距离等因素。
当管道直径与小孔直径的比值/≥7时,收缩作用不受孔前管道内壁的影响,这时收缩称为完全收缩。
反之,当/<7时,孔前管道对液流进入小孔起导向作用,这时的收缩称为不完全收缩。
现对小孔前后断面1—1和收缩断面C—C列伯努利方程+=++ (2—58)式中为液体流经小孔时流束突然缩小的局部阻力系数。
由于>>,可认为≈0,又由于小孔过流的收缩断面上流速基本均布,故有=1,则得==(2—59)式中——小孔速度系数,=;——小孔前后压力差,=。
考虑=,由式(2—33)可得通过薄壁小孔的流量公式为===(2—60)式中——小孔流量系数,=;流量系数值由实验确定,当完全收缩时,= 0.61~0.62;当不完全收缩时,= 0.7~0.8。
流经薄壁小孔时,孔短,其摩擦阻力的作用很小,并与压力差的平方根成正比,所以,流量受温度和粘度变化的影响小,流量稳定。
因此,液压系统中常采用薄壁小孔作为节流元件。
2.短孔的流量计算短孔的流量公式仍为式(2—60),但流量系数不同,一般取= 0.82。
试题库及参照答案一、填空题1.液压系统中旳压力取决于(负载),执行元件旳运动速度取决于(流量)2.液压传动装置由(动力元件)、(执行元件)、(控制元件)和(辅助元件)四部分构成,其中(动力元件)和(执行元件)为能量转换装置。
3.液体在管道中存在两种流动状态,(层流)时粘性力起主导作用,(紊流)时惯性力起主导作用,液体旳流动状态可用(雷诺数)来判断。
4.4.在研究流动液体时,把假设既(无粘性)又(不可压缩)旳液体称为理想流体。
5.由于流体具有(粘性),液流在管道中流动需要损耗一部分能量,它由(沿程压力)损失和(局部压力)损失两部分构成。
6.液流流经薄壁小孔旳流量与(小孔通流面积)旳一次方成正比,与(压力差)旳1/2次方成正比。
通过小孔旳流量对(温度)不敏感,因此薄壁小孔常用作可调整流阀。
7.通过固定平行平板缝隙旳流量与(压力差)一次方成正比,与(缝隙值)旳三次方成正比,这阐明液压元件内旳(间隙)旳大小对其泄漏量旳影响非常大。
8.变量泵是指(排量)可以变化旳液压泵,常见旳变量泵有(单作用叶片泵)、(径向柱塞泵)、(轴向柱塞泵)其中(单作用叶片泵)和(径向柱塞泵)是通过变化转子和定子旳偏心距来实现变量,(轴向柱塞泵)是通过变化斜盘倾角来实现变量。
9.液压泵旳实际流量比理论流量(大);而液压马达实际流量比理论流量(小)。
10.斜盘式轴向柱塞泵构成吸、压油密闭工作腔旳三对运动摩擦副为(柱塞与缸体)、(缸体与配油盘)、(滑履与斜盘)。
11.外啮合齿轮泵旳排量与(模数)旳平方成正比,与旳(齿数)一次方成正比。
因此,在齿轮节圆直径一定期,增大(模数),减少(齿数)可以增大泵旳排量。
12.外啮合齿轮泵位于轮齿逐渐脱开啮合旳一侧是(吸油)腔,位于轮齿逐渐进入啮合旳一侧是(压油)腔。
13.为了消除齿轮泵旳困油现象,一般在两侧盖板上开(卸荷槽),使闭死容积由大变少时与(压油)腔相通,闭死容积由小变大时与(吸油)腔相通。
孔口和缝隙流量在液压系统中,孔口和缝隙流动是最常见的。
研究液体在孔口和缝隙中的流动规律,了解影响它们的因素,对液压系统的分析和设计都很有意义。
一、孔口流量1.薄壁孔的流量计算孔口的长径比d l /≤0.5时称为薄壁孔,如图2.13所示。
对孔前通道断面1-1和收缩断面2-2之间的液体列出伯努力方程式中,1,,22121=<<=αv v h h ,局部损失222v p p w ρξξ=∆=∆,整理上式后得ρ/22p C v v ∆=式中,C v —速度系数,ξ+=11V C ;P ∆—孔口前后压差,21P P P -=∆ 。
由此可得通过薄壁孔口的流量公式为式中,2A —收缩断面面积,由实验测定;c C —收缩系数,T c A A C /2=;T A —孔口通流截面的面积,4/2d A T π=;q C —流量系数,c v q C C C =。
c C 、v C 和q C 的数值可由实验确定。
当液体完全收缩(7/≥d D )时,62.0~61.0=q C 。
当液体不完全收缩(7/<d D )时,8.0~7.0=q C 。
薄壁小孔因其沿程压力损失很小,其能量损失只涉及局部损失,因此通过薄壁孔口的流量与粘度无关,即流量对油温的变化不敏感,因此薄壁小孔适合作节流元件。
2.短孔的流量计算孔口的长径比4/5.0≤<d l 时为短孔。
短孔的流量公式仍为式(2.34),但流量系数不同。
一般可取82.0=q C 。
短孔的工艺性好,通常用作固定节流器。
3.细长孔的流量计算孔口的长径比d l />4时为细长孔。
液体流过细长孔时,一般为层流,流量公式可用前面推出的圆管层流的流量公式,即p ld q v ∆=μπ1284由上式可知,液体流经细长孔的流量与液体粘度成反比。
即流量随温度的变化而变化,并且流量与小孔前后的压差成线性关系。
上述各类小孔的流量可归纳为一个通用公式m T v p CA q ∆=式中 C ……由孔的形状、尺寸和液体性质决定的系数。
液压综合复习题液压综合复习题一、填空题1、液压传动中的压力决定于〔负载〕,流量决定〔活塞移动速度和活塞面积〕。
2、液压系统由〔能源〕装置、〔执行〕装置、〔控制调节〕装置、〔辅助〕装置和工作介质组成。
3、液压传动中最重要的参数是〔压力〕和〔流量〕,二者的乘积为〔功率〕。
3、液压油的粘度表示方法有〔动力粘度〕、〔运动粘度〕和相对粘度。
4、〔动力粘度〕粘度具有明确的物理意义,它表示单位〔速度梯度〕时单位面积上的〔内摩擦〕力。
5、YA-N32表示普通液压油,N32表示〔40〕℃时的平均运动粘度为〔32 mm2/s〕。
6、液体的流动状态分为〔层流〕和〔紊流〕,根据〔雷诺数〕判断液体的两种流动状态。
7、液体在管道中存在两种流动状态,〔层流〕时粘性力起主导作用,〔紊流〕时惯性力起主导作用。
8、表压力为〔相对〕压力。
真空度=〔大气〕压力减绝对压力。
9、静压力根本方程式的表达式为〔F=pA=pπD2/4〕。
10、在研究流动液体时,把假设既〔不可压缩〕又〔没有粘滞性〕的液体称为理想流体。
11、由于流体具有〔粘性〕,液流在管道中流动需要损耗一局部能量,它由〔沿程压力〕损失和〔局部压力〕损失两局部组成。
12、液流流经薄壁小孔的流量与〔孔口前后压力差〕的一次方成正比,与〔孔口截面积〕的1/2次方成正比。
通过薄壁小孔的流量对〔油温变化〕不敏感,因此薄壁小孔常用作可调节流阀。
13、通过固定平行平板缝隙的流量与〔宽度〕一次方成正比,与〔间隙〕的三次方成正比,这说明液压元件内的〔间隙〕的大小对其泄漏量的影响非常大。
14、流量连续性方程式是〔质量守恒〕定律在流体力学中的应用。
15、双作用叶片泵的叶片相对于回转方向向〔前〕倾斜一个角度,而单作用叶片泵的叶片相对于回转方向向〔后〕倾斜一个角度。
16、变量泵是指〔排量〕可以改变的液压泵,常见的变量泵有(齿轮泵)、(单作用叶片泵)、(柱塞泵)其中〔单作用叶片泵〕和〔柱塞泵〕是通过改变转子和定子的偏心距来实现变量,〔齿轮泵〕是通过改变斜盘倾角来实现变量。