当前位置:文档之家› 用水量计算

用水量计算

用水量计算
用水量计算

一、用水量计算

1.现场施工用水量,按下式计算:

式中q 1——施工用水量(L/s );

K 1——未预计的施工用水系数(1.05~1.15);

Q 1——年(季)度工程量或日工程量(以实物计量单位表示); N 1——施工用水定额;

T 1——年(季)度有效作业日(d );

t ——每天工作班数(班);

K 2——用水不均衡系数(现场施工用水取1.5)。

2.施工机械用水量,按下式计算:

式中q 2——机械用水量(L/s );

K 1——未预计的施工用水系数(1.05~1.15);

Q 2——同一种机械台数(台);

N 2——施工机械台班用水定额;

K 3——施工机械用水不均衡系数(施工机械、运输机械取2.00,动力设备取1.05~1.10)。

3.施工现场生活用水量,按下式计算:

式中q 3——施工现场生活用水量(L/s );

P 1——施工现场高峰昼夜人数(人);

N 3——施工现场生活用水定额(一般为20~60L/人·班,主要视当地气候而定); K 4——施工现场用水不均衡系数(施工现场生活用水取1.30~1.50); t ——每天工作班数(班)。

4.生活区生活用水量,按下式计算:

式中q 4——生活区生活用水量(L/s );

P 2——生活区居民人数(人);

N 4——生活区昼夜全部生活用水定额,每一居民每昼夜为100~120L ; K 5——生活区用水不均衡系数(生活区生活用水取2.00~2.50);

5.消防用水量(q 5)。最小10 L/s ;施工现场在25ha 以内时,不大于15 L/s 。

6.总用水量(Q )计算:

(1)当(q 1+q 2+q 3+q 4)≤q 5时,则Q= q 5+2

1(q 1+q 2+q 3+q 4) (2)当(q 1+q 2+q 3+q 4)>q 5时,则Q= q 1+q 2+q 3+q 4

(3)当工地面积小于5ha 而且q 1+q 2+q 3+q 4)<q 5时,则Q= q 5最后计算出的总用水量,还应

增加10%,以补偿不可避免的水管漏水损失。

二、管径的选择

1.管径,按下式计算:

式中d ——配水管直径(m );

Q ——耗水量(L/s );

v ——管网中水流速度(m/s )。临时水管经济流速按下表:

临时水管经济流速参考表

1.水头损失,按下式计算:

g v iL h h h 22

21ξ+=+=简化为()iL h h )2.1~15.1(2.1~15.11== 式中h ——水头损失(m );

h 1——沿程水头损失(m );

h 2——局部水头损失(m );

i ——单位管长水头损失,根据流量和管径查表得; L ——计算管段的长度(m );

ξ——局部阻力系数;

v ——管段中的平均流速(m/s ); g ——重力加速度(m/s 2)。

用水量计算

全日供应热水的集中热水供应系统的设计小时耗热量 86400t -t C mq K Q r L r r h h ρ)(?= Qh-设计小时耗热量,W m-用水计算单位数,人数或床位数 qr-热水用水定额 C-水的比热=4.187mj/(kg ·℃) tr-热水温度,tr=60℃ tL-冷水计算温度 ρr-热水密度,kg/L Kh-热水小时变化系数 定时供应热水的集中热水供应系统的设计小时耗热量: 3600 bC N t t q Q 0r L r h h ρ)(-∑= qh-卫生器具热水的小时用水定额 N0-同类卫生器具数 b-卫生器具使用的百分数

设计小时热用水量计算 r L r h r t t Q Q ρ)(163.1-= 式中:Qr-设计小时热水量,L /h Qh-设计小时耗热量,W tr-设计热水温度, ℃ tL-设计冷水温度,℃ ρr-热水密度,kg/L 最高日用水量 Qd=Σmqd/1000 式中 Qd :最高日用水量,L/d ; m : 用水单位数,人或床位数; qd : 最高日生活用水定额,L/人.d , L/床.d ,或L/人.班 最大小时生活用水量 Qh=QdKh/T

式中Qh:最大小时用水量,L/h Qd:最高日用水量,L/d; T:24h; Kh:小时变化系数,按《规范》确定. (1)给水管道的沿程水头损失可按下式计算: 式中 i——管道单位长度水头损失(kPa/m); dj——管道计算内径(m); qj——给水设计流量(m3/s); Ch——海澄-威廉系数。 各种塑料管、内衬(涂)塑管Ch=140;铜管、不锈钢管Ch=130;衬水泥、树脂的铸铁管Ch=130;普通钢管、铸铁管Ch=100

住宅小区用水量计算方法

居民小区用水量的计算 3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、用水定额及卫 生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第 3.6.3、3.6.4条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第3.6.5条和第3.6.6条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第3.1.9条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第3.1.10条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第3.6.5条计算管段流量和按第 3.6.6条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量;

2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量; 3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。 3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算:(3.6.4-1)

用水量计算

一、用水量计算 1.现场施工用水量,按下式计算: 式中q 1——施工用水量(L/s ); K 1——未预计的施工用水系数(1.05~1.15); Q 1——年(季)度工程量或日工程量(以实物计量单位表示); N 1——施工用水定额; T 1——年(季)度有效作业日(d ); t ——每天工作班数(班); K 2——用水不均衡系数(现场施工用水取1.5)。 2.施工机械用水量,按下式计算: 式中q 2——机械用水量(L/s ); K 1——未预计的施工用水系数(1.05~1.15); Q 2——同一种机械台数(台); N 2——施工机械台班用水定额; K 3——施工机械用水不均衡系数(施工机械、运输机械取2.00,动力设备取1.05~1.10)。 3.施工现场生活用水量,按下式计算: 式中q 3——施工现场生活用水量(L/s ); P 1——施工现场高峰昼夜人数(人); N 3——施工现场生活用水定额(一般为20~60L/人·班,主要视当地气候而定); K 4——施工现场用水不均衡系数(施工现场生活用水取1.30~1.50); t ——每天工作班数(班)。 4.生活区生活用水量,按下式计算: 式中q 4——生活区生活用水量(L/s ); P 2——生活区居民人数(人); N 4——生活区昼夜全部生活用水定额,每一居民每昼夜为100~120L ; K 5——生活区用水不均衡系数(生活区生活用水取2.00~2.50); 5.消防用水量(q 5)。最小10 L/s ;施工现场在25ha 以内时,不大于15 L/s 。 6.总用水量(Q )计算: (1)当(q 1+q 2+q 3+q 4)≤q 5时,则Q= q 5+2 1(q 1+q 2+q 3+q 4) (2)当(q 1+q 2+q 3+q 4)>q 5时,则Q= q 1+q 2+q 3+q 4 (3)当工地面积小于5ha 而且q 1+q 2+q 3+q 4)<q 5时,则Q= q 5最后计算出的总用水量,还应

施工临时用水量管径计算方法

施工临时用水量及管径计算方法 1、假定背景 某工程,建筑面积为18133㎡,占地面积为4600㎡。地下一层,地上9层。筏形基础,现浇混凝土框架剪力墙结构,填充墙空心砌块隔墙;生活区与现场一墙之隔,建筑面积750㎡,常住工人330名。水源从现场南侧引入,要求保证施工生产,生活及消防用水。

2、问题 ⑴ 当施工用水系数15.12=K ,年混凝土浇筑量 11743m 3,施工用水定额2400L/ m 3 ,年持续有效工作日为150d ,两班作业,用水不均衡系数5.12 =K 。要求计算现场施工用水? S L K t T N Q K q /626.53600 85.1215024001174315.136008211111=?????=???=

⑵ 施工机械主要是混凝土搅拌机,共4台,包括混凝土输送泵的清洗用水、进出施工现场运输车辆冲洗等,用水定额平均台/3002L N =。未预计用水系数15.11=K ,施工不均衡系数0.23=K ,求施工机械用水量? s L K N Q K q /0958.03600 80.2300415.136********=????=?=∑

⑶ 假定现场生活高峰人数,P 人3501 =施工现场生活用水定额,L N 班/403=施工现场生活用水不均衡系数,。K 514=每天用水2个班,要求计算施工现场生活用水量? s L t K N P q /365.03600 825.140350360084313=????=????=

⑷ 假定生活区常住工人平均每人每天消耗水量为L N 1204=,生活区用水不均衡系数K 5按2.5计取;计算生活区生活用水量? s L K N p q /15.13600245 .21203303600245 424=???=???=

锅炉房用水量设计计算

锅炉房用水量设计计算 1、锅炉房用水的组成 通常来说,锅炉房用水主要分为生产用水、生活用水及煤加湿水三类,其中生产用水以循环水为主,主要为锅炉热力网循环系统补水、引风机轴承冷却补水、脱硫除尘用水、离子交换器树脂再生用水、定期排污冷却用水和冲渣用水等。 2、生产用水的核算 ①锅炉热力网循环系统补水 锅炉分为蒸汽锅炉和热水锅炉两种。 蒸汽锅炉的热力网补水很好理解。如:1t/h的蒸汽锅炉,就是1t/h的水产生1t/h的蒸汽,所以用水量很容易计算。环评中,我认为可以忽略“锅炉排污量并扣除凝结水量”这部分水量,直接用产汽量来估算。 这里主要说一下热水锅炉的循环系统补水计算方法。 要知道补水量,先要知道循环用水的量。热水锅炉循环水量计算公式采用《工业锅炉房设计手册》中的经验公式 循环水量=1000×0.86kcal/MW×吸热量(MW)/一次网温度差(℃)热水锅炉补水率较低,通常为1%~2%,主要为热力网损失。根据循环水量和补水率,可以核算出补水量。 ②引风机轴承冷却补水 引风机轴承在运转过程中会发热,因此需要冷却水进行冷却。在有循环水箱时,引风机轴承冷却补水量可按0.5m3/h箱核算。

如果是抛煤机炉,抛煤机及炉排轴的冷却补水量也可按每台锅炉 0.5m3/h计算。 ③脱硫除尘用水 如锅炉房采用的是湿法脱硫,则涉及脱硫除尘用水,此部分用水分为两部分:配制碱液用水和脱硫装置补水。脱硫装置的补水比较复杂,实际工作中,猫姐使用类比法比较多。《烟气脱硫脱硝技术手册》中有很多案例,大家可以根据项目的实际脱硫法与案例进行类比,从而得出用水量。 在此,猫姐举一个例子:某集中供热锅炉房,使用石灰—石膏湿法脱硫工艺,设计脱硫效率85%,脱硫剂石灰用量4t/h。 手册中的“南宁化工集团公司石灰—石膏湿法烟气脱硫工程” 运行试验结果如下: 根据案例中的石灰和用水实测消耗量,类比出本项目的脱硫除尘用水量,见下表1。 表1 南宁化工集团公司与本项目脱硫除尘用水量类比分析表 序号项目南宁化工集团公司本项目 1 脱硫除尘法石灰—石膏法石灰—石膏法 2 除尘效率91%~91.7% ≥98%

计算施工现场用水量

本工程现场用水分为施工用水、施工机械用水、生活用水和消防用水三部分。 一、施工用水量 q1:以高峰期为最大日施工用水量,计算公式为: q1=K1∑Q1N1K2/8×3600 式中:K1未预计的施工用水系数,取1.15 K2用水不均衡系数,取1.5 Q1以砂浆搅拌机8小时内的生产量(每台以30m3计)、瓦工班8小时内的砌筑量(每班以20m3砖砌体计)、混凝土养护8小时内用水(自然养护, 以100m3计)。 N1每立方米砂浆搅拌耗水量取400L/m3计,每立方米砖砌体耗水量以 100L/m3计,每立方米混凝土养护耗水量以200 L/m3计。 q1=1.15×(5×30×400+4×20×100+100×200)×1.5/8×3600=5.27L/S 二、施工机械用水量计算 q2 =K1Q2∑N2K3/8×3600 式中:K1未预计的施工用水系数,取1.15 K3施工机械用水不均衡系数,取2.0 Q2以一台对焊机每天工作8小时计,一个木工房一个台班计,一台锅炉每天工作八小时计。N2每台对焊机耗水量300L/台.h,每个木工房耗水量20L/台班,每台锅炉耗水量1050L/t.h。q2=1.15×(300×8+20×1+1050×8)×1.5/8×3600 =0.65L 三、生活用水 q3:现场高峰人数以1500人计算,每人每天用水20L计算: q3=Q3N3K4/8×3600 =1500×20×1.5/8×3600=1.54L/S 四、消防用水量 q4:根据规定,现场面积在25公顷以内者同时发生火警2次,消防用水定额按10-15L/S 考虑。根据现场总占地面积,q4按10L/S考虑。 现场总用水量:根据规定,当q1+q2+ q3〈q4时,采用q4的原则,现场总用水 量为:q= q4=10L/S 供水管径,按下面公式计算: d=√4q/πV×1000=√4×10/3.14×2.0×1000=0.079m 计算结果,现场供水管径需不小于80mm方可满足现场施工需要。

工业用水考核指标及计算方法

工业用水考核指标及计算方法 适用范围:本标准用于指导工业企业用水管理和水量计算的工作。 工业用水考核指标包括重复利用率、间接冷却水循环率、工艺水回用率、万元产值取水量、单位产品取水量、蒸气冷凝水回收率、职工人均日生活取水量。这些指标从不同角度、不同方面、不同范围对不同层次的工业用水水平,节约用水水平进行较全面的考核,是工业用水进行科学管理的必不可少的基础指标。 1考核指标中有关水量计算 重复利用水量(C) 企业日重复利用水量 根据重复利用水量定义见标准CJ19—87《工业用水分类及定义》,计算出企业日重复利用水量(直接利用河流或湖泊进行循环用水,不作重复利用水量汁算)。 企业年重复利用水量 由不同季节(或不同用水情况时)的日重复利用水量乘以实际用水天数得到不同季节(或不同用水情况)的重复利用水量,再相加得到全年重复利用水量。 工业部门年重复利用水量 由各企业年重复利用水量之和再加上企业间年互相重复利用的水量得到。 工业年重复利用水量 由各工业部门年重复利用水量之和再加上城市污水处理厂回用于各工业部门的水量得到。 取水量(Q) 企业日取水量 由企业水源进口水表或其他计量仪表计算得到。 企业年取水量 由企业日取水量相加得到。 工业部门年取水量

由各企业年取水量相加得到。 工业年取水量 由各工业部门的年取水量相加得到。 用水量(Y) 企业日用水量 由企业日重复利用水量和企业日取水量相加得到。 企业年用水量 由企业年重复利用水量和企业年取水量相加得到, 工业部门年用水量 由工业部门年重复利用水量和年取水量相加得到。 工业年用水量 由各工业部门年重复利用水量和年取水量相加得到。 ) 间接冷却水循环量(C 冷 企业日间接冷却水循环量 根据间接冷却水循环量定义(见标准CJ19—87),测量和计算出企业日间接冷却水循环量。 企业年间接冷却水循环量 由每日间接冷却水循环量累加得到或由不同季节(或不同用水情况)平均日间接冷却水循环量乘以实际用水天数得到不同季节(或不同用水情况)的循环量。然后相加求得全年的间接冷却水循环量。 工业部门年间接冷却水循环量 由各企业年间接冷却水循环量之和再加上企业之间作为间接冷却水回用的水量得到。 工业年间接冷却水循环量 由各工业部门的年间接冷却水循环量之和再加上城市污水处理厂回用于工业部门作为间接冷却水的年水量得到。

(完整word版)大口井出水量计算

大口井的出水量计算 大口井出水量计算有理论公式和经验公式等方法。经验公式与管井计算时相似。以下仅介绍应用理论公式计算大口井出水量的方法。 因大口井有井壁进水,井底进水或井壁井底同时进水等方式,所以大口井出水量计算不仅随水文地质条件而异,还与其进水方式有关。 1.从井壁进水的大口井 可按完整式管井出水量计算公式(7-2)和式(7-3)式进行 计算。 2.井底进水的大口井 对无压含水层的大口井,当井底至含水层底板距离大于或等于井 的半径(T ≥r )时,按巴布希金(Бабущкин.В.Д)公式计算(见图7-21) )4H R 185lg .11(T r 2r KS 2Q 0++=ππ (7-40) 式中Q ——井的出水量,m 3/d ; S 0——出水量为Q 时,井的水位降落值,m ; K ——渗透系数,m/d ; R ——影响半径,m ; H ——含水层厚度,m ; T ——含水层底板到井底的距离,m ; r ——井的半径,m 。 承压含水层的大口井也可应用上式计算,将公式中的T 、H 均替换成承压含水层厚度即可。 当含水层很厚(T ≥8r )时,可用福尔希海默(F O rchheimer ,P.)公式计算: Q=AKS 0r (7-41) 式中A ——系数,当井底为平底时,A=4;当井底为球形对,A =2π;其余符号与上 式同相。 3.井壁井底同时进水的大口井 可用出水量叠加方法进行计算。对于无压含水层 (图7-22),井的出水量等于无压含水层井壁进水的大口井的出水量和承压含水层中的井底进水的大口井出水量的总和: ])4H R 185lg .11(T r 22r r R 3lg .2S 2h [KS Q 00+++-=ππ (7-42) 式中符号如图7-22所示,其余与前同。 r T S 0 H R r T S 0 H R h 图7-21 无压含水层中井底进水的大口井计算简图 图7-22 无压含水层中井底井壁进水大口井计算简

用水量计算

用水量计算 3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、用水定额及卫生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第3.6.3、3.6.4条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第3.6.5条和第3.6.6条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数每户 Ng 345678910 qokh 350102009600890082007600———400910087008100760071006650——4508200790075007100665062505900—50074007200690066006250590056005350 55067006700640062005900560053505100 60061006100600058005550530050504850 65056005700560054005250500048004650 70052005300520051004950480046004450

注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第3.1.9条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第3.1.10条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。 3.6.1原规范2003版设计流量计算存在下列问题: a. 3000人以上支状管道计算无依据; b. 3000人以下环状管道计算无依据; c. 在3000人前提下按设计秒流量式(3.6.4)计算和按最大小时平均流量计算得到两种结果; d. 居住小区给水支管按最大小时平均秒流量计算偏小,与住宅按概率法计算设计秒流量不能銜接;

用水量计算方法

1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量; 3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。

3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算: (3.6.4-1) 1 根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数, 可按式(3.6.4-1)计算出最大用水时卫生器具给水当量平均出流概率: 式中: uo——生活给水管道的最大用水时卫生器具给水当量平均出流概率(%);qo——最高用水日的用水定额,按本规范表3.1.9取用;

耗水量计算

冷却塔耗水量计算论证 在湿式冷却塔中,热水将热量传给空气,由空气带走,散到大气中去。水向空气散热有三种形式:①接触散热;②蒸发散热;③辐射散热。冷却塔主要靠前两种散热,辐射散热量很小,在此忽略不计。 两种不同温度的物质接触,热量从温度高的一方传向温度低的一方,称为接触散热。冷却塔中,当低温度空气通过高温度水面时,水面会通过接触散热,把热量传给空气。 蒸发散热通过物质交换完成,即通过水分子不断扩散到空气中来完成。水分子有着不同的能量,平均能量由水温决定。在水表面附近,一部分动能大的水分子,克服邻近水分子的吸引力,逃出水面而成为水蒸气。由于能量大的水分子逃离,水面附近的水体能量变小,因此水温降低,这就是蒸发散热。 如下为水的冷却过程: 在冷却塔中水的冷却过程由水温、空气的干球温度θ、湿球温度τ决定。单位面积,单位时间的接触散热量为αq ,蒸发散热量为 βq 。可分为下图所示的四种传热情况。 (1)水温大于气温。两种热量都由水面散向空气, βα+=q q q ,水温降低, 水量产生蒸发损失。 (2) θ=t ,水温和气温相等。接触散热停止,蒸发散热照常进行,β=q q ,水温 降低,水量产生蒸发损失。本项目中冷却水要求出水温度31℃,而哈尔滨地区的干球温度达到或接近31℃的时候必然存在,该计算即按照该条件下进行。

(3) θ<<τt 。由于水温低于空气干球温度,从空气向水中产生接触传热;水面蒸发散热照常进行,0>-=αβq q q ,水温降低。 (4) θ<=τt 。同(3)的传热情况,但βα=q q ,所以0=q ,即水温不再降低,但 蒸发仍在发生。这是水冷却的极限情况,如果水温继续下降,将产生αq > βq 水 温又会升高,所以t =τ是水冷却的极限。 综上分析,按照第2种情况下计算耗水量进行论证 该项目设计条件为: 管程循环水体积流量: h m q v 32450=, 进水温度:℃8.37=in t ,出水温度要求℃31 out ≤t 环境干球温度℃31 =d t ,湿球温度℃24=w t ,相对湿度%60=d h 总热负荷h kcal kw t q C Q m P 1526600017750 ==?= 耗水量计算: 水的蒸发潜热为2260千焦/千克(0.628kWh/kg ),因在此计算条件下绝大多数 热量都需要由水的蒸发来带走,故需要的蒸发水量为: )/(28264628.017750h kg =。 以上数据就是当外界环境温度达到或接近冷却水温的条件下的耗水量,不管采用什么形式的自然散热(包括加翅片),都必须要达到该数据,因为在此条件下的接触散热已经停止,只能靠水的蒸发散热来带走热量。如果外界温度高于冷却水温度,则改数据还要增加,以弥补接触散热部分的反向传热(在该项目条件下哈尔滨地区一般不存在这种情况)。 以上是对蒸发水量的计算,还有如下部分水的损失也不可忽略: 1、即喷淋的漂水量,即有一部分细小的水滴会在没有蒸发的情况下被风机抽走,该部分水损失很难确定多少,由不同的填料和收水器性能来决定。虽然好多厂家宣称自己产品达到零漂水,但是这肯定不可能实现的。根据以往经验,

消防用水量实例计算

摘要:消防设计用水量包括流量和水量。 建筑中自动灭火系统的设计流量应按其中设计流量最大的一种系统确定,多种消防系统的设计总流量应按其中消防总流量最大的一个防护对象和防护区确定,一个防护区的总流量应为其中的消火栓、自动灭火、水幕系统流量之和。把出现在不同防护区的消火栓系统最大流量、自动灭火系统最大流量和水幕系统最大流量之和作为消防系统的设计总流量不符合每次只有1个失火点的消防基本设定。确定系统的设计水量,方法类似。 关键词:消防工程设计流量水量自动灭火系统建筑水消防系统建筑消防用水量包括流量和水量两个参数。用水流量决定消防水泵的流量和消防管径,用水水量决定消防水池的容积。流量和水量的合理确定一方面影响着消防系统的灭火性能或消防灭火的成败,另一方面还通过管径、水泵流量、水池容积等影响着消防丁程的投资规模。因此,消防流量和水量是消防灭火供水丁程中一组非常重要的数据。 1目前水量计算存在的问题根据国家规范,消防系统用水量按需要同时开启的灭火系统的用水量之和计算。然而,由于下列原因,需要同时开启的灭火系统越来越难以判断和把握,以至于判断结果及用水量的计算值往往因人而异,并且差别明显。 (1)建筑水消防灭火系统的种类越来越多,消火栓系统有室内、室外系统;自动灭火系统有:湿式系统、干式系统、预作用系统、雨淋系统、水喷雾系统、水幕系统、自动喷水一泡沫联用系统、消防水炮系统等;水幕系统有防火分区水幕、防火隔离单元水幕,且其中又分冷却水幕和隔断水幕。一个消防供水系统中,往往同时含有上述的多种系统。 (2)建筑的功能和构造越来越复杂,一个消防灭火系统所防护的建筑物特别是综合建筑一般由多种不同功能的建筑空间组成,有的是多栋建筑其功能互不相同,有的是一栋建筑含有多个功能区间。消防用水量随建筑功能而变化,同一灭火系统的用水量也会依功能区和建筑构造的变化而出现多个值。需要同时开启的系统种类或数量决定着用水量之和,哪些系统需要同时开启是设计中首先要解决的问题。但目前,需要同时开启的系统并没有可操作的判定标准,设计人员都根据自己的经验确定。由于火灾学专业水平和经验的差异,致使同时

锅炉房用水量计算

锅炉房用水量计算 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

声明:以下算法仅代表个人观点,参考书目有《工业锅炉房设计手册》、《烟气脱硫脱硝技术手册》等。有兴趣的坛友可以自己下载看看。 (1)锅炉房用水的组成 通常来说,锅炉房用水主要分为生产用水、生活用水及煤加湿水三类,其中生产用水以循环水为主,主要为锅炉热力网循环系统补水、引风机轴承冷却补水、脱硫除尘用水、离子交换器树脂再生用水、定期排污冷却用水和冲渣用水等。 (2)生产用水的核算 ①锅炉热力网循环系统补水 锅炉分为蒸汽锅炉和热水锅炉两种。 蒸汽锅炉的热力网补水很好理解。如:1t/h的蒸汽锅炉,就是1t/h的水产生 1t/h的蒸汽,所以用水量很容易计算。环评中,我认为可以忽略“锅炉排污量并扣除凝结水量”这部分水量,直接用产汽量来估算。 这里主要说一下热水锅炉的循环系统补水计算方法。 要知道补水量,先要知道循环用水的量。热水锅炉循环水量计算公式采用《工业锅炉房设计手册》中的经验公式 循环水量=1000×0.86kcal/MW×吸热量(MW)/一次网温度差(℃) 热水锅炉补水率较低,通常为1%~2%,主要为热力网损失。根据循环水量和补水率,可以核算出补水量。 ②引风机轴承冷却补水 引风机轴承在运转过程中会发热,因此需要冷却水进行冷却。在有循环水箱时,引风机轴承冷却补水量可按0.5m3/h箱核算。 如果是抛煤机炉,抛煤机及炉排轴的冷却补水量也可按每台锅炉0.5m3/h计算。 ③脱硫除尘用水

④离子交换器树脂再生用水 锅炉用水采用全自动软水器进行水质软化处理,交换器内的离子树脂大约一周再生一次,再生方式为采用8%~10%NaCl溶液进行正洗和反洗。 对于常用的固定床钠离子交换器,用水量包括配制盐溶液用水、反洗离子交换器用水(如有反洗水箱,可不折算)、正洗离子交换器用水,此部分用水量可以类比《工业锅炉房设计手册》中的表13-33。 对于阳离子交换树脂冲洗耗水量,按每立方米每次(1~1.5h)用水5~8m3估算。 ⑤排污冷却用水

用单位出水量计算渗透系数

第一章 用单位出水量计算渗透系数的可行性研究概况 在铁路建设中,为了提高预测生产井出水量的精度,同时不使用观测孔,又节省勘探费用和缩短勘探周期。本文在搜集国内外关于单孔抽水试验计算渗透系数的理论公式和经验公式,重点分析裘布依公式的基本假定和适用范围,找出影响传统计算方法精度的主要因素,结合铁路一般供水站用水量较小的特点,寻求单孔抽水试验计算水文地质参数简单可行的新方法。 该方法主要根据勘探孔的抽水试验资料,建立Q —S 抛物线方程,用数值方法求算S=1m 时的单位出水量q 值,然后求算渗透系数K 值,再代入裘布依公式中求算引用补给半径R 值。在计算过程当中,使用了数理统计方法。此外,还使用了基姆公式,以便解决只做一次水位降深时求算S=1m 时的近似单位出水量q 值。从而用小口径(≤146mm )勘探试验孔的水文地质参数K ,R 值,预测大口径(>146mm )生产井(大口井、管井、结合井、干扰井、渗渠即水平集水管)等的出水量。 第二章 渗透系数和影响半径传统计算公式与存在问题 第一节 裘布依公式的假设条件和使用范围 自1863年法国水力学家裘布依提出潜水井和承压水井公式以来历经百余年, 至今仍然被广泛使用着。实践证明,该公式诞生以来,在指导人类开发地下水资源方面起到了举足轻重的作用,促进了社会进步并获得了经济效益。但是长期以来在使该公式时,由于种种原因,常常忽视了该公式的适用范围和条件,因而造成系列误差,影响了渗透系数和引用补给半径的计算成果。 一?裘布依公式 1,承压水完整孔 r R MS Q K ln 2π= (2-1) 2,潜水完整孔 r R h H Q K ln )2 2-= (π (2-2) 式中 K —含水层渗透系数(m/d ); Q —钻孔出水量 (m 3/d); S —水位降深(m ); M —承压含水层厚度(m ); H —天然情况下潜水含水层厚度 (m ); h —潜水含水层在抽水试验时的孔内剩余厚度(m ); R —含水层半径,即应用补给半径(m ); r —过滤管半径(m )。

(完整版)施工用水量计算方法

施工用水量计算方法 一、施工用水设计 根据本工程量、所需劳动人数、施工机械及招标文件等情况,对施工用水作如下设计:1、施工用水量计算 (1)施工用水 按每小时浇筑30m3砼计 其中:q1——施工用水量 Q1——每小时浇筑砼量 N1——施工用水额 K1——未预计的施工用水系数 K2——用水不均衡系数 (2)机械用水 q2=K1 =0.04L/S 其中:q2——机械用水量 Q2——同一种机械台数 N2——施工机械台班用水定额N2=300 K1——用水修正系数K1=1.1 K3——施工机械不均衡系数K3=2.0 (3)现场生活用水 q3= =0.8L/S 其中:q1——施工现场生活用水量 P1——施工现场高峰昼夜人数300人 N3——施工现场生活用水定额N3=60 K4——施工现场用水不均衡系数 K2——用水不均衡系数 b——每天工作班数 (4)消防用水量 Q消=10L/S (5)总用水量 Q=q1+q2+q3=24.9+0.04+0.8=25.74L/S>Q消,故Q总取25.74L/S (6)水源管径计算 D= =0.11 其中:d——配水管直径 Q总——总用水量 V——管内水流速度 2、现场临时给水管布置

从业主提供的水源中,接出一根DN100的水管作为施工现场临时供水主管,即可满足现场的施工及生活和消防用水。楼层给水从结构柱边往上设DN50水管,每层再接出DN25分水管。其余支管均为DN25。 现场临时消防栓设3个,具体位置详附后施工给、排水平面图布置图。 二、现场排污管布置设计 楼上的施工废水用Φ100PVC管从管道井内或从楼梯间有组织地排入地面水沟内,并每隔两层设一根与楼层上临时厕所等污水点相连的污水支管,所有施工废水都经两级沉淀后,才能经排水沟,排至场外的污水井内,地下水和雨水有组织的排入城市雨水井内。

水量计算问题

河南理工大学2011年数学建模竞赛论文答卷编号(竞赛组委会填写): 题目编号:( A、B、C、D、E之一) 论文题目: 水量计算问题 参赛队员信息(必填):

封二 答卷编号(竞赛组委会填写): 评阅情况(学校评阅专家填写):评阅1. 评阅2. 评阅3.

摘要 本文通过设计构造辐射井的地下水降落曲线的数学公式,来建立辐射井水量的计算模型。 针对问题一: 根据辐射管在水平布置上的对称性,可将问题简化为对一扇形域的水流运动的研究。又结合题中相关数据,分析辐射管在含水层中对地下水降落曲线、地下水渗透范围的影响情况,得到辐射管汇集水量的大小与降落曲线高度近似呈正比例关系。分析实测的辐射井降落曲线资料得出地下水降落曲线高度x T 与距离x 之间近似呈自然对数的函数关系,构建地下水降落曲线的函数关系式,并将观测井取得的相关数据代入进行验证,证明了函数的可行性。 针对问题二: 结合题中相关数据,分析辐射管在含水层中对地下水降落曲线、地下水渗透范围的影响情况,将沿辐射井横剖面上的地下水降落曲线近似为高度的平均直线;可知集水井井壁、辐射管端点外侧流进水量占总水量的很小比例,可只计算沿垂直方向流入辐射管的水量。按照降落曲线的函数式,采用积分法得到沿辐射管全程的平均高度,再结合平均高度T 对应的水平距R 、剖面矩形宽度b 、局部 阻抗系数φ以及集水管的汇流强度公式 x p x x T H k q φ-=,即可得到辐射井出水量。 针对问题三: 根据问题一二中建立的模型进行数据处理。在问题一种利用附件一中所给的数据,得出参数α、0T ,然后将其代入公式中,得出相应的结果,再与实际测量的数据进行比较,判断误差大小,进行评价;问题二中计算出相应的参数变量 T b 、 T d 、 T ?T ,然后通过计算公式得出?的值,再代入求出对应时间的n Q ,比较实际 测量数并分析。 关键字: 汇流强度 局部阻抗系数 降落曲线弯曲率 单管流量

用水量计算

用水量计算
3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、 用水定额及卫 生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表 3.6.1 中数值的室外给水管段,其住宅应按本规范第 3.6.3、3.6.4 条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施应按本规范第 3.6.5 条和第 3.6.6 条的规定计算节点流量; 表 3.6.1 居住小区室外给水管道设计流量计算人数 每户 Ng 3 4 5 6 7 8 9 10
qokh 350 400 450 500 550 600 650 700
10200 9100 8200 7400 6700 6100 5600 5200
9600 8700 7900 7200 6700 6100 5700 5300
8900 8100 7500 6900 6400 6000 5600 5200
8200 7600 7100 6600 6200 5800 5400 5100
7600 7100 6650 6250 5900 5550 5250 4950
— 6650 6250 5900 5600 5300 5000 4800
— — 5900 5600 5350 5050 4800 4600
— — — 5350 5100 4850 4650 4450
注:1 当居住小区内含多种住宅类别及户内 Ng 不同时,可采用加权平均法计 算; 2 表内数据可用内插法。 2 服务人数大于表 3.6.1 中数值的给水干管,住宅应按本规范第 3.1.9 条的规定 计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施的生活给水设计流量,应按本规范第 3.1.10 条计算最大时用水量为节点 流量; 3 居住小区内配套的文教、 医疗保健、 社区管理等设施, 以及绿化和景观用水、 道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。

给水管道设计用水量

第四章给水管道设计用水量 本章内容: 1、设计用水量组成 2、用水量变化 3、用水量计算 本章难点:用水量计算 城市用水量计算是给水系统规划和设计的主要内容之一,是决定给水系统中水资源的利用量、取水、水处理、泵站和管网等设施的工程建设规模和投资额的基本依据。 设计用水量通常由下列各项组成: (1)综合生活用水,包括居民生活用水和公共建筑及设施用水。前者指城市中居民的饮用、烹调、洗涤、冲厕、洗澡等日常生活用水,后者则包括娱乐场所、宾馆、浴室、商业、学校和机关办公楼等用水; (2)工业企业生产用水和职工生活用水; (3)消防用水; (4)浇洒道路和绿地用水等市政用水; (5)管网漏失水量及未预计水量。 在确定设计用水量时,应根据各种供水对象的使用要求及发展规划和现行用水定额,计算出相应的用水量,最后加以综合作为设计的依据。 第一节用水量定额 用水量定额是指不同的用水对象在设计年限内达到的用水水平。 一、生活用水定额 生活用水定额指每人、每天的用水量,以L/(Cap?d)计。影响生活用水定额的因素很多,如当地的水资源和气候条件、人民的生活水平、生活习惯、收费标准及办法、管理水平、水质和水压等因素有关。 1.居民生活用水定额和综合生活用水定额 设计时应根据当地国民经济、城市发展规划和水资源充沛程度,在现有用水定额基础上,结合给水专业规划和给水工程发展条件综合分析确定。如缺乏实际用水资料,则居民生活用水定额和综合生活用水定额可参照现行《室外给水设计规范》的规定。 2.公共建筑用水定额 可参照现行《建筑给水排水设计规范》的规定。 3.工业企业职工生活及淋浴用水定额 工业企业职工生活及淋浴用水定额是指工业企业职工在从事生产活动时所消费的生活及淋浴用水量,以L/(Cap·班)计,设计时可按《工业企业设计卫生标准》的规定。工作

(完整word版)大口井出水量计算.doc

大口井的出水量计算 大口井出水量计算有理论公式和经验公式等方法。 经验公式与管井计算时相似。 以下仅介绍应用理论公式计算大口井出水量的方法。 因大口井有井壁进水, 井底进水或井壁井底同时进水等方式, 所以大口井出水量计算不仅随水文地质条件而异,还与其进水方式有关。 1.从井壁进水的大口井 可按完整式管井出水量计算公式( 7- 2)和式( 7- 3)式进行计算。 2.井底进水的大口井 对无压含水层的大口井, 当井底至含水层底板距离大于或等于井的半径( T ≥ r )时,按巴布希金( Бабущкин)公.式В计.Д算(见图 7- 21) 2 KS 0r ( 7-40) Q r (1 1.185lg R ) 2 T 4H 式中 Q ——井的出水量, m 3 /d ; S 0——出水量为 Q 时,井的水位降落值, m ; K ——渗透系数, m/d ; R ——影响半径, m ; H ——含水层厚度, m ; T ——含水层底板到井底的距离, m ; r ——井的半径, m 。 承压含水层的大口井也可应用上式计算, 将公式中的 T 、H 均替换成承压含水层厚度即 可。 当含水层很厚( T ≥ 8r )时,可用福尔希海默( F O rchheimer , P.)公式计算: Q=AKS 0r ( 7- 41) 式中 A ——系数,当井底为平底时, A=4 ;当井底为球形对, A = 2π;其余符号与上 式同相。 3.井壁井底同时进水的大口井 可用出水量叠加方法进行计算。对于无压含水层 (图 7- 22),井的出水量等于无压含水层井壁进水的大口井的出水量和承压含水层中的井底进水的大口井出水量的总和: 2h S 0 2r Q KS 0[ R r R ] 2.3lg r 2 T (1 1.185lg ) 4H 式中符号如图 7- 22 所示,其余与前同。 R ( 7- 42) R S S h H H r r T T 图 7-21 无压含水层中井底进水的大口井计算简图 图 7- 22 无压含水层中井底井壁进水大口井计算简

用水量的计算

用水量的计算 1. 施工用水量,可按下式计算: q 1=K 1∑ · (6) 式中 q 1————施工用水量(L/s ); K 1————未预计的施工用水系数(1.05-1.15); Q 1————年(季)度工程量(以实物计量单位表示); N 1————施工用水定额(见表达式7); T 1————年(季)度有效作业日(d ); t ————每天工作班数(班); K 2————用水不均衡系数(见表8). 2. 施工机械设备用水量,可按下式计算: (7) 式中 q 2————机械用水量(L/s ); k 1————未预计的施工用水系数(1.05-1.15); Q 2————同一种机械台数(台); N 2————施工机械台班用水定额,参考表9中的数据换算求得; K 3————施工机械用水不均衡系数(见表8)。 表6 行政生活福利临时建筑参考指标 Q 1·N 1 T 1·t K 2 8×3600 K 3 q 2=k 1∑Q 2N 2 8×3600

表7 施工用水参考定额 表8 施工用水不均衡系数 q 3= (8) 式中 q 3———— 施工现场生活用水(L/s); p 1————施工现场高峰昼夜人数(人); N 3————施工现场生活用水定额(一般为20~60L/人·班,主要需视当地气候而定); k 4————施工现场用水不均衡系数(见表8); t ————每天工作班数(班)。 表9 机械用水量参考定额 P 1·N 3·K 4 t ×8×3600

q 4= (9) 式中q 4———— 生活区生活用水; P 2————生活区居民人数(人); N 4————生活区昼夜全部生活用水定额,每一居民每昼夜为100-120L,随地区和 有无室内卫生设备而变化;各分项用水参考定额见表10; K 5————生活区用水不均衡系数(见表8)。 (5)消防用水量(q 5),见表11。 (6)总用水量(Q )计算: ①当(q 1+q 2+q 3+q 4)≤q 5时,则 Q=q 5+ (q 1+q 2+q 3+q 4) (10) ②当(q 1+q 2+q 3+q 4)>q 5时,则Q=q 1+q 2+q 3+q 4 (11) ③当工地面积小于5ha 而且(q 1+q 2+q 3+q 4)

相关主题
文本预览
相关文档 最新文档