振动监测软件功能介绍
- 格式:pptx
- 大小:9.46 MB
- 文档页数:15
振动监控系统振动监控系统是一种用于实时监测和分析机械设备振动状况的技术方案。
它利用传感器采集机械设备的振动信号,并通过分析这些信号来实现对机械设备的状态进行监测和预测。
振动监控系统广泛应用于各种工业领域,可有效提高设备的稳定性、可靠性和安全性。
一、振动监控系统的原理和组成振动监控系统主要由传感器、信号放大器、数据采集器、分析软件等组成。
传感器负责采集机械设备振动信号,信号放大器用于放大传感器采集到的微弱信号,数据采集器将信号转换为数字信号并传输给分析软件进行处理。
二、振动监控系统的作用和优势1. 实时监测:振动监控系统能够实时监测机械设备的振动状况,及时发现异常振动,提前预警设备故障,避免机械设备的意外停机,减少生产线的损失。
2. 故障诊断:通过振动信号的分析,振动监控系统可以判断设备是否存在故障,并对故障类型进行诊断。
这有助于准确定位和修复故障,提高维修效率。
3. 预防维护:振动监控系统可以实现对机械设备的预防性维护。
通过持续监测设备振动状况,系统可以根据振动特征和变化趋势提前预警设备故障,制定合理的维护计划,避免设备故障带来的生产中断和维修成本。
4. 数据分析:振动监控系统可以对采集到的振动数据进行分析和处理,提取有用信息,为设备运行状态的评估和改进提供依据。
这有助于优化生产过程,提高设备的使用寿命和稳定性。
三、振动监控系统的应用领域振动监控系统广泛应用于各种工业设备的监测和维护中,如发电机组、风力发电机组、泵站、机床、轴承等。
以下是几个典型的应用场景:1. 发电机组监测:发电机组是电力系统的重要组成部分,振动监控系统可以监测其转子和轴承的振动状况,检测轴承的磨损程度,发现故障隐患,确保发电机组的安全运行。
2. 风力发电机组监测:风力发电机组常受到强风和恶劣环境的影响,振动监控系统可以监测发电机组的桨叶振动、转子振动等,提供及时的故障预警和维护建议。
3. 泵站监测:振动监控系统可以监测泵站的水泵、电机等关键设备的振动状况,预测设备的寿命,并提供有效的维护方案,保证泵站的正常运行。
风力发电机振动监测摘要:当前,风力发电已成为世界新能源发电中发展最迅速的行业,我国风电总装机容量已跃居世界第一。
但由于缺乏关键技术,盲目扩大风电场建设,加之环境恶劣,国产风电机组故障发生率明显高于国外,这不仅增加了风力发电机组维修费用,也大大降低了发电可靠性。
开展风电机组的运行状态监测,可以提前发现设备运行隐患,实现风力发电机设备的计划检修,是降低生产维修成本、防止重大事故发生的有效措施。
关键词:风力发电机;振动监测;应用引言为满足风电市场高速增长需要,我国大批新型风力发电机组匆忙投入规模化生产运行,如此短的时间,不可能准确地检验机组的质量,考察运行可靠性,这无疑增加了生产技术风险和机组不正常运行导致的经济风险。
另外,风电场所处的环境和气候条件恶劣,使发生故障的潜在可能性和方式也相应增加,一旦这些设备发生故障而失效,将造成巨大的经济损失。
1、风电机组在线振动状态监测系统1.1系统构成振动监测系统主要是在风力发电机组预先选定的位置安装振动传感器和转速传感器,传感器将其采集的信号通过带编织屏蔽电缆接入到1台智能采集单元,将处理完的数据通过无线网络发送到事先装有分析软件的服务器中,客户可通过多种方式登录服务器察看运行数据,以便进行深入分析。
1.2测点布置对于风力发电机组的振动监测,主要集中在传动链上,而针对传动链,监测又主要集中在主轴、齿轮箱和发电机上。
针对风力发电机组的特定应用,在主轴承、一级行星轮大齿圈处转速较低,需要选用低频加速度传感器,其他位置选用通用型加速度传感器。
对于当前主流的两种齿轮箱类型,通用测量点布置要求如下:①两级行星,一级平行轴结构主轴前轴承1个(径向)、二级行星轮大齿圈1个(径向)、二级行星轮大齿圈1个(径向),齿轮箱低速轴输出端1个(径向)、齿轮箱高速轴输出端2个(轴向和径向)、发电机驱动端2个(轴向和径向)、发电机非驱动端1个(径向)。
转速传感器安装在齿轮箱高速轴输出端位置。
3500测振监测系统介绍监测系统本特利内华达公司所生产的监测保护系统主要应用在大型旋转和往复式机械的本体振动等监测保护方面,我们的空压机和氧压机系统中都应用了BENTLY测振系统,因为超速对透平机组而言是极其危险的情形之一,所以必须安装超速保护系统。
本特利公司为此研制了由涡流传感器及超速保护监测器组成的电子超速监测系统,它是完整的超速保护系统的一部分。
我们的测振系统应用有3300和3500两种测振,这次重点介绍23500制氧机采用的3500测振系统3500监测系统是当今最新的机器检测系统,此系统能够通过多种传感器采集数据作为一个系统,提供连续、在线监测功能,适用于机械保护应用,它是本特利内华达采用传统框架形式的系统中功能最强、最灵活的系统,具有其他系统所不具备的多种性能和先进功能。
3500监测系统的设计目的如下●每个通道的价格比以往的监测系统更低,一表多用(轴振、偏心、轴位移、加速度可以通用),减少了工厂运作成本。
●数字化和集成化程度高,提高了监测系统的质量。
●支持在线插拔,维护时不需断电。
3500监测系统和我们以前使用的3300相比,3500比3300多了软件系统,而且一个软件多样化,且需要计算机进行组态,但组态完成以后就不再需要计算机。
而且也没有3300那样的显示面板,布置更密集。
BENTLY的3500监测保护系统由传感器(探头、延长电缆、前置器)就地电缆和监视器框架,计算机和软件组成。
我们就先从传感器开始介绍。
传感器1.1 传感器的组成及功能系统有三个独立的部分,其中任何单独一部分都不能称为传感器,这三部分分别是:探头,延伸电缆、前置器。
它既能进行静态(位移)测量,又能进行动态(振动)测量,主要用于油膜轴承机械的振动和位移测量,以及键相位和转速测量。
它能将一种物理量转化为另一种物理量,在前置器(也叫前置变送器)系统中,机械能被转化成电能,这个系统中使用的转换设备被称为前置器。
这种电子设备被安装在金属盒子里。
振动监测及分析系统(VMAS)在发电厂的应用摘要:振动状态监测及分析系统自动连续地采集与设备安全有关地主要状态参数:机组的振动、摆度、键相/转速、轴振、瓦振、轴位移、胀差、偏心、机组轴承负荷及温度、压力和开关量等,并自动形成各种数据库。
它能够自动识别设备的运行状态,预测和诊断设备的故障;能够促进设备维修方式向预知维修(状态维修)的转变,确保设备安全稳定地运行。
关键词:振动状态监测及分析系统(VMAS);信号处理;诊断。
0. 引言随着对发电厂主要设备可靠性、稳定性、以及对电厂设备寿命要求的提高,越来越多的监测和诊断分析系统应用到实际电厂项目中。
汽轮机、发电机、以及主要高压电动机设备作为发电厂的主要运行设备,更是成为监测和诊断的重要对象。
随着先进信号处理技术以及诊断技术的发展,振动监测及分析系统(VMAS)能在故障出现的早期阶段及时地预告故障的存在和发展,避免灾难性事故发生,并可以将现有的周期预防性维修改为预知性的维修, 选择最佳停修时间,提高机组可利用率。
1. 振动状态监测及分析系统(VMAS)的定义振动状态监测及分析系统,英文全称是Vibration monitoring and analyze system ,缩写为VMAS。
振动状态监测及分析系统的主要功能是用于主辅机(通常包括汽轮机、发电机、以及主要的高压设备)状态监测与故障诊断,实现监测、控制、报警、诊断功能。
而在早期,振动状态监测和分析系统主要应用于汽轮发电机组,叫做旋转机械诊断监测管理系统,英文TDM (Turbine diagnosis management) ,在电厂中一般是指汽轮发电机组振动在线状态监测和分析系统。
实际上,这两个叫法是针对一套系统,只是监测的范围不同。
2. 振动状态监测及分析系统基本配置振动状态监测及分析系统是以计算机为平台的旋转机械振动状态在线监测及故障诊断系统,用于对汽轮机、发电机、电动机、风机、泵等设备的振动、转速、压力、流量、温度等信号进行连续监测。
“小神探”点检管理系统——振动分析功能介绍1 系统结构在电力、冶金等行业,存在着数量庞大价值昂贵的旋转机械,振动测量与分析作为预知旋转机械运行状态的主要手段之一,在这些行业获得了很好的应用,并取得了良好的经济效益。
“小神探”点检管理系统为用户提供了振动分析的从原始数据采集到计算机软件振动分析的一整套解决方案。
填补了在线监测系统所不能触及到的测量监控盲点,同时也为设备振动原始数据的积累提供了一个有效的管理平台。
在测量现场,振动测量分析模块与点检仪为点检人员提供了加速度、速度、位移测量功能,同时也提供了建议的频谱分析功能。
在计算机端,系统提供了趋势分析、指标计算、时域波形、频谱分析、瀑布图等多种分析形式,便于振动专家基于这些原始数据进行故障的分析与诊断。
同时数据库的应用,也极大的方便了局域网内多名专家共同对同意问题进行分析。
图12 硬件介绍测振模块是专门与小神探点检仪配合使用的机械振动测量分析模块。
该模块通过RS232接口实现模块与点检仪本体间的通信(见图2)。
可以进行加速度、速度、位的测量,由于其内部集成了高精度的模数转换器与数字信号处理器,从而具有频谱分析功能,可以进行简易的振动故障诊断。
用户可以在点检仪的“随机测量”菜单中选择测量类型(位移、速度、加速度或是频谱分析),模块经过测量计算后将测量结果上传点检仪并在液晶屏上显示;也可以在编制计划的时候定义“测振类”的数据类型,当点检到该计划时,可以将测振数据保存到点检仪中,并上传到计算机的数据库中,以供进一步的分析。
由于采用传感器与测量线路一体化的设计以及点接触式的测量方法,使用方便,很适合于工矿企业针对旋转机械的线路点检与故障诊断。
图22.1 技术参数2.2 测量模式下的参数2.2.1 测量范围加速度:0.1-200.0 m/s2(峰值)速度:0.1-200.0 mm/s(真有效值)位移:0.001-2.000 mm(峰峰值)2.2.2 频率范围加速度:10Hz-1KHz1KHz-15KHz速度:10Hz-1KHz位移:10Hz-1KHz2.3 频谱分析模式下的参数2.3.1 表格数据输出以数据的方式显示幅值最大的两个点的对应频率及幅值。
淮安嘉可自动化仪表有限公司无线振动监测系统简介一、概述无线振动监测系统使用简单方便,稳定可靠,极大地节约了旋转设备振动监测中由于反复布设有线数据采集设备而消耗的人力和物力,广泛应用于工业现场振动加速度、速度数据采集和工业旋转设备振动在线监测。
无线振动监测系统由振动传感器、无线振动变送器、无线接收模块、数据转换器、数据服务器等等组成,无线振动变送器采集器振动传感器(加速度传感器或振动速度传感器)信号,采集后的数据经过无线变送器处理通过WIFI网络传输到下一级数据采集/处理装置,下一级数据采集或处理方式,有两种模式可选,根据不同工业现场或不同使用要求,可选任一种或者两种同时采用:其一、无线接收模块接收无线变送器的信号,然后经过数据转换器,转换成数据采集装置(DCS/PLC等)可以接收的标准电流4-20mA信号,供后续系统使用。
其二、无线接收模块接收无线变送器的信号,直接保存在服务器中,服务器连接网络,现场工程师可通过手机、电脑等便携或更直接的人机界面访问旋转设备的振动数据。
具体现场连接示意图(实际现场连接情况,视具体工业现场需求可做改动),如下:淮安嘉可自动化仪表有限公司二、功能与特点1、无线振动变送器(1)无线振动变送器采集通用振动传感器信号,并将振动数据转换传给无线接收模块。
(2)供电电压:8-24V或电池供电(3)可接入加速度传感器,速度传感器,或者一体化传感器,在订货前确认;(4)每个无线振动变送器最多可以接两个振动传感器;(5)数据上传间隔可设置;(6)量程可配置;(7)工作温度:-40℃ (85)(8)传输方式:WIFI协议,也可根据实际情况选配;2、数据转换器淮安嘉可自动化仪表有限公司数据转换器通过无线模块接收现场传输的数据,把接收的数据转换成电流信号,接入到DCS系统。
⚫将数据转换成4-20mA信号;⚫每个转换器可输出4通道4-20mA信号(即可采集四个振动测点的信号),如现场采集点数多于四个点多个数据转换器通过RS485级联;⚫供电电压:+24V(+/-10%)。
基于Qt的多通道振动信号采集仪上位机软件设计基于Qt的多通道振动信号采集仪上位机软件设计一、引言随着工业化的发展和科技的进步,振动信号的采集与分析在工程领域中变得越来越重要。
多通道振动信号采集仪广泛应用于机械、航空、航天等领域,用于实时监测和分析各种设备的振动情况。
上位机软件作为与振动信号采集仪通信的桥梁,对于实时采集、数据存储和分析处理起着至关重要的作用。
本文主要介绍了基于Qt的多通道振动信号采集仪上位机软件的设计过程和实现方案。
二、软件功能需求1. 连接与采集:上位机软件需要能够与多通道振动信号采集仪建立连接,并实现实时数据的采集。
软件应支持通过网络或串口连接的方式,并能够自动识别采集仪设备。
2. 多通道显示:软件应能够同时显示多通道的振动信号曲线,并能够对每个通道的采集参数进行设定,如采样率和采集时间等。
3. 实时监测:软件应具备实时监测功能,能够实时显示振动信号的频谱、幅值等信息,并能够根据设定的阈值进行报警。
4. 数据存储与导出:软件应支持振动信号数据的存储和导出,可以实现对历史数据的查看和分析。
同时,软件还应支持数据的导出功能,如导出为Excel或CSV文件格式。
5. 数据分析与处理:软件应具备数据的分析和处理功能,能够进行频域分析、时域分析、滤波处理等操作。
同时,软件还应支持数据的绘图功能,如功率谱图、波形图等。
三、软件设计与实现1. 开发环境与工具:本软件采用Qt框架进行开发,使用C++语言实现。
通过Qt Creator作为集成开发环境(IDE)进行界面设计和编码。
同时,使用了QCustomPlot库进行绘图功能的实现。
2. 系统框架:软件采用MVC(Model-View-Controller)架构模式进行设计。
其中,Model层负责数据的处理和存储,View层负责用户界面的展示,Controller层负责协调Model和View的交互。
3. 主要模块设计:(1)连接与采集模块:该模块负责与振动信号采集仪建立连接,并实现数据的实时采集。