(完整版)中考圆知识点总结复习(经典推荐)打印版(最新整理)
- 格式:pdf
- 大小:212.24 KB
- 文档页数:6
中考数学圆知识点总结一、圆的基本概念1.1 圆的定义圆是由平面上到定点到距离等于定值的所有点的集合。
这个定点叫做圆心,这个定值叫做圆的半径。
1.2 圆的元素圆的元素有圆心、半径、直径、弦、弧、扇形等。
1.3 圆的相关概念圆周率π:定圆的周长与直径的比值。
圆心角:以圆心为顶点的角。
圆周角:角的顶点在圆周上,并且角的两边都是圆上的弧。
1.4 圆的性质圆的性质有很多,比如半径相等的圆,直径相等的圆,弦长相等的圆等等。
二、圆的计算2.1 圆的周长圆的周长又叫做圆周长,也叫做圆的周长,通常用字母C表示。
圆的周长等于圆的直径乘以圆周率π。
C=πd2.2 圆的面积圆的面积是圆内部的所有点的集合,通常用字母A表示。
圆的面积等于圆心角的正弦值乘以半径的平方再乘以圆周率π。
A=πr²2.3 圆的相关角和弧长的求解在圆中,角和弧是密切相关的。
圆心角的度数等于它所对的弧所代表的圆周的长度所占整个圆周的比例。
所以我们可以利用这个性质来求解圆的相关问题。
三、圆的相关定理3.1 圆的切线与切点圆的切线与切点是圆的一个重要定理,它的性质有点多。
比如一个圆与直线相切,与圆外一点两切线为公切线或两切线的交点到原圆的距离相等。
3.2 圆的相交定理圆的相交定理也是圆的一个重要定理。
比如两个圆相交于两个不同的点,那么连接这两个交点和两个圆心就组成了一个四边形,并且它的对角线相交于一点。
3.3 圆的正接弦定理圆的正接弦定理是圆的一个重要定理。
它表示一个圆内部的一个锐角与它所对的正切弦之间的关系,这个定理在圆的相关计算中是非常重要的。
四、圆的应用圆在现实生活中有很多应用,比如钟面就是一个圆,轮胎也是一个圆,圆锥形的灯泡和圆球等等都是圆的应用。
而在数学中,圆也是几何图形中的一个重要内容,比如在三角函数中,圆和三角函数是密切相关的。
在平面几何中,圆与直线相交的问题也是经常出现的。
所以掌握圆的知识对于学生来说是非常重要的。
总之,圆是中考数学中的一个重要知识点。
中考圆形知识点总结一、圆的定义圆是由平面上任意一点到圆心的距离都相等的一组点的集合,这个相等的距离就是圆的半径,用R或r表示。
如果把圆心用O表示,圆上一点用A表示,那么圆的表示就是O为圆心,R为半径的圆,通常写作O(R)。
二、圆的性质1. 圆的周长和面积圆的周长,即圆周长,也称为圆的周长。
由于圆是一个闭合曲线,所以圆的周长是指圆的周围的长度。
圆的周长L可以用公式L=2πr来表示,其中π取约等于3.14。
圆的面积A也和圆的半径r有关,圆的面积A=πr^2。
2. 圆的直径圆的直径是圆上任意两点之间经过圆心的线段的长度,它恰好是圆的半径的两倍,即d=2r。
3. 圆心角的度数圆心角是指以圆心为顶点的角,圆心角的度数可以用角度或弧度来表示。
圆心角的度数等于所对圆弧的中心角。
例如,一个圆的圆周角是360°,因此圆周角所对的圆弧的中心角也等于360°。
4. 圆锥相似圆锥相似是指对于两个圆,如果它们的半径之比相等,则这两个圆是相似的。
5. 圆内接四边形在一个圆中,如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。
在圆内接四边形中,相对的角相等,两对相对边之积相等。
6. 圆对称圆对称是指图形绕圆心旋转180°后,图形不变。
圆对称的图形具有很高的美感,例如很多具有圆对称的图案都可以被人们所接受和欣赏。
三、相关定理1. 圆心角定理圆心角定理是指圆心角的度数等于所对圆弧的中心角,即一个圆心角的度数等于它所对的圆弧的度数。
2. 弦长定理弦长定理是指一个圆上任意一条弦所对的两个弧的长度之和,等于这条弦的长度的平方。
3. 垂径定理垂径定理是指一个圆上的直径垂直于与之相交的弦,且中点与圆心和交点共线。
4. 弧长、扇形面积圆的弧长可以用弧度来表示,即弧长s=θr,其中r为半径,θ为圆心角的弧度。
圆的扇形面积也可以用弧度来表示,扇形的面积等于所对圆心角的弧度的一半乘以半径的平方。
四、计算题1. 计算圆的周长和面积计算圆的周长和面积是圆形题目中最基本的计算题,需要根据给定的半径或直径进行计算。
中考圆的知识点总结一、圆的相关定义1. 圆的定义:圆是平面上到定点距离等于定长的点的集合。
2. 圆的要素:圆心、半径,圆周、圆内、圆外。
二、圆的相关定理1. 圆的周长和面积(1)周长:圆的周长等于圆的直径乘以π(π≈3.14)。
公式:周长=2πr(2)面积:圆的面积等于圆的半径平方乘以π。
公式:面积=πr²2. 圆心角和圆心角的度数(1)圆心角:以圆心为顶点的角叫做圆心角。
(2)度数:圆周的一份叫做圆周角,圆周角是度数。
一个完整的圆周角是360°。
3. 弧长和弧度(1)弧长:圆的一部分。
弧长的公式:弧长=2πr(圆的半径r乘以圆心角的度数除以360°)。
(2)弧度:圆心角所对应的弧长的长度。
1弧度=弧长/半径。
4. 直角三角形中的圆(1)直角三角形内切圆:直角三角形的内切圆的圆心在直角三角形的斜边上。
(2)直角三角形外切圆:直角三角形的外切圆的圆心在直角三角形的斜边上。
5. 圆与三角形的关系(1)正弦定理:a/sinA=b/sinB=c/sinC(2)余弦定理:a²=b²+c²−2bc⋅cosA(3)正弦定理:a/sinA=b/sinB6. 圆的相交和切线(1)相交:两个圆相交的情况有几种:相离(两个圆不相交)、内切(一个圆在另一个圆内部)、外切(一个圆在另一个圆外部)、内含(一个圆在另一个圆内部,但没有公共点)。
(2)切线:从圆外一点引一条与圆相切的线叫做切线。
7. 圆的应用(1)建筑中的圆:建筑中圆的形状、圆的结构。
(2)生活中的圆:轮胎、钟表、CD/DVD等。
三、圆的相关练习1. 计算圆的周长和面积。
2. 计算圆心角的度数和弧度。
3. 求解直角三角形内切圆和外切圆的问题。
4. 应用正弦定理、余弦定理和正切定理求解相关问题。
5. 求解相交圆的相交情况和切线的情况。
以上就是中考圆的相关知识点总结,希望对大家的学习有所帮助。
中考圆知识点总结复习圆是数学中重要的基本概念之一,也是我们日常生活中经常遇到的形状。
在中考数学中,圆的知识点是不可避免的,掌握好圆的相关知识对于中考数学的考试至关重要。
本文将对中考数学中关于圆的知识点进行总结复习,希望对同学们的复习有所帮助。
一、圆的基本概念1. 圆的定义:在平面上的所有到一个固定点距离相等的点的集合,这个固定的点叫作圆心,这个相等的距离叫作圆的半径。
2. 直径、半径和周长的关系:圆的直径是通过圆心的两个相对的点之间的线段,它等于半径的两倍,周长等于直径的π倍或者半径的两倍π。
二、圆的性质1. 圆心角的性质:圆内切于同一弧上的两条弦所对圆心的两个角是相等的,当圆心角的度数是180°时,这两条弦构成的角是直角。
2. 圆周角的性质:位于圆的同一弧上的两条弦所对的圆周角相等。
3. 圆内接四边形的性质:圆内接四边形的对角和等于180°。
4. 弦长定理:圆内一条弦和它所对的两个圆周角的性质。
5. 弦切定理和切割定理:切割定理:切线与过切点作直径的两个弧所对的圆周角等于90°。
三、圆的相关计算1. 圆的周长和面积的计算公式:周长C=2πr面积S=πr²2. 圆的内、外接正多边形的周长和面积的计算四、圆的位置关系1. 圆的位置关系的判定:“点和圆的位置关系”、“直线和圆的位置关系”、“圆和圆的位置关系”。
五、圆的几何变换1. 圆的平移、旋转、对称的基本概念。
2. 圆的平移、旋转、对称的性质。
六、圆的应用.1. 圆的应用在实际生活和工作中运用。
2. 圆在建筑、设计、制图中的应用。
3. 圆的运动的应用。
七、典型例题解析1. 利用圆的数学知识解决问题的方法。
2. 典型例题的解题思路和方法。
3. 典型例题的解题技巧和技巧。
八、练习题1. 适当安排时间,每天复习一定的题目,加深对知识点的理解和掌握。
2. 定期进行模拟考试,检测自己对圆的知识点的掌握情况。
3. 及时总结巩固,弥补知识点的不足。
中考圆专题知识点总结一、圆的概念圆是平面上一个集合,该集合中任意两点的距离都相等,并且距离都等于圆的半径。
圆的周长叫做圆的周长,圆的面积叫做圆的面积。
圆的半径为r,圆的直径为d。
二、圆的性质1. 圆的周长和面积:圆的周长C = 2πr圆的面积S = πr²2. 弧和圆心角:- 弧:两点间的曲线部分,圆的一部分。
- 弧长:弧的长度,记作L。
- 圆心角:以圆心为顶点的角叫做圆心角,圆心角的度数等于它所对的弧的弧度数。
3. 弧长公式:L = rθ(θ用弧度表示)4. 圆周角:圆周角是一条弧所对的圆心角。
圆周角的度数等于它所对的圆心角的两倍。
5. 切线和切点:切线是与圆只有一个交点的直线。
切线与圆相切的点叫做切点。
6. 相交弧、对应弧和交角:- 相交弧:两个圆相交的弧。
- 对应弧:两个圆相交的弧的对应部分。
- 交角:两个相交弧的交角。
7. 圆内接四边形:如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。
8. 圆的切线和割线:切线是与圆只有一个交点的直线,割线是与圆相交而不相切的直线。
切线和割线的切点到圆心的连线和圆的半径相垂直。
三、圆周角、圆心角和弧对应的关系1. 圆周角的度数等于所对的圆心角的两倍。
2. 圆周角的度数等于所对的弧的度数。
3. 圆心角的度数等于所对的弧的度数。
四、圆的性质定理证明1. 同弧或同角:弧对应的圆心角和圆周角以及弧的长度都相等。
2. 切线定理:若直线与圆相交,且交点在圆外,则直线与圆的切点连线垂直于直线。
3. 切线与弦定理:如果一条切线和一条弦相交于圆上的同一点,则切线上这个点的两个切线段相等。
五、常见的圆相关问题1. 圆与圆之间的位置关系:相离、外切、相交、内切、相切。
2. 圆的面积和周长问题:求圆的面积和周长。
3. 圆心角、圆周角和弧的问题:根据给定的信息计算圆心角、圆周角和弧的长度。
4. 切线和切点的问题:计算切线和切点的位置以及相关长度。
5. 圆的切线和割线问题:计算切线和割线的位置以及相关长度。
中考圆形知识点总结归纳一、圆的定义及性质1. 定义:圆是平面上到一个定点的距离等于定长的点的全体构成的集合。
2. 圆心和半径:圆心是到圆上任一点的距离相等的点;半径是圆心到圆上任一点的距离。
3. 直径:通过圆心并且有圆上两点的线段叫做直径,直径的长度等于两倍的半径。
4. 切线和切点:在圆上的一点处与圆相切的直线叫做切线,切线与圆相切的点叫做切点。
二、圆的周长和面积1. 周长:圆的周长等于直径乘以π(π≈3.14)。
2. 面积:圆的面积等于半径的平方乘以π。
三、角与弧1. 圆心角与弧长的关系:圆心角的度数等于对应圆周的弧长所对应的圆心角的两倍。
2. 弧长的计算:弧长等于圆周长乘以所含圆心角的度数除以360度。
3. 弧度制:1弧度等于半径长所对应的圆心角的弧长。
4. 弧长与扇形面积的计算:扇形面积等于扇形对应的圆心角的弧度除以2π乘以圆的面积。
四、相交圆的位置关系1. 相交圆的位置关系:两个圆相交于两个不同的点,一个点,或者不相交。
2. 内切和外切圆:两个圆内切的位置关系就是一个圆在另一个圆内部,一个圆与另一个圆外切的位置关系就是一个圆的周长与另一个圆的圆心的距离相等。
五、圆的应用1. 圆的模型:圆在自然界中有丰富的应用,例如铁路辙、车轮、橱柜的拉手等都是圆形的。
2. 饼图:根据数据用圆形图示数据的比例和百分比,通过饼图可以直观的看出不同部分所占的比例。
综上所述,圆形是数学中重要的基本图形之一,在日常生活和工作中都有着广泛的应用,掌握圆形的基本概念和性质对于学习和生活都是非常有帮助的。
希望大家能够认真学习圆形知识,掌握相关的计算方法,提高自己的数学能力。
中考圆形知识点总结归纳圆形是中学数学中一个重要的几何概念,在中考中也是一个常见的考点。
本文将对中考中涉及到的圆形知识进行总结和归纳,帮助考生复习和掌握这一部分内容。
一、圆的基本概念圆是由平面上任意一点到另一点的距离都相等的点的集合。
其中,距离相等的这个固定值称为圆的半径,用字母r表示。
圆心是圆上任意两点的连线的垂直平分线的交点。
二、圆的性质1. 圆上任意两点之间的距离都等于圆的半径。
2. 圆心角的度数等于它所对的弧的度数,且圆心角所对的弧长等于圆的半径乘以圆心角的弧度值。
3. 相等弧所对的圆心角是相等的。
4. 圆的内切正多边形的中心与圆心重合。
三、弧1. 圆周角:圆周角是指以圆心为顶点的角,它的两边是相交于圆上的两条弧。
圆周角的度数等于它所对的弧的度数。
2. 弦:圆内部连接两点的线段称为弦。
弦分割出的两条弧叫做弦所对的弧。
3. 弧长:指圆上的一段弧所对应的圆周长度。
弧长等于圆心角的弧度值乘以圆的半径。
四、相交弦与切线的性质1. 相交弦定理:相交弦所对的弧相等,或者说两个相交弦所对应的圆心角相等。
2. 切线的性质:切线与半径的垂直分割线。
切线于半径的交点处所对应的圆心角为直角。
五、圆的面积和周长1. 圆的面积公式:S = πr²,其中S为圆的面积,r为圆的半径,π取近似值3.14。
2. 圆的周长公式:C = 2πr,其中C为圆的周长。
六、圆的应用1. 圆的切线与圆的性质:切线与切点间的弦相等,切线切割出的小圆与大圆相似。
2. 弧长与扇形面积:扇形面积等于扇形所对的圆心角的弧长所占整个圆的比例乘以圆的面积。
总结:通过对中考圆形知识点的总结和归纳,我们可以看到,圆形在中考中的考点比较多,涉及到圆的基本概念、性质、弧、相交弦与切线的性质、面积和周长以及应用等方面的内容。
对于考生而言,要牢固掌握圆的基本概念和性质,熟练运用相关公式和定理,灵活应用于解题过程中。
只有通过不断的实践和练习,才能在考试中熟练运用所学的圆形知识,取得好的成绩。
中考圆知识点总结复习圆是初中数学中重要的一章,所以复习圆的知识点是中考复习的重点之一、下面是关于圆的相关知识点的总结复习。
1.圆的定义与要素圆是指平面上到一点距离等于固定的一点的所有点的集合。
在一个圆中,距离固定点(圆心)的距离叫做半径,而连接圆心与圆上任意一点的线段叫做半径。
圆上的任意一段弧称为弦,弦的中点称为弦的中点。
2.圆的性质(1)圆上的任意一条弦都小于等于圆的直径。
(2)如果两条弦等长,则它们所对应的弧相等。
(3)圆上的两个相邻的弧所对应的圆心角相等。
(4)圆上任意两条弦所对应的圆心角一定小于等于180°,当且仅当两条弦所对应的圆心角相等时,这两条弦等长。
(5)在同一个圆或等圆上,圆心角相等的弧相等,弦长相等的圆心角相等。
3.圆的证明(1)两个平行弦所对应的圆心角相等。
证明方法:连接两个圆心与平行弦的中点,用平行线性质证明两个等腰三角形的两个底角相等。
(2)相等弧的圆心角相等。
证明方法:用反证法,假设相等的弧对应的圆心角不相等,然后利用圆周角的性质推导出矛盾。
(3)等腰三角形的底角对应的圆心角相等。
证明方法:连接两个顶点与圆心,利用等腰三角形的性质证明两个三角形的两个底角相等。
(4)正三角形的顶角对应的圆心角为120°。
4.圆周角和弧度制(1)圆周角:一个圆周角等于360°,半圆角等于180°,直角等于90°。
(2)弧度制:角度制中一个圆周角等于360°,而弧度制中一个圆周角等于2π(即360°=2π)。
5.弧长和扇形面积(1)弧长:一个圆的弧长等于它的圆周角所对应的弧x半径。
弧长公式:弧长=圆周角/360°x2πr(2)扇形面积:一个圆的扇形面积等于它的圆周角所对应的扇形面积。
扇形面积公式:扇形面积=圆周角/360°xπr²6.圆的切线和切点(1)切线:圆上的一条切线与圆的切点只有一个。
中考数学圆的知识点总结归纳一、圆的定义(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
二、圆心(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。
πr^2,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
三、周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径四、面积计算公式1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方五、点、直线、圆和圆的位置关系1、点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。
中考圆知识点总结复习1中考圆知识点总结复习1一、圆的定义和性质:1.圆的定义:平面上到一个定点的距离等于定长的点的集合,这个定点叫做圆心,这个定长叫做半径。
2.圆的性质:(1)圆心到圆上任意一点的距离都相等。
(2)圆上任意两点之间的距离等于两个点连线的弧长。
(3)圆上任意两点与圆心连线所成的角都是直角。
(4)圆心角:以圆心为顶点的角,它的顶点在圆上,其它两个点在圆上或圆外。
(5)弧:圆上两点间的部分叫做弧。
(6)弦:圆上连接两个点的线段叫做弦。
(7)切线:圆与直线相切的线段叫做切线。
二、圆的图形及其相关性质:1.圆的正多边形:即正n边形的内接圆,n≥32.圆的直径:穿过圆心的线段,等于两倍的半径。
3.圆周长:等于圆的直径与π之积,或者等于2πr,其中r为半径。
4.圆的面积:等于π乘以半径的平方,即πr²。
三、圆与直线的位置关系:1.圆和直线的交点个数:直线与圆的位置关系决定了两者的交点的个数。
(1)相交:直线和圆相交,有两个交点。
(2)相切:直线与圆相切,有一个交点。
(3)相离:直线和圆没有交点。
2.切线定理:如果一条直线与圆相切,那么这条直线与半径的连线所夹的角一定是直角。
四、圆与弦的位置关系:1.等分弦定理:圆上两个弦等长,那么它们所对的弧相等。
2.三角形内接圆性质:三角形的内接圆是三条角平分线的交点,圆心与顶点的连线垂直于对边。
3.弦的性质:(1)垂直弦定理:一条弦垂直于半径,当且仅当这条弦过圆心。
(2)弦心角定理:同一个弧所对的弦心角相等。
(3)弦长角定理:同一个弦所对的弧长角相等。
(4)弧对弦定理:同一个弧所对的弦相等。
五、圆的划分与测量:1.弧度制:在单位圆上,弧长等于半径的弧度叫做一弧度。
2.弧度和角度的换算:(1)角度=弧度x180/π;(2)弧度=角度xπ/180。
3.弧长:等于半径与弧度的乘积。
弧长的计算公式为:L=rθ。
4.扇形面积:等于扇形弧长与半径的乘积的一半。
中考数学圆知识点总结7篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点叫做圆心,定长叫做半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转不变性,即围绕圆心旋转任意角度后,得到的图形仍然与原图形重合。
二、圆的性质1. 圆的直径是最大的弦,弦是连接圆上两点的直线段,直径是特殊的弦。
2. 圆心到圆上各点的距离都等于半径,即圆的半径是圆的长度单位,它决定了圆的大小。
3. 圆的周长与直径的比值叫做圆周率,是一个重要的数学常数,约等于3.1415926。
4. 圆的面积等于π乘以半径的平方,即圆的面积随着半径的增大而增大。
三、圆与直线的关系1. 直线与圆有三种位置关系:相交、相切、相离。
相交是指直线与圆有两个不同的交点;相切是指直线与圆有一个切点;相离是指直线与圆没有交点。
2. 圆的切线垂直于过切点的半径,即切线与半径是垂直关系。
3. 圆的两条平行弦所对的圆心角相等,即圆心角的大小只与弦的位置有关,与弦的长度无关。
四、圆与圆的位置关系1. 两个圆的位置关系有五种:外离、外切、相交、内切、内含。
外离是指两个圆没有公共点;外切是指两个圆有一个公共点;相交是指两个圆有两个不同的公共点;内切是指两个圆有一个公共点且两圆的圆心在公共点的两侧;内含是指两个圆的圆心在同一个大圆的内部。
2. 两个圆的圆心距等于两圆半径之和或差,即两圆的位置关系可以通过计算圆心距来判断。
3. 两个相交的圆,它们的交点叫做共点,共点将两圆分成四段弧,每段弧叫做一拱。
五、圆的幂和极坐标1. 圆的幂是指一个点到一个圆的距离的平方,即该点到圆心的距离乘以它自身。
圆的幂是该点的极坐标系中的ρ值。
2. 极坐标系是一种在平面中表示位置的方法,它使用一个角度和一个距离来表示一个点。
在极坐标系中,圆的幂可以通过ρ值来计算。
3. 通过计算圆的幂和极坐标系中的角度值,我们可以确定一个点是否在某个圆上或某个圆外。
篇2一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
学习-----好资料初中数学——《圆》【知识结构】⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧侧面积、全面积计算侧面展开图定义圆柱和圆锥形面积计算圆面积、扇形、组合图形周长计算圆周长、弧长、组合图画法应用边长、面积的计算计算半径、边心距、中心角计算概念正多边形正多边形与圆内含内切相交外切外离圆和圆的位置关系切割线定理及推论相交弦定理及推论相交性质判定相切相离直线和圆的位置关系反证法点的轨迹圆内接四边形圆周角定理距之间的关系圆心角、弧、弦、弦心垂径定理及推论基本性质三点定圆定理点与圆的位置关系定义圆的有关性质圆学习-----好资料一、圆及与圆相关的概念二、圆的对称性(1)圆既是轴对称图形,又是中心对称图形。
(2)对称轴——直径所在的直线,对称中心——圆心。
三、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;知2推3定理:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD推论2:圆的两条平行弦所夹的弧相等。
四、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
知1推3定理:①AOB DOE∠=∠;②AB DE=;③OC OF=;④弧BA=弧BD五、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
2、推论:1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;2对的弦是直径。
3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
六、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
、圆中重要的知识点 1、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:( 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 简称2推3定理:此定理中共 5个结论中,只要知道其中 2个即可推出其它3个结论,即:3、如图,已知在O O 中,弦AB CD ,且AB CD ,垂足为H , 0E(1) 求证:四边形OEHF 是正方形.(2) 若CH 3 , DH 9,求圆心0到弦AB 和CD 的距离.以上共4个定理,①AB 是直径 ②AB CD ③ CEDE ④弧BC 弧BD ⑤弧AC 弧AD中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在O O 中,••• AB // CD•••弧 AC 弧 BD例题1、基本概念1. F 面四个命题中正确的一个是( A. 平分一条直径的弦必垂直于这条直径 •平分一条弧的直线垂直于这条弧所对的弦C. 弦的垂线必过这条弦所在圆的圆心 .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心2. F 列命题中,正确的是().A.过弦的中点的直线平分弦所对的弧B.过弦的中点的直线必过圆心C.弦所对的两条弧的中点连线垂直平分弦,且过圆心D.弦的垂线平分弦所对的弧例题2、垂径定理1、在直径为 52cm 的圆柱形油槽内装入一些油后,为 16cm, 那么油面宽度AB 是cm.2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是 48cm,那么油的最大深度为 _______ cm.AB 于 E , OF CD 于 F .截面如图所示,如果油的最大深度4、已知:△ ABC内接于O O, AB=AC半径OB=5cm圆心O到BC的距离为3cm,求AB的长.5、如图,F是以O为圆心,BC为直径的半圆上任意一点,A是〒的中点,AD丄BC于D,求证:AD=1 BF.2F例题3、度数问题1、已知:在O O中,弦AB 12cm , 0点到AB的距离等于AB的一半,求:AOB的度数和圆的半径2、已知:O O的半径0A 1,弦AB AC的长分别是J2、J3.求BAC的度数。
初三圆知识点总结归纳在初三数学学习中,圆是一个重要的几何形状。
本文将对初三圆的相关知识点进行总结归纳,帮助同学们更好地理解和掌握圆的性质与计算方法。
一、圆的基本概念圆是指平面上与给定点距离相等的所有点的集合。
其中,给定的点叫做圆心,所有与圆心距离相等的点叫做圆上的点,而半径则是圆心到圆上任意一点的距离。
二、圆的性质1. 圆的直径、半径和弦- 直径:通过圆心的一条线段,且与圆上两个点相交。
- 半径:圆心到圆上任意一点的距离,也是圆的直径的一半。
- 弦:圆上的一条线段,两端点在圆上。
2. 圆的周长和面积- 周长:圆的周长也叫圆周长,等于圆的直径与圆周之间的比例(π)。
- 面积:圆的面积等于圆周长度(C)与直径的关系(π)。
三、圆的重要定理1. 切线定理- 定理一:圆的半径与切线的垂直段的平方之和等于切线段的平方。
- 定理二:直线与圆相切,则切线垂直于直径。
2. 弧长定理- 在同一个圆或者等圆中,属于同一个圆弧的两条弧所对的圆心角相等。
- 在同一个圆或者等圆中,圆心角相等的弧所属的圆弧长也相等。
3. 弦切角定理- 当一个半径与一条弦相交时,弦上的弧所对的圆心角等于半径与弦的夹角。
- 等弧所对的圆心角相等。
四、圆的计算方法1. 利用圆的周长计算半径和直径:- 已知周长求半径:半径 = 周长/ (2 * π)- 已知周长求直径:直径 = 周长/ π2. 利用圆的面积计算半径和直径:- 已知面积求半径:半径= √(面积/ π)- 已知面积求直径:直径= √(4 * 面积/ π)五、例题演练1. 题目一:已知圆的直径为10cm,求其面积和周长。
解答:半径 = 直径 / 2 = 10cm / 2 = 5cm面积= π * 半径² = π * 5² ≈ 78.54cm²周长= 2 * π * 半径= 2 * π * 5 ≈ 31.42cm2. 题目二:已知圆的周长为18.84cm,求其半径和直径。
中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。
二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。
2. 切线性质:圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。
4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。
圆锥椭圆的两焦点是圆锥的底面圆心和顶点。
双曲线类似。
三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。
如圆形广场、圆形剧场等。
2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。
这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。
3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。
这些元件的形状和布局对于电子设备的功能和性能有着重要影响。
4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。
对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。
四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。
我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。
2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。
3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。
初三数学:圆知识点归纳 【一】圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
【二】圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
【三】圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。
)8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。
那么AB=〔x1+x2,y1+y2〕10、圆的切线判定。
(1)d=r时,直线是圆的切线。
初三圆知识点归纳总结初三阶段,学生将开始学习数学中的几何知识,其中包括了圆的相关内容。
在本文中,我将对初三圆的知识点进行归纳总结,以便帮助学生更好地理解和掌握这一部分知识。
一、圆的定义与性质1. 圆的定义:圆是平面上距离一个确定点(圆心)相等的所有点的集合。
2. 圆的要素:圆心、半径、直径。
- 圆心:圆上所有点到圆心的距离相等。
- 半径:连接圆心和圆上任意一点的线段,长度相等。
- 直径:通过圆心的两个相对点的线段,长度是半径的两倍。
二、圆的相关线段与角度1. 弧长和弧度制:- 弧长:圆弧的长度。
- 弧度制:一个弧长等于半径长的圆弧所对的圆心角的大小被定义为一个弧度。
2. 弧度与角度之间的换算:- 1周角= 360° = 2π 弧度。
- 1° = π/180 弧度。
3. 弧与圆心角:- 弧:指的是圆上的一段弧。
- 圆心角:以圆心为顶点的角,弧所对的圆心角大小等于该弧的长度所对应的圆周角度。
4. 弧与弦的关系:- 弦:圆上两点之间的线段。
- 弧所对的圆心角等于弦所对的外角的两倍。
- 弧所对的圆心角等于弦所对的中心角。
三、圆的定理与性质1. 弧度的性质:- 同一圆上的两个弧所对的圆心角相等。
- 同弧所对的圆心角相等。
2. 切线与半径的关系:- 切线与半径垂直。
- 切线与半径的交点在圆上。
3. 切线定理:- 从圆外一点引一条切线,则切点与圆心以及该点连线所夹的角是直角。
4. 弦切角定理:- 弦切角:以圆心为顶点的一个角,其中一条边是弦,另一条边是切线。
- 弦切角等于其所对的弦所对的中心角的一半。
综上所述,初三圆的知识点主要包括圆的定义与性质、相关线段与角度以及定理与性质。
通过对这些知识点的归纳总结,相信学生们可以更好地理解和掌握圆的相关概念、性质以及应用,从而在数学学习中取得更好的成绩。
在学习过程中,灵活运用这些知识和定理,能够更好地解决与圆相关的问题,并提高解题效率。
希望本文对学生们的学习有所帮助。
2023年中考专题复习:圆形知识点1. 圆的基本属性- 定义:圆是由平面上的一点到另一点距离恒定的所有点的集合。
定义:圆是由平面上的一点到另一点距离恒定的所有点的集合。
- 半径:从圆心到圆上任意点的距离都相等,称为圆的半径。
半径:从圆心到圆上任意点的距离都相等,称为圆的半径。
- 直径:穿过圆心并且两端点都在圆上的线段称为圆的直径,直径的两倍等于圆的周长。
直径:穿过圆心并且两端点都在圆上的线段称为圆的直径,直径的两倍等于圆的周长。
- 弧:圆上两点之间的弧是连接这两点的部分圆弧,圆心角等于弧对应的夹角。
弧:圆上两点之间的弧是连接这两点的部分圆弧,圆心角等于弧对应的夹角。
- 扇形:由圆心、弧和两个弧上的端点组成的图形称为扇形。
扇形:由圆心、弧和两个弧上的端点组成的图形称为扇形。
- 弦:连接圆上任意两点的线段称为弦。
弦:连接圆上任意两点的线段称为弦。
2. 圆的计算公式- 周长:圆的周长等于圆的直径乘以π(π≈3.14),即C = πd。
周长:圆的周长等于圆的直径乘以π(π≈3.14),即C = πd。
- 面积:圆的面积等于半径的平方乘以π,即A = πr^2。
面积:圆的面积等于半径的平方乘以π,即A = πr^2。
3. 圆的相关定理- 圆的内接四边形:四边形内接于一个圆时,对角线互相垂直。
圆的内接四边形:四边形内接于一个圆时,对角线互相垂直。
- 圆的垂直定理:如果一个直径与一条弦相交,那么它一定垂直于该弦。
圆的垂直定理:如果一个直径与一条弦相交,那么它一定垂直于该弦。
- 圆的切线与半径定理:切线与半径的垂直线性交于圆上一点。
圆的切线与半径定理:切线与半径的垂直线性交于圆上一点。
- 同弦定理:圆上的两个弧所对的圆心角相等,则这两个弧相等。
同弦定理:圆上的两个弧所对的圆心角相等,则这两个弧相等。
- 相交弧定理:相交的两个弧所对的圆心角互补。
相交弧定理:相交的两个弧所对的圆心角互补。
4. 圆的应用- 圆的投影:当光线垂直照射在立体表面上时,投影形成的图形通常是圆。