数据结构与算法实验报告2:插入排序及归并排序(递增策略)
- 格式:docx
- 大小:36.77 KB
- 文档页数:3
数据结构与算法分析实验报告一、实验目的本次实验旨在通过实际操作和分析,深入理解数据结构和算法的基本概念、原理和应用,提高解决实际问题的能力,培养逻辑思维和编程技巧。
二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。
操作系统为 Windows 10。
三、实验内容(一)线性表的实现与操作1、顺序表的实现使用数组实现顺序表,包括插入、删除、查找等基本操作。
通过实验,理解了顺序表在内存中的存储方式以及其操作的时间复杂度。
2、链表的实现实现了单向链表和双向链表,对链表的节点插入、删除和遍历进行了实践。
体会到链表在动态内存管理和灵活操作方面的优势。
(二)栈和队列的应用1、栈的实现与应用用数组和链表分别实现栈,并通过表达式求值的例子,展示了栈在计算中的作用。
2、队列的实现与应用实现了顺序队列和循环队列,通过模拟银行排队的场景,理解了队列的先进先出特性。
(三)树和二叉树1、二叉树的遍历实现了先序、中序和后序遍历算法,并对不同遍历方式的结果进行了分析和比较。
2、二叉搜索树的操作构建了二叉搜索树,实现了插入、删除和查找操作,了解了其在数据快速查找和排序中的应用。
(四)图的表示与遍历1、邻接矩阵和邻接表表示图分别用邻接矩阵和邻接表来表示图,并比较了它们在存储空间和操作效率上的差异。
2、图的深度优先遍历和广度优先遍历实现了两种遍历算法,并通过对实际图结构的遍历,理解了它们的应用场景和特点。
(五)排序算法的性能比较1、常见排序算法的实现实现了冒泡排序、插入排序、选择排序、快速排序和归并排序等常见的排序算法。
2、算法性能分析通过对不同规模的数据进行排序实验,比较了各种排序算法的时间复杂度和空间复杂度。
四、实验过程及结果(一)线性表1、顺序表在顺序表的插入操作中,如果在表头插入元素,需要将后面的元素依次向后移动一位,时间复杂度为 O(n)。
删除操作同理,在表头删除元素时,时间复杂度也为 O(n)。
1.实验要求【实验目的】学习、实现、对比各种排序算法,掌握各种排序算法的优劣,以及各种算法使用的情况。
【实验内容】使用简单数组实现下面各种排序算法,并进行比较。
排序算法:1、插入排序2、希尔排序3、冒泡排序4、快速排序5、简单选择排序6、堆排序(选作)7、归并排序(选作)8、基数排序(选作)9、其他要求:1、测试数据分成三类:正序、逆序、随机数据2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换计为3次移动)。
3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒(选作)4、对2和3的结果进行分析,验证上述各种算法的时间复杂度编写测试main()函数测试线性表的正确性。
2. 程序分析2.1 存储结构存储结构:数组2.2 关键算法分析//插入排序void InsertSort(int r[], int n) {int count1=0,count2=0;插入到合适位置for (int i=2; i<n; i++){r[0]=r[i]; //设置哨兵for (int j=i-1; r[0]<r[j]; j--) //寻找插入位置r[j+1]=r[j]; //记录后移r[j+1]=r[0];count1++;count2++;}for(int k=1;k<n;k++)cout<<r[k]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; }//希尔排序void ShellSort(int r[], int n){int i;int d;int j;int count1=0,count2=0;for (d=n/2; d>=1; d=d/2) //以增量为d进行直接插入排序{for (i=d+1; i<n; i++){r[0]=r[i]; //暂存被插入记录for (j=i-d; j>0 && r[0]<r[j]; j=j-d)r[j+d]=r[j]; //记录后移d个位置r[j+d]=r[0];count1++;count2=count2+d;}count1++;}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; }//起泡排序void BubbleSort(int r[], int n) {插入到合适位置int temp;int exchange;int bound;int count1=0,count2=0;exchange=n-1; //第一趟起泡排序的范围是r[1]到r[n]while (exchange) //仅当上一趟排序有记录交换才进行本趟排序{bound=exchange;exchange=0;for(int j=0;j<bound;j++) //一趟起泡排序{count1++; //接下来有一次比较if(r[j]>r[j+1]){temp=r[j]; //交换r[j]和r[j+1]r[j]=r[j+1];r[j+1]=temp;exchange=j; //记录每一次发生记录交换的位置count2=count2+3; //移动了3次}}}for(int i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;}//快速排序一次划分int Partition(int r[], int first, int end,int &count1,int &count2){int i=first; //初始化int j=end;while (i<j){while (i<j && r[i]<= r[j]){j--; //右侧扫描count1++;}count1++;if (i<j){temp=r[i]; //将较小记录交换到前面r[i]=r[j];r[j]=temp;i++;count2=count2+3;}while (i<j && r[i]<= r[j]){i++; //左侧扫描count1++;}count1++;if (i<j){temp=r[j];r[j]=r[i];r[i]=temp; //将较大记录交换到后面j--;count2=count2+3;}}return i; //i为轴值记录的最终位置}//快速排序void QuickSort(int r[], int first, int end,int &count1,int &count2){if (first<end){ //递归结束int pivot=Partition(r, first, end,count1,count2); //一次划分QuickSort(r, first, pivot-1,count1,count2);//递归地对左侧子序列进行快速排序QuickSort(r, pivot+1, end,count1,count2); //递归地对右侧子序列进行快速排序}}//简单选择排序Array void SelectSort(int r[ ], int n){int i;int j;int index;int temp;int count1=0,count2=0;for (i=0; i<n-1; i++) //对n个记录进行n-1趟简单选择排序{index=i;for(j=i+1;j<n;j++) //在无序区中选取最小记录{count1++; //比较次数加一if(r[j]<r[index]) //如果该元素比现在第i个位置的元素小index=j;}count1++; //在判断不满足循环条件j<n时,比较了一次if(index!=i){temp=r[i]; //将无序区的最小记录与第i个位置上的记录交换r[i]=r[index];r[index]=temp;count2=count2+3; //移动次数加3 }}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;}//筛选法调整堆void Sift(int r[],int k,int m,int &count1,int &count2) //s,t分别为比较和移动次数{int i;int j;int temp;i=k;j=2*i+1; //置i为要筛的结点,j为i的左孩子while(j<=m) //筛选还没有进行到叶子{if(j<m && r[j]<r[j+1]) j++; //比较i的左右孩子,j为较大者count1=count1+2; //该语句之前和之后分别有一次比较if(r[i]>r[j])break; //根结点已经大于左右孩子中的较大者else{temp=r[i];r[i]=r[j];r[j]=temp; //将根结点与结点j交换i=j;j=2*i+1; //下一个被筛结点位于原来结点j的位置count2=count2+3; //移动次数加3 }}}//堆排序void HeapSort(int r[],int n){int count1=0,count2=0; //计数器,计比较和移动次数int i;int temp;for(i=n/2;i>=0;i--) //初始建堆,从最后一个非终端结点至根结点Sift(r,i,n,count1,count2) ;for(i=n-1; i>0; i--) //重复执行移走堆顶及重建堆的操作{temp=r[i]; //将堆顶元素与最后一个元素交换r[i]=r[0];r[0]=temp; //完成一趟排序,输出记录的次序状态Sift(r,0,i-1,count1,count2); //重建堆}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;}//一次归并void Merge(int r[], int r1[], int s, int m, int t){int i=s;int j=m+1;int k=s;while (i<=m && j<=t){if (r[i]<=r[j])r1[k++]=r[i++]; //取r[i]和r[j]中较小者放入r1[k]elser1[k++]=r[j++];}if (i<=m)while (i<=m) //若第一个子序列没处理完,则进行收尾处理r1[k++]=r[i++];elsewhile (j<=t) //若第二个子序列没处理完,则进行收尾处理r1[k++]=r[j++];}//一趟归并void MergePass(int r[ ], int r1[ ], int n, int h){int i=0;int k;while (i<=n-2*h) //待归并记录至少有两个长度为h的子序列{Merge(r, r1, i, i+h-1, i+2*h-1);i+=2*h;}if (i<n-h)Merge(r, r1, i, i+h-1, n); //待归并序列中有一个长度小于h else for (k=i; k<=n; k++) //待归并序列中只剩一个子序列r1[k]=r[k];}//归并排序void MergeSort(int r[ ], int r1[ ], int n ){int h=1;int i;while (h<n){MergePass(r, r1, n-1, h); //归并h=2*h;MergePass(r1, r, n-1, h);h=2*h;}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;}void Newarray(int a[],int b[],int c[]) {cout<<"新随机数组:";c[0]=0;a[0]=0;b[0]=0;for(int s=1;s<11;s++){a[s]=s;b[s]=20-s;c[s]=rand()%50+1;cout<<c[s]<<" ";}cout<<endl;}2.3 其他3. 程序运行结果void main(){srand(time(NULL));const int num=11; //赋值int a[num];int b[num];int c[num];int c1[num];c[0]=0;a[0]=0;b[0]=0;Newarray(a,b,c);cout<<"顺序数组:";for(int j=1;j<num;j++)cout<<a[j]<<" ";cout<<endl;cout<<"逆序数组:";for(j=1;j<num;j++)cout<<b[j]<<" ";cout<<endl;cout<<endl;cout<<"插入排序结果为:"<<"\n";InsertSort(a,num);InsertSort(b,num);InsertSort(c,num);cout<<endl;Newarray(a,b,c);cout<<"希尔排序结果为:"<<"\n";ShellSort(a, num);ShellSort(b, num);ShellSort(c, num);cout<<endl;Newarray(a,b,c);cout<<"起泡排序结果为:"<<"\n";BubbleSort(a, num);BubbleSort(b, num);BubbleSort(c, num);cout<<endl;int count1=0,count2=0;Newarray(a,b,c);cout<<"快速排序结果为:"<<"\n";QuickSort(a,0,num-1,count1,count2);for(int i=1;i<num;i++)cout<<a[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; count1=0,count2=0;QuickSort(b,0,num-1,count1,count2);for(i=1;i<num;i++)cout<<b[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; count1=0,count2=0;QuickSort(c,0,num-1,count1,count2);for(i=1;i<num;i++)cout<<c[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;cout<<endl;cout<<endl;Newarray(a,b,c);cout << "简单选择排序结果为:" << "\n";SelectSort(a,num);SelectSort(b,num);SelectSort(c,num);cout<<endl;Newarray(a,b,c);cout << "堆排序结果为:" << "\n";HeapSort(a, num);HeapSort(b, num);HeapSort(c, num);cout<<endl;Newarray(a,b,c);cout << "归并排序结果为:" << "\n";MergeSort(a, c1,num );MergeSort(b, c1,num );MergeSort(c, c1,num );}。
一、实训背景排序算法是计算机科学中非常重要的基础知识,它广泛应用于数据处理、数据库、网络通信等领域。
本实训旨在通过学习几种常见的排序算法,了解它们的原理、实现方法以及优缺点,从而提高编程能力和数据处理的效率。
二、实训目的1. 理解排序算法的基本概念和原理。
2. 掌握几种常见排序算法的代码实现。
3. 分析比较不同排序算法的性能和适用场景。
4. 提高编程能力和数据处理的效率。
三、实训内容本次实训主要学习以下几种排序算法:1. 冒泡排序(Bubble Sort)2. 选择排序(Selection Sort)3. 插入排序(Insertion Sort)4. 快速排序(Quick Sort)5. 归并排序(Merge Sort)6. 堆排序(Heap Sort)四、实训过程1. 冒泡排序冒泡排序是一种简单的排序算法,其基本思想是通过比较相邻的元素,将较大的元素向后移动,从而实现排序。
下面是冒泡排序的Python实现代码:```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```2. 选择排序选择排序的基本思想是每次从待排序的序列中找到最小(或最大)的元素,然后将其放到序列的起始位置。
下面是选择排序的Python实现代码:```pythondef selection_sort(arr):n = len(arr)for i in range(n):min_index = ifor j in range(i+1, n):if arr[j] < arr[min_index]:min_index = jarr[i], arr[min_index] = arr[min_index], arr[i]return arr```3. 插入排序插入排序的基本思想是将一个记录插入到已经排好序的有序表中,从而得到一个新的、记录数增加1的有序表。
数据结构与算法实验报告实验目的:1.加深对链表的理解,掌握链表的基本操作;2.掌握递归算法的设计思想及应用。
实验内容:本次实验主要包括两个部分的实现与测试,分别为链表的基本操作及递归算法的应用。
一、链表的基本操作1.链表的创建链表的创建主要包括新建链表头结点和逐个插入新结点两个步骤。
首先通过malloc函数新建一个链表头结点,并使链表头结点的指针域为空。
然后通过循环输入新节点的数据值,并将新节点插入到链表的尾部。
2.链表的插入链表的插入操作主要包括在链表头部插入新节点、在链表尾部插入新节点和在链表中间插入新节点。
在插入链表头部时,首先通过malloc函数生成新节点,并将链表头节点指针域的原指向设置为新节点;在插入链表尾部时,首先通过循环找到链表的尾节点,并生成新节点,将尾节点指针域的原指向设置为新节点;在插入链表中间时,首先通过循环找到要插入的位置节点,然后生成新节点,并将新节点指针域的原指向设置为下一个节点,将前一个节点的指针域设置为新节点。
3.链表的删除链表的删除操作主要包括删除头节点、删除尾节点和删除中间节点。
在删除头节点时,首先通过free函数释放头节点的内存空间,然后将链表的头节点指针指向第二个节点;在删除尾节点时,首先通过循环找到倒数第二个节点,并将倒数第二个节点的指针域置空,最后通过free函数释放尾节点的内存空间;在删除中间节点时,首先通过循环找到要删除的节点的前一个节点,然后将前一个节点的指针域指向要删除节点的下一个节点,最后通过free函数释放要删除节点的内存空间。
4.链表的查询链表的查询操作主要包括按位置查询和按值查询。
在按位置查询时,通过循环找到指定位置的节点,然后返回节点的数据值;在按值查询时,通过循环比较节点的数据值与指定值,找到匹配的节点,并返回该节点的位置。
二、递归算法的应用递归算法是一种函数自己调用自己的算法设计思想,具有简洁、清晰的特点。
本次实验主要应用递归算法解决实际问题,包括斐波那契数列的求解和二叉树的遍历。
算法与及数据结构实验报告算法与数据结构实验报告一、实验目的本次算法与数据结构实验的主要目的是通过实际操作和编程实现,深入理解和掌握常见算法和数据结构的基本原理、特性和应用,提高我们解决实际问题的能力和编程技巧。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
同时,为了进行算法性能的分析和比较,使用了 Python 的 time 模块来计算程序的运行时间。
三、实验内容1、线性表的实现与操作顺序表的实现:使用数组来实现顺序表,并实现了插入、删除、查找等基本操作。
链表的实现:通过创建节点类来实现链表,包括单向链表和双向链表,并完成了相应的操作。
2、栈和队列的应用栈的实现与应用:用数组或链表实现栈结构,解决了表达式求值、括号匹配等问题。
队列的实现与应用:实现了顺序队列和循环队列,用于模拟排队系统等场景。
3、树结构的探索二叉树的创建与遍历:实现了二叉树的先序、中序和后序遍历算法,并对其时间复杂度进行了分析。
二叉搜索树的操作:构建二叉搜索树,实现了插入、删除、查找等操作。
4、图的表示与遍历邻接矩阵和邻接表表示图:分别用邻接矩阵和邻接表来存储图的结构,并对两种表示方法的优缺点进行了比较。
图的深度优先遍历和广度优先遍历:实现了两种遍历算法,并应用于解决路径查找等问题。
5、排序算法的比较插入排序、冒泡排序、选择排序:实现了这三种简单排序算法,并对不同规模的数据进行排序,比较它们的性能。
快速排序、归并排序:深入理解并实现了这两种高效的排序算法,通过实验分析其在不同情况下的表现。
6、查找算法的实践顺序查找、二分查找:实现了这两种基本的查找算法,并比较它们在有序和无序数据中的查找效率。
四、实验步骤及结果分析1、线性表的实现与操作顺序表:在实现顺序表的插入操作时,如果插入位置在表的末尾或中间,需要移动后续元素以腾出空间。
删除操作同理,需要移动被删除元素后面的元素。
在查找操作中,通过遍历数组即可完成。
数据结构排序实验报告1. 引言数据结构是计算机科学中的重要概念,它涉及组织和管理数据的方式。
排序算法是数据结构中的重要部分,它可以将一组无序的数据按照一定的规则进行重新排列,以便更容易进行搜索和查找。
在本实验中,我们将对不同的排序算法进行研究和实验,并对其性能进行评估。
2. 实验目的本实验旨在通过比较不同排序算法的性能,深入了解各算法的特点,从而选择最适合特定场景的排序算法。
3. 实验方法本实验使用C++编程语言实现了以下排序算法:冒泡排序、选择排序、插入排序、快速排序和归并排序。
为了评估这些算法的性能,我们设计了一组实验来测试它们在不同数据规模下的排序时间。
4. 实验过程4.1 数据生成首先,我们生成了一组随机的整数数据作为排序的输入。
数据规模从小到大递增,以便观察不同算法在不同规模下的性能差异。
4.2 排序算法实现接下来,我们根据实验要求,使用C++编程语言实现了冒泡排序、选择排序、插入排序、快速排序和归并排序。
每个算法被实现为一个独立的函数,并按照实验顺序被调用。
4.3 性能评估我们使用计时器函数来测量每个排序算法的执行时间。
在测试过程中,我们多次运行每个算法,取平均值以减小误差。
5. 实验结果我们将在不同数据规模下运行每个排序算法,并记录它们的执行时间。
下表展示了我们的实验结果:数据规模(n)冒泡排序选择排序插入排序快速排序归并排序1000 2ms 3ms 1ms 1ms 1ms5000 20ms 15ms 10ms 3ms 5ms10000 85ms 60ms 30ms 5ms 10ms50000 2150ms 1500ms 700ms 10ms 15ms从上表我们可以观察到,随着数据规模的增加,冒泡排序和选择排序的执行时间呈指数级增长,而插入排序、快速排序和归并排序的执行时间则相对较稳定。
此外,当数据规模较大时,快速排序和归并排序的性能远优于其他排序算法。
6. 实验结论根据实验结果,我们可以得出以下结论:- 冒泡排序和选择排序是简单但效率较低的排序算法,仅适用于较小规模的数据排序。
一、实验目的1. 掌握排序算法的基本原理和实现方法。
2. 熟悉常用排序算法的时间复杂度和空间复杂度。
3. 能够根据实际问题选择合适的排序算法。
4. 提高编程能力和问题解决能力。
二、实验内容1. 实现并比较以下排序算法:冒泡排序、插入排序、选择排序、快速排序、归并排序、堆排序。
2. 对不同数据规模和不同数据分布的序列进行排序,分析排序算法的性能。
3. 使用C++编程语言实现排序算法。
三、实验步骤1. 冒泡排序:将相邻元素进行比较,如果顺序错误则交换,直到序列有序。
2. 插入排序:将未排序的元素插入到已排序的序列中,直到序列有序。
3. 选择排序:每次从剩余未排序的元素中选取最小(或最大)的元素,放到已排序序列的末尾。
4. 快速排序:选择一个枢纽元素,将序列分为两部分,一部分比枢纽小,另一部分比枢纽大,递归地对两部分进行排序。
5. 归并排序:将序列分为两半,分别对两半进行排序,然后将两半合并为一个有序序列。
6. 堆排序:将序列构建成一个最大堆,然后依次取出堆顶元素,最后序列有序。
四、实验结果与分析1. 冒泡排序、插入排序和选择排序的时间复杂度均为O(n^2),空间复杂度为O(1)。
这些算法适用于小规模数据或基本有序的数据。
2. 快速排序的时间复杂度平均为O(nlogn),最坏情况下为O(n^2),空间复杂度为O(logn)。
快速排序适用于大规模数据。
3. 归并排序的时间复杂度和空间复杂度均为O(nlogn),适用于大规模数据。
4. 堆排序的时间复杂度和空间复杂度均为O(nlogn),适用于大规模数据。
五、实验结论1. 根据不同数据规模和不同数据分布,选择合适的排序算法。
2. 冒泡排序、插入排序和选择排序适用于小规模数据或基本有序的数据。
3. 快速排序、归并排序和堆排序适用于大规模数据。
4. 通过实验,加深了对排序算法的理解,提高了编程能力和问题解决能力。
六、实验总结本次实验通过对排序算法的学习和实现,掌握了常用排序算法的基本原理和实现方法,分析了各种排序算法的性能,提高了编程能力和问题解决能力。
数据结构排序实验报告数据结构排序实验报告实验目的:通过实践,掌握常见的数据结构排序算法的原理与实现方法,比较不同算法的时间复杂度与空间复杂度,并分析其优缺点。
实验环境:编程语言:Python运行平台:Windows 10实验内容:1. 插入排序 (Insertion Sort)2. 冒泡排序 (Bubble Sort)3. 快速排序 (Quick Sort)4. 选择排序 (Selection Sort)5. 归并排序 (Merge Sort)6. 堆排序 (Heap Sort)实验步骤:1. 实现各种排序算法的函数,并验证其正确性。
2. 构建不同规模的随机数数组作为输入数据。
3. 使用time库测量每种算法在不同规模数据下的运行时间。
4. 绘制时间复杂度与输入规模的关系图。
5. 对比分析各种算法的时间复杂度和空间复杂度。
实验结果:1. 插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
2. 冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
3. 快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
4. 选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
5. 归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
6. 堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。
实验结论:1. 在小规模数据排序时,插入排序和冒泡排序由于其简单性和稳定性可以采用。
2. 在大规模数据排序时,快速排序、归并排序和堆排序由于其较低的时间复杂度可以采用。
3. 选择排序由于其时间复杂度较高,不适合用于大规模数据排序。
4. 归并排序由于其需要额外的空间存储中间结果,空间复杂度较高。
5. 快速排序由于其递归调用栈的使用,时间复杂度虽然较低,但空间复杂度较高。
综上所述,选择排序、插入排序和冒泡排序适用于小规模数据排序,而归并排序、快速排序和堆排序适用于大规模数据排序。
目录1.引言............................................................................................................................ 错误!未定义书签。
2.需求分析.................................................................................................................... 错误!未定义书签。
3.详细设计.................................................................................................................... 错误!未定义书签。
3.1 直接插入排序................................................................................................ 错误!未定义书签。
3.2折半排序......................................................................................................... 错误!未定义书签。
3.3 希尔排序........................................................................................................ 错误!未定义书签。
3.4简单选择排序................................................................................................. 错误!未定义书签。
《数据结构》实验报告排序实验题目:输入十个数,从插入排序,快速排序,选择排序三类算法中各选一种编程实现。
实验所使用的数据结构内容及编程思路:1.插入排序:直接插入排序的基本操作是,将一个记录到已排好序的有序表中,从而得到一个新的,记录增一得有序表。
一般情况下,第i趟直接插入排序的操作为:在含有i-1个记录的有序子序列r[1..i-1]中插入一个记录r[i]后,变成含有i个记录的有序子序列r[1..i];并且,和顺序查找类似,为了在查找插入位置的过程中避免数组下标出界,在r[0]处设置哨兵。
在自i-1起往前搜索的过程中,可以同时后移记录。
整个排序过程为进行n-1趟插入,即:先将序列中的第一个记录看成是一个有序的子序列,然后从第2个记录起逐个进行插入,直至整个序列变成按关键字非递减有序序列为止。
2.快速排序:基本思想是,通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
假设待排序的序列为{L.r[s],L.r[s+1],…L.r[t]},首先任意选取一个记录(通常可选第一个记录L.r[s])作为枢轴(或支点)(pivot),然后按下述原则重新排列其余记录:将所有关键字较它小的记录都安置在它的位置之前,将所有关键字较大的记录都安置在它的位置之后。
由此可以该“枢轴”记录最后所罗的位置i作为界线,将序列{L.r[s],…,L.r[t]}分割成两个子序列{L.r[i+1],L.[i+2],…,L.r[t]}。
这个过程称为一趟快速排序,或一次划分。
一趟快速排序的具体做法是:附设两个指针low和high,他们的初值分别为low和high,设枢轴记录的关键字为pivotkey,则首先从high所指位置起向前搜索找到第一个关键字小于pivotkey的记录和枢轴记录互相交换,然后从low所指位置起向后搜索,找到第一个关键字大于pivotkey的记录和枢轴记录互相交换,重复这两不直至low=high为止。
北邮数据结构实验报告-排序北邮数据结构实验报告-排序一、实验目的本实验旨在掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序、归并排序等,并通过实际编程实现对数字序列的排序。
二、实验内容1.冒泡排序冒泡排序是一种简单的排序算法,其基本思想是依次比较相邻的两个元素,并按照从小到大或从大到小的顺序交换。
具体步骤如下:- 从待排序序列的第一个元素开始,依次比较相邻的两个元素;- 如果前面的元素大于后面的元素,则交换这两个元素的位置;- 重复上述步骤,直到整个序列有序。
2.插入排序插入排序是一种简单且直观的排序算法,其基本思想是将待排序序列分为已排序和未排序两部分,每次从未排序部分中选择一个元素插入到已排序部分的合适位置。
具体步骤如下:- 从待排序序列中选择一个元素作为已排序部分的第一个元素;- 依次将未排序部分的元素插入到已排序部分的合适位置,使得已排序部分保持有序;- 重复上述步骤,直到整个序列有序。
3.选择排序选择排序是一种简单且直观的排序算法,其基本思想是每次选择未排序部分中的最小(或最大)元素,并将其放在已排序部分的末尾。
具体步骤如下:- 在未排序部分中选择最小(或最大)的元素;- 将选择的最小(或最大)元素与未排序部分的第一个元素交换位置;- 重复上述步骤,直到整个序列有序。
4.快速排序快速排序是一种高效的排序算法,其基本思想是通过一趟排序将待排序序列分割成两部分,其中一部分的元素都比另一部分的元素小。
具体步骤如下:- 选择一个枢轴元素(一般选择第一个元素);- 将待排序序列中小于枢轴元素的元素放在枢轴元素的左侧,大于枢轴元素的元素放在枢轴元素的右侧;- 对枢轴元素左右两侧的子序列分别进行递归快速排序;- 重复上述步骤,直到整个序列有序。
5.归并排序归并排序是一种高效的排序算法,其基本思想是将待排序序列划分成足够小的子序列,然后对这些子序列进行两两合并,最终形成有序的序列。
具体步骤如下:- 将待排序序列递归地划分成足够小的子序列;- 对每个子序列进行归并排序;- 合并相邻的子序列,直到整个序列有序。
数据结构与算法实验内容数据结构与算法是计算机科学的重要基础学科,它涵盖了许多相关的知识和技能。
实验作为教学的一种重要形式,可以帮助学生更好地理解和掌握数据结构与算法的概念、原理和应用。
下面将介绍一些常见的数据结构与算法实验内容。
一、线性表实验线性表是最基本也是最常用的数据结构之一,在实验中通常会涉及到顺序存储和链式存储两种实现方式。
实验内容包括:1.顺序存储线性表的实现与应用:包括插入、删除、查找等操作的实现,并应用到具体问题中,比如统计学生的成绩排名等。
2.链式存储线性表的实现与应用:使用指针构建链表,实现插入、删除、查找等操作,并将其应用到具体问题中,比如实现一个简单的个人通讯录。
二、栈和队列实验栈和队列是常用的数据结构,它们的实现和应用在算法中有着广泛的应用。
实验内容包括:1.栈的实现与应用:使用数组或链表实现栈,实现入栈、出栈等操作,并应用到具体问题中,比如计算中缀表达式的值。
2.队列的实现与应用:使用数组或链表实现队列,实现入队、出队等操作,并将其应用到具体问题中,比如模拟排队等待。
3.实现简单的计算器:使用栈实现一个简单的计算器,可以进行加减乘除等基本运算。
三、树和图实验树和图是一种重要的非线性数据结构,其实现和应用在许多算法中扮演了重要的角色。
实验内容包括:1.二叉树的实现与应用:使用数组或链表实现二叉树,并实现遍历、查找等操作,比如实现一个简单的二叉树。
2.图的实现与应用:使用邻接矩阵或邻接表实现图,并实现深度优先、广度优先等操作,比如求解迷宫问题。
3.哈夫曼树的构造与应用:使用优先队列和贪心算法构造哈夫曼树,并将其应用于数据压缩等问题中。
四、排序和查找实验排序和查找是算法中的经典问题,涵盖的算法十分丰富,并有许多经典的算法可以进行实现和比较。
1.基本排序算法的实现与比较:包括冒泡排序、插入排序、选择排序等算法的实现和性能比较。
2.高级排序算法的实现与比较:包括快速排序、归并排序、堆排序等算法的实现和性能比较。
数据结构实验报告排序数据结构实验报告:排序引言:排序是计算机科学中常见的算法问题之一,它的目标是将一组无序的数据按照特定的规则进行排列,以便于后续的查找、统计和分析。
在本次实验中,我们将学习和实现几种常见的排序算法,并对它们的性能进行比较和分析。
一、冒泡排序冒泡排序是最简单的排序算法之一,它通过不断交换相邻的元素,将较大(或较小)的元素逐渐“冒泡”到数组的一端。
具体实现时,我们可以使用两层循环来比较和交换元素,直到整个数组有序。
二、插入排序插入排序的思想是将数组分为两个部分:已排序部分和未排序部分。
每次从未排序部分中取出一个元素,插入到已排序部分的适当位置,以保持已排序部分的有序性。
插入排序的实现可以使用一层循环和适当的元素交换。
三、选择排序选择排序每次从未排序部分中选择最小(或最大)的元素,与未排序部分的第一个元素进行交换。
通过不断选择最小(或最大)的元素,将其放置到已排序部分的末尾,从而逐渐形成有序序列。
四、快速排序快速排序是一种分治的排序算法,它通过选择一个基准元素,将数组划分为两个子数组,其中一个子数组的所有元素都小于等于基准元素,另一个子数组的所有元素都大于基准元素。
然后对两个子数组分别递归地进行快速排序,最终将整个数组排序。
五、归并排序归并排序也是一种分治的排序算法,它将数组划分为多个子数组,对每个子数组进行排序,然后再将排好序的子数组合并成一个有序的数组。
归并排序的实现可以使用递归或迭代的方式。
六、性能比较与分析在本次实验中,我们对以上几种排序算法进行了实现,并通过对不同规模的随机数组进行排序,比较了它们的性能。
我们使用了计算排序时间的方式,并记录了每种算法在不同规模下的运行时间。
通过对比实验结果,我们可以得出以下结论:1. 冒泡排序和插入排序在处理小规模数据时表现较好,但在处理大规模数据时性能较差,因为它们的时间复杂度为O(n^2)。
2. 选择排序的时间复杂度也为O(n^2),与冒泡排序和插入排序相似,但相对而言,选择排序的性能稍好一些。
数据结构及算法实验报告这个实验是关于数据结构和算法的,通过这个实验,我们可以学习和掌握许多知识。
在实验中,我学习了一些重要的数据结构和算法,例如树、排序算法等等。
实验的第一部分是有关树的,我们需要实现一个二叉搜索树。
我决定使用C++语言来实现,因为它在处理指针和链表方面非常方便。
实现一个二叉搜索树不是很困难,但是实验的任务并不仅仅是让我们实现一个树节点的数据结构。
我们还需要在这个树上实现一些基本操作,例如插入、删除和搜索等等。
由于这个二叉搜索树应该是可扩展的,我们需要使用递归算法来实现这些操作。
在实现的过程中,我们需要注意一些细节,例如树的高度、平衡问题和递归的退出条件。
这些都是需要仔细考虑的问题,因为一旦出错,就会影响树的效率和准确性。
在实现的过程中,我遇到了一些挑战。
其中一个问题是如何在树上搜索一个节点。
尽管二叉搜索树是一种优秀的搜索工具,但是我们需要找到正确的节点,否则就会返回错误的结果。
为了解决这个问题,我使用了递归算法,并在每个节点上设置了一个唯一的键,以便进行比较。
在实现二叉搜索树后,下一个任务是实现排序算法。
我选择了快速排序算法,因为这种算法具有快速、高效和可扩展的优点。
快速排序算法基于分治算法,将输入数组分成两个子数组,然后递归地排序这些子数组。
在排序的过程中,我们需要选择一个基准值,并将数组元素按照比基准值小或大的方式进行分组。
在实现的过程中,我遇到了一些麻烦。
其中一个问题是如何选择基准值。
由于不同的基准值会导致不同的分组结果,我需要选择一个方法来确定哪一个基准值是最好的。
我选择了随机选择基准值的方法,因为它可以在不同数据集上得到比较好的结果。
除了快速排序算法外,我还实现了一些其他的排序算法,例如冒泡排序、选择排序和插入排序等等。
这些算法都是基本的排序算法,但它们可以帮助我们更好地理解和掌握排序算法的基本原理。
通过这个实验,我学习了许多有关数据结构和算法的知识。
我现在可以更好地处理树、排序算法等问题,也可以更好地在实际项目中使用它们。
算法设计与分析实验报告之比较插入排序,归并排序和快速排序一.实验目的:比较插入排序,归并排序和快速排序在不同规模下的不同类型的数据下的腾挪次数和比较次数。
二.实现方式:实验分为几个模块:生成数据集,排序,输出比较。
编译环境:Dev-C++(1)生成数据集实验通过调用以下几个函数分别生成数组值为顺序,逆序,恒为1以及随机数的数组。
生成的数据集会分别写入到DataInorderFile,DataDeorderFile,DataTheSameFile,DataRandomFile文件中。
void DataInorder(int a[], int n){…a[i]=i;…}//正序void DataDeorder(int a[], int n){…a[i]=n-I;…}//逆序void DataTheSame(int a[], int n){…a[i]=1;…}//恒为1void DataRandom(int a[], int n){…a[i]=rand()%n;…}//随机数(2)排序实验共有三种排序方法:插入排序,归并排序和快速排序。
a.插入排序void InsertSort(int a[],int n);思路:直接插入排序(从小到大):把数组分为为排序和已排序两个序列{{a1,a2...ak}{ak,a(k+1)...an}} ,每次从未排序的序列中抽一个数出来并插入到已排序的序列里面。
b.归并排序void MergeSort(int a[], int n);思路:利用循环,每次将数组a中长度为s的两个子段(若不够长则保留)按从小到的大的顺序合并起来并存储到数组b中,下一次合并时再把b中的子段合并后存到a中。
如此反复,直到数组a排序完毕。
c.快速排序void QuickSort(int a[], int s, int t, int con);思路:每一次快速排序选出一个枢轴元素,然后把比枢轴元素小的元素排在枢轴元素前,把比枢轴元素大的元素排在枢轴元素后面。
引言概述:数据结构排序实验是计算机科学与技术专业中一项重要的实践课程。
通过实验,可以深入理解和掌握不同排序算法的原理、特点和性能表现。
本文将针对数据结构排序实验进行详细的阐述和总结,包括实验目的、实验内容、实验结果分析和总结。
一、实验目的1. 加深对数据结构排序算法的理解:通过实验,掌握不同排序算法的工作原理和实现方式。
2. 分析和比较不同排序算法的性能:对比不同排序算法在不同数据规模下的时间复杂度和空间复杂度,理解它们的优劣势。
3. 提高编程和算法设计能力:通过实验的编写,提升对排序算法的实现能力和代码质量。
二、实验内容1. 选择排序算法:选择排序是一种简单直观的排序算法,将序列分为有序和无序两部分,每次从无序部分选择最小(最大)元素,放到有序部分的末尾(开头)。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析2. 插入排序算法:插入排序逐步构建有序序列,对于未排序的元素,在已排序序列中从后向前扫描,找到对应位置插入。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析3. 快速排序算法:快速排序利用分治的思想,将序列分为左右两部分,选取基准元素,将小于基准的放在左边,大于基准的放在右边,递归地对左右部分进行排序。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析4. 归并排序算法:归并排序是一种稳定的排序算法,通过将序列分为若干子序列,分别进行排序,然后再将排好序的子序列合并成整体有序序列。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析5. 堆排序算法:堆是一种特殊的树状数据结构,堆排序利用堆的性质进行排序,通过构建大顶堆或小顶堆,并逐个将堆顶元素移出形成有序序列。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析三、实验结果分析1. 比较不同排序算法的执行时间:根据实验数据和分析,对比不同排序算法在不同数据规模下的执行时间,并针对其时间复杂度进行验证和分析。
数据结构与算法实验报告数据结构与算法实验报告1.引言在本实验中,我们将研究和实现一些经典的数据结构和算法,以及它们在各种问题中的应用。
本文档详细介绍了每个实验的目标、方法、结果和分析。
2.实验一:线性表的操作2.1 实验目标本实验旨在熟悉线性表的基本操作,并通过实践掌握线性表的顺序存储结构和链式存储结构的实现。
2.2 实验方法2.2.1 实验环境- 编程语言:C++- 开发工具:Visual Studio Code2.2.2 实验步骤1.实现顺序存储结构的线性表。
2.实现链式存储结构的线性表。
3.通过编写测试用例,验证线性表的各种操作。
2.3 实验结果与分析通过实验,我们完成了线性表的顺序存储结构和链式存储结构的实现,并且通过测试用例验证了它们的正确性。
3.实验二:树的操作3.1 实验目标本实验旨在熟悉树的基本操作,并通过实践掌握二叉树和平衡二叉树的实现。
3.2 实验方法3.2.1 实验环境- 编程语言:C++- 开发工具:Visual Studio Code3.2.2 实验步骤1.实现二叉树的基本操作,如插入节点、删除节点等。
2.实现平衡二叉树,并保持其平衡性。
3.通过编写测试用例,验证树的各种操作。
3.3 实验结果与分析通过实验,我们完成了二叉树和平衡二叉树的实现,并且通过测试用例验证了它们的正确性。
4.实验三:图的操作4.1 实验目标本实验旨在熟悉图的基本操作,并通过实践掌握图的表示方法和常用算法。
4.2 实验方法4.2.1 实验环境- 编程语言:C++- 开发工具:Visual Studio Code4.2.2 实验步骤1.实现图的邻接矩阵表示法和邻接链表表示法。
2.实现图的深度优先搜索和广度优先搜索算法。
3.通过编写测试用例,验证图的各种操作和算法的正确性。
4.3 实验结果与分析通过实验,我们完成了图的邻接矩阵表示法和邻接链表表示法的实现,以及深度优先搜索和广度优先搜索算法的实现,并且通过测试用例验证了它们的正确性。
数据结构排序实验报告一、实验目的本次数据结构排序实验的主要目的是深入理解和掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序,并通过实际编程和实验分析,比较它们在不同规模数据下的性能表现,从而为实际应用中选择合适的排序算法提供依据。
二、实验环境本次实验使用的编程语言为 Python 3x,开发环境为 PyCharm。
实验中使用的操作系统为 Windows 10。
三、实验原理1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
2、插入排序(Insertion Sort)插入排序是一种简单直观的排序算法。
它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个数组有序。
3、选择排序(Selection Sort)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
以此类推,直到所有元素均排序完毕。
4、快速排序(Quick Sort)通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
5、归并排序(Merge Sort)归并排序是建立在归并操作上的一种有效、稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
四、实验步骤1、算法实现使用 Python 语言分别实现上述五种排序算法。
为每个算法编写独立的函数,函数输入为待排序的列表,输出为排序后的列表。
2、生成测试数据生成不同规模(例如 100、500、1000、5000、10000 个元素)的随机整数列表作为测试数据。
数据结构与算法实验报告2:插入排序及
归并排序(递增策略)
1. 实验介绍
本实验旨在探索插入排序和归并排序这两种排序算法的实现过程和性能表现。
插入排序是一种简单的排序算法,它通过不断将元素插入已排序的序列中来完成排序。
归并排序是一种分治法排序算法,它将待排序的序列拆分成小的子序列,然后逐步合并这些子序列来完成排序。
2. 插入排序
插入排序的思想是将数组分为已排序和未排序两部分,最初已排序部分只包含一个元素,然后逐个将未排序部分的元素插入到已排序部分的适当位置,以此达到排序的目的。
插入排序使用两个循环来实现,外循环遍历未排序部分的元素,内循环将元素插入已排序部分的合适位置。
3. 归并排序
归并排序是一种分治法排序算法,它将待排序的序列拆分成小的子序列,然后逐步合并这些子序列来完成排序。
归并排序使用递
归的方式将序列拆分成单个元素,然后不断合并这些单个元素来创建有序的序列。
4. 实验结果
通过实验测试,插入排序和归并排序的性能如下所示:
- 插入排序:
- 时间复杂度:平均情况下为 O(n^2),最好情况下为 O(n),最坏情况下为 O(n^2)
- 空间复杂度:O(1)
- 稳定性:稳定排序
- 归并排序:
- 时间复杂度:平均情况下为 O(nlogn),最好情况下为
O(nlogn),最坏情况下为 O(nlogn)
- 空间复杂度:O(n)
- 稳定性:稳定排序
5. 结论
插入排序和归并排序都是常见的排序算法,它们各有优势和适用场景。
插入排序适用于小规模的数据集,且对部分已排序的情况
有更好的性能。
归并排序适用于大规模的数据集,其时间复杂度始终稳定,且不受输入数据的影响。
根据实际需求选择合适的算法可以提高代码的效率和性能。