08章 组合变形
- 格式:ppt
- 大小:1.85 MB
- 文档页数:33
组合变形的强度计算 组合变形的概念拉伸与弯曲的组合一.组合变形的概念1.组合变形:在外力的作用下,构件若同时产生两种或两种以上基本变形的情况在小变形和线弹性的前提下,可以采用叠加原理研究组合变形问题所谓叠加原理是指若干个力作用下总的变形等于各个力单独作用下变形的总和(叠加)在复杂外载作用下,构件的变形会包含几种简单变形PRzxyPP2、组合变形的研究方法——叠加原理叠加原理应用的基本步骤:①外力分析:将载荷进行分解,得到与原载荷等效的几组载荷,使构件在每一组载荷的作用下,只产生一种基本变形.②内力分析:分析每种载荷的内力,确定危险截面.③应力分析:分别计算构件在每种基本变形情况下的危险将各基本变形情况下的应力叠加,确定最④强度计算:二.弯曲与拉伸(的组合杆件在外力作用下同时产生弯曲和拉伸(压缩)变形称为弯曲与拉伸(压缩)的组合偏心拉伸:弯曲与拉伸的组合变形链环受力立柱受力拉伸与弯曲组合的应力分析ϕϕsin p p cos p p y x ==A P x ='σy I M x l P M zy =''-=σ)(作用下:z T W M A N max max +=σzC W M A N max max -=σ危险截面处的弯矩抗弯截面模量y I M A N z +=''+'=σσσ根据叠加原理,可得x 横截面上的总应力为[]T z max max T W M A N σσ≤+=[]c zmax max C W M A N σσ≤-=强度条件为例:悬臂吊车,横梁由25 a 号工字钢制成,l =4m ,电葫芦重Q 1=4kN ,起重量Q2=20kN , α=30º, [σ]=100MPa,试校核强度。
取横梁AB为研究对象,受力如图b所示。
梁上载荷为P =Q1+Q2= 24kN,斜杆的拉力S 可分解为X B和Y B(1)外力计算横梁在横向力P和Y A、Y B作用下产生弯曲;同时在X A和X B作用下产生轴向压缩。
南通大学建工学院材料力学考点复习(个人自己参考一些资料,总结的复习考点)01 本章小结1.材料力学研究的问题是构件的强度、刚度和稳定性。
2.构成构件的材料是可变形固体。
3.对材料所作的基本假设是:均匀性假设,连续性假设及各向同性假设。
4.材料力学研究的构件主要是杆件,且是小变形杆件。
5.内力是指在外力作用下,物体内部各部分之间的相互作用;显示和确定内力可用截面法;应力是单位面积上的内力。
点应力可用正应力与剪应力表示。
6.对于构件任一点的变形,只有线变形和角变形两种基本变形。
7.杆件的四种基本变形形式是:拉伸(或压缩),剪切,扭转以及弯曲。
02-1 本章小结1.本章主要介绍轴向拉伸和压缩时的重要概念:内力、应力、变形和应变、变形能等。
轴向拉伸和压缩的应力、变形和应变的基本公式是: 正应力公式AN=σ 胡克定律EEAll σε==∆,F 胡克定律是揭示在比例极限内应力和应变的关系,它是材料力学最基本的定律之一。
平面假设:变形前后横截面保持为平面,而且仍垂直于杆件的轴线。
轴向拉伸或压缩的变形能。
2.材料的力学性能的研究是解决强度和刚度问题的一个重要方面。
对于材料力学性能的研究一般是通过实验方法,其中拉伸试验是最主要、最基本的一种试验。
低碳钢的拉伸试验是一个典型的试验。
它可得到如下试验资料和性能指标:拉伸全过程的曲线和试件破坏断口;b s σσ,—材料的强度指标; ψδ,—材料的塑性指标。
其中E —材料抵抗弹性变形能力的指标;某些合金材料的2.0σ—名义屈服极限等测定有专门拉伸试验。
3.工程中一般把材料分为塑性材料和脆性材料。
塑性材料的强度特征是屈服极限 sσ和强度极限 b σ(或 2.0σ),而脆性材料只有一个强度指标,强度极限 b σ。
4.强度计算是材料力学研究的重要问题。
轴向拉伸和压缩时,构件的强度条件:[]σσ≤=AN它是进行强度校核、选定截面尺寸和确定许可载荷的依据。
5.应通过本章初步掌握拉压超静定问题的特点及解法。
第八章 组合变形判断 拉弯组合1、“斜弯曲时中性轴一定过截面的形心而且中性轴上的正应力为零。
”2、“当载荷不在梁的主惯性平面内,梁一定产生斜弯曲”3、“拉弯组合变形时,中性轴一定不过截面的形心”4、“杆件发生斜弯曲时,杆件变形的总挠度方向一定与中性轴相垂直。
”5、“只要杆件横截面上的轴力为零,则该横截面上的正应力各处为零”6、“承受偏心拉伸的杆件,其中性轴仍然通过截面的形心”7、“拉弯组合变形和偏心拉伸组合变形的中性轴位置都与载荷的大小无关。
”选择 拉弯组合1、应用叠加原理的前提条件是: 。
A :线弹性构件; B :小变形杆件;C :线弹性、小变形杆件;D :线弹性、小变形、直杆; 2、矩形截面偏心受压杆件发生 变形。
A :轴向压缩、平面弯曲B :轴向压缩、平面弯曲、扭转 C:轴向压缩、斜弯曲 D :轴向压缩、斜弯曲、扭转3、平板上边切h/5,在下边对应切去h/5,平板的强度。
A :降低一半;B :降低不到一半;C :不变;D :提高了;4、AB 杆的A 处靠在光滑的墙上,B 端铰支,在自重作用下发生变形, AB 杆发生 变形。
A :平面弯曲B :斜弯;C :拉弯组合;D :压弯组合;5、简支梁受力如图:梁上 。
A :AC 段发生弯曲变形、CB 段发生拉弯组合变形 B :AC 段发生压弯组合变形、CB 段发生弯曲变形C :两段只发生弯曲变形D :AC 段发生压弯组合、CB 段发生拉弯组合变形6、图示中铸铁制成的压力机立柱的截面中,最合理的是 。
7、矩形截面悬臂梁在自由端受到力P 的作用,如图。
OP 为载荷的作用线,已知I Z <I Y 。
则该梁横截面的 。
A :中性轴位于1、3象限,挠度方向可能为Of 1 B :中性轴位于1、3象限,挠度方向可能为Of 2C :中性轴位于2、4象限,挠度方向可能为Of 1D :中性轴位于2、4象限,挠度方向可能为Of 28、矩形截面拉弯组合变形时,对于横截面的中性轴有以下的结论。
第八章 组合变形判断 拉弯组合1、“斜弯曲时中性轴一定过截面的形心而且中性轴上的正应力为零。
”2、“当载荷不在梁的主惯性平面内,梁一定产生斜弯曲”3、“拉弯组合变形时,中性轴一定不过截面的形心”4、“杆件发生斜弯曲时,杆件变形的总挠度方向一定与中性轴相垂直。
”5、“只要杆件横截面上的轴力为零,则该横截面上的正应力各处为零”6、“承受偏心拉伸的杆件,其中性轴仍然通过截面的形心”7、“拉弯组合变形和偏心拉伸组合变形的中性轴位置都与载荷的大小无关。
”选择 拉弯组合1、应用叠加原理的前提条件是: 。
A :线弹性构件; B :小变形杆件;C :线弹性、小变形杆件;D :线弹性、小变形、直杆; 2、矩形截面偏心受压杆件发生 变形。
A :轴向压缩、平面弯曲B :轴向压缩、平面弯曲、扭转 C:轴向压缩、斜弯曲 D :轴向压缩、斜弯曲、扭转3、平板上边切h/5,在下边对应切去h/5,平板的强度。
A :降低一半;B :降低不到一半;C :不变;D :提高了;4、AB 杆的A 处靠在光滑的墙上,B 端铰支,在自重作用下发生变形, AB 杆发生 变形。
A :平面弯曲B :斜弯;C :拉弯组合;D :压弯组合;5、简支梁受力如图:梁上 。
A :AC 段发生弯曲变形、CB 段发生拉弯组合变形 B :AC 段发生压弯组合变形、CB 段发生弯曲变形C :两段只发生弯曲变形D :AC 段发生压弯组合、CB 段发生拉弯组合变形6、图示中铸铁制成的压力机立柱的截面中,最合理的是 。
7、矩形截面悬臂梁在自由端受到力P 的作用,如图。
OP 为载荷的作用线,已知I Z <I Y 。
则该梁横截面的 。
A :中性轴位于1、3象限,挠度方向可能为Of 1 B :中性轴位于1、3象限,挠度方向可能为Of 2C :中性轴位于2、4象限,挠度方向可能为Of 1D :中性轴位于2、4象限,挠度方向可能为Of 28、矩形截面拉弯组合变形时,对于横截面的中性轴有以下的结论。