T检验、F检验及统计学意义
- 格式:pdf
- 大小:161.92 KB
- 文档页数:4
统计学方法常用的检验指标
统计学方法常用的检验指标包括:
1. t 检验:用于样本数据来自两个或多个总体,要求两边的总体均值相等时使用。
通常用来分析两个群体的差异情况是否具有统计学意义,这种应用属于单因素非重复性设计分析。
当参数模型的分布没有改变的时候就可以用这个办法去检查差别有无显著性存在,它是假设每个变量(总体)在任何条件下都应该是一样大(或者一样小)。
2. 卡方检验:是一种用途很广的计数资料的假设检验方法,它属于非参数检验的范畴。
该方法适用于分类资料的整体检验和某些类型的分组资料的比较。
当观察值不连续时,可用此方法进行统计推断。
如果对两类观察值间是否有差别有怀疑时可使用此方法。
3. 相关系数r:用于度量两个变量之间线性关系强度和方向的统计分析指标。
当需要反映两个一元变量之间的相关程度时,可以用计算的相关系数来加以描述。
正相关的值为正数,可以理解为增加多少;负相关的值为负数,可以理解为减少多少。
4. F检验:主要用于检验一个因变量的变化是否来自于其因子水平的变动所造成
的差异。
这个检验是在回归方程中进行多重共线性处理的必要步骤之一。
5. 符号秩检定:是用实际观测数据对于某一假定状态的关系作确定性判断的一种估计反应方式,可以判断组间的差异。
常被应用于趋势方面的比较研究,它的结论不能绝对化,只是能体现一种方向性的差异表现出的特点,有实际的应用意义
这些是统计学中常用的主要检验指标,它们在不同的研究中发挥着不同的作用。
具体选择哪种检验指标需要根据研究的实际情况来确定。
《》配对t检验的目的是检验两个样本均数所代表的未知总体均数是否有差别1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
3,T检验和F检验至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
统计学常⽤概念:T检验、F检验、卡⽅检验、P值、⾃由度1,T检验和F检验的由来⼀般⽽⾔,为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率,我们会利⽤统计学家所开发的⼀些统计⽅法,进⾏统计检定。
通过把所得到的统计检定值,与统计学家建⽴了⼀些随机变量的概率分布(probability distribution)进⾏⽐较,我们可以知道在多少%的机会下会得到⽬前的结果。
倘若经⽐较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信⼼的说,这不是巧合,是具有统计学上的意义的(⽤统计学的话讲,就是能够拒绝虚⽆假设null hypothesis,Ho)。
相反,若⽐较后发现,出现的机率很⾼,并不罕见;那我们便不能很有信⼼的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现⽬前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的⼀种估计⽅法。
专业上,p值为结果可信程度的⼀个递减指标,p值越⼤,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提⽰样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均⽆关联,我们重复类似实验,会发现约20个实验中有⼀个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效⼒有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界⽔平。
3,T检验和F检验⾄於具体要检定的内容,须看你是在做哪⼀个统计程序。
举⼀个例⼦,⽐如,你要检验两独⽴样本均数差异是否能推论⾄总体,⽽⾏的t检验。
通俗理解T检验与F检验得区别1,T检验与F检验得由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错得概率,我们会利用统计学家所开发得一些统计方法,进行统计检定。
通过把所得到得统计检定值,与统计学家建立了一些随机变量得概率分布(probability distribution)进行比较,我们可以知道在多少%得机会下会得到目前得结果。
倘若经比较后发现,出现这结果得机率很少,亦即就是说,就是在机会很少、很罕有得情况下才出现;那我们便可以有信心得说,这不就是巧合,就是具有统计学上得意义得(用统计学得话讲,就就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现得机率很高,并不罕见;那我们便不能很有信心得直指这不就是巧合,也许就是巧合,也许不就是,但我们没能确定。
F值与t值就就是这些统计检定值,与它们相对应得概率分布,就就是F分布与t分布。
统计显著性(sig)就就是出现目前样本这结果得机率。
2,统计学意义(P值或sig值)结果得统计学意义就是结果真实程度(能够代表总体)得一种估计方法。
专业上,p值为结果可信程度得一个递减指标,p值越大,我们越不能认为样本中变量得关联就是总体中各变量关联得可靠指标。
p 值就是将观察结果认为有效即具有总体代表性得犯错概率。
如p=0、05提示样本中变量关联有5%得可能就是由于偶然性造成得。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究得变量关联将等于或强于我们得实验结果。
(这并不就是说如果变量间存在关联,我们可得到5%或95%次数得相同结果,当总体中得变量存在关联,重复研究与发现关联得可能性与设计得统计学效力有关。
)在许多研究领域,0、05得p值通常被认为就是可接受错误得边界水平。
3,T检验与F检验至於具体要检定得内容,须瞧您就是在做哪一个统计程序。
举一个例子,比如,您要检验两独立样本均数差异就是否能推论至总体,而行得t检验。
统计学T检验的意义(P值或sig值)1.T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
2. 统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
3. T检验和F检验至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
统计学在数学建模中的T检验和F检验(2008-11-10 08:26:33)转载▼标签:股票昨天做论文,用了数学建模,公式是生产道格拉斯生产函数,统计软件Matlab7.0 怎么都安装不了。
最后求助一同学,竟然出去了。
只有自己想办法了,用EXECL中的线性函数,将公式中的东西变成LN,用LINSET公式来搞定了,不过有几个数据,这个时候要检验一下其偏离度。
下面简单的介绍下相关情况。
1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
通俗理解T检验与F检验的区别1,T检验与F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即就是说,就是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不就是巧合,就是具有统计学上的意义的(用统计学的话讲,就就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不就是巧合,也许就是巧合,也许不就是,但我们没能确定。
F值与t值就就是这些统计检定值,与它们相对应的概率分布,就就是F 分布与t分布。
统计显著性(sig)就就是出现目前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义就是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联就是总体中各变量关联的可靠指标。
p值就是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0、05提示样本中变量关联有5%的可能就是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不就是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究与发现关联的可能性与设计的统计学效力有关。
)在许多研究领域,0、05的p值通常被认为就是可接受错误的边界水平。
3,T检验与F检验至於具体要检定的内容,须瞧您就是在做哪一个统计程序。
举一个例子,比如,您要检验两独立样本均数差异就是否能推论至总体,而行的t检验。
1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
3,T检验和F检验至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
两样本(如某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢?会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同?为此,我们进行t检定,算出一个t检定值。
【统计学】T检验、F检验和统计学意义(P值或sig值),想了解显著性差异的也可以来看2007年10月12日星期五 10:451,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
3,T检验和F检验至于具体要检定的内容,须看你是在做哪一个统计程序。
统计学T检验的意义(P值或sig值)1.T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distributio n)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设n ull hypoth e si s,H o)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(si g)就是出现目前样本这结果的机率。
2. 统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
统计学常⽤概念:T检验、F检验、卡⽅检验、P值、⾃由度1,T检验和F检验的由来⼀般⽽⾔,为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率,我们会利⽤统计学家所开发的⼀些统计⽅法,进⾏统计检定。
通过把所得到的统计检定值,与统计学家建⽴了⼀些随机变量的概率分布(probability distribution)进⾏⽐较,我们可以知道在多少%的机会下会得到⽬前的结果。
倘若经⽐较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信⼼的说,这不是巧合,是具有统计学上的意义的(⽤统计学的话讲,就是能够拒绝虚⽆假设null hypothesis,Ho)。
相反,若⽐较后发现,出现的机率很⾼,并不罕见;那我们便不能很有信⼼的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现⽬前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的⼀种估计⽅法。
专业上,p值为结果可信程度的⼀个递减指标,p值越⼤,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提⽰样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均⽆关联,我们重复类似实验,会发现约20个实验中有⼀个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效⼒有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界⽔平。
3,T检验和F检验⾄於具体要检定的内容,须看你是在做哪⼀个统计程序。
举⼀个例⼦,⽐如,你要检验两独⽴样本均数差异是否能推论⾄总体,⽽⾏的t检验。
1.T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
2. 统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
3. T检验和F检验至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
两样本(如某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢?会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同?为此,我们进行t检定,算出一个t检定值。
通俗理解T检验与F检验的区别1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
3,T检验和F检验至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
项目数据分析师 ---- T检验、F检验和统计意义以及显著性差异1、T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的几率很少,亦即是说,实在机会很少,很罕有的情况下才出现,那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的几率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的几率。
2、统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,P值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联式总体中各变量关联的可靠指标。
P值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个试验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
)在许多研究领域,0.05的p值通常被认为是可以接受错误的边界水平。
3、T检验和F检验至于具体要坚定地内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论总体,而进行的t检验,两样本(如:某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在显著差异呢?会不会总体中男女生根本没有差别,只不过是你那么巧抽到这两个样本的数值不同?为此,我们进行t检验,算出一个t检验值。
T检验F检验及统计学意义t检验和F检验是常用的统计方法,用于判断一个样本或实验之间的差异是否显著,并且可以帮助确定是否存在统计学上的显著性。
本文将详细介绍t检验和F检验的原理、应用以及统计学意义。
一、t检验:t检验是用于比较两个样本均值之间差异是否显著的一种统计方法。
具体而言,t检验可以帮助我们判断一些样本的均值是否与一些常数相等,或者两个样本的均值是否相等。
t检验的核心思想是计算样本均值之间的标准误差(Standard error)来确定样本均值差异的显著性。
t检验的原理可以概括为以下几个步骤:1.根据样本数据计算出两个样本的均值以及标准差。
2.根据样本数据计算出两个样本的标准误差。
3.根据t分布表或者计算机软件,在给定的显著性水平(通常为0.05或0.01)下找到对应的临界值。
4.比较计算得到的t值与临界值,如果t值大于临界值,则拒绝原假设,即两个样本均值差异显著;如果t值小于临界值,则接受原假设,即两个样本均值差异不显著。
t检验有多种形式,包括单样本t检验、独立样本t检验和配对样本t检验等。
其中,单样本t检验用于判断一个样本的均值是否与一些常数相等;独立样本t检验用于比较两个独立样本的均值是否相等;配对样本t检验用于比较同一组样本在两个不同条件下的均值是否相等。
t检验的统计学意义在于:1.帮助我们判断样本之间的差异是否由于抽样误差导致,从而确定其是否具有统计学上的显著性。
2.为科学研究提供了一种可靠的假设检验方法,使得研究者在分析和解释实验结果时有更准确的判断依据。
3.提供了实证研究中的一种重要的比较方法,既可以比较两个样本的均值,也可以比较同一样本在不同条件下的均值,从而为决策和实践提供科学的依据。
二、F检验:F检验是用于判断两个或多个样本方差是否有显著性差异的一种统计方法。
具体而言,F检验可以帮助我们判断一个因变量的方差是否与一个或多个自变量相关。
F检验的核心思想是计算两个或多个样本的方差之比来确定样本方差差异的显著性。
T检验、F检验和统计学意义(P值或sig值)1.T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
2. 统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
3. T检验和F检验至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
一元回归中f和t的关系
在一元回归中,F检验和t检验是两个常用的统计方法,用于评估回归模型的拟合效果和变量的显著性。
它们之间的关系如下:
1. F检验主要用于检验整个回归方程的显著性。
它通过对回归模型的总方差进行分解,计算出回归方程的F统计量,并与临界值进行比较,以判断回归方程是否显著。
如果F检验的结果表明回归方程显著,那么说明自变量和因变量之间存在线性关系。
2. t检验主要用于检验单个回归系数是否显著。
它通过对单个回归系数的显著性进行检验,判断该自变量对因变量的影响是否显著。
如果t检验的结果表明某个自变量的回归系数显著,那么说明该自变量对因变量的预测具有统计学意义。
在一元回归中,F检验和t检验是相互补充的。
F检验关注整个回归方程的拟合效果,而t检验关注单个回归系数的显著性。
虽然F检验和t检验的侧重点不同,但它们的目的是一致的,都是为了评估回归模型的可靠性和预测能力。
在实际应用中,可以根据具体情况选择使用F检验或t检验,或者同时进行两种检验以获得更全面的评估结果。
同时,需要注意F检验和t检验的前提假设,如残差的正态性和同方差性等,以保证统计结果的准确性和可靠性。
通俗理解T检验与F检验的区别1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
3,T检验和F检验至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
【统计学】T检验、F检验和统计学意义(P值或sig值),想了解显著性差异的也可以来看2007年10月12日星期五 10:451,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probab ility distri butio n)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设n ullhypoth esis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
通俗理解T检验与F检验的区别1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进展统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进展比拟,我们可以知道在多少%的机会下会得到目前的结果。
倘假如经比拟后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,假如比拟后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性〔sig〕就是出现目前样本这结果的机率。
2,统计学意义〔P值或sig值〕结果的统计学意义是结果真实程度〔能够代表总体〕的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
〔这并不是说如果变量间存在关联,我们可得到5%或95%次数的一样结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
〕在许多研究领域,的p值通常被认为是可承受错误的边界水平。
3,T检验和F检验至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
两样本(如某班男生和女生)某变量(如身高)的均数并不一样,但这差异是否能推论至总体,代表总体的情况也是存在著差异呢?会不会总体中男女生根本没有差异,只不过是你那麼巧抽到这2样本的数值不同?为此,我们进展t检定,算出一个t检定值。
1.T检验和F检验的由来
一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
2. 统计学意义(P值或sig值)
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
3. T检验和F检验
至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
两样本(如某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢?
会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同?
为此,我们进行t检定,算出一个t检定值。
与统计学家建立的以「总体中没差别」作基础的随机变量t分布进行比较,看看在多少%的机会(亦即显著性sig值)下会得到目前的结果。
若显著性sig值很少,比如<0.05(少於5%机率),亦即是说,「如果」总体「真的」没有差别,那麼就只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的情况。
虽然还是有5%机会出错(1-
0.05=5%),但我们还是可以「比较有信心」的说:目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,「总体中男女生不存差异」的虚无假设应予拒绝,简言之,总体应该存在著差异。
每一种统计方法的检定的内容都不相同,同样是t-检定,可能是上述的检定总体中是否存在差异,也同能是检定总体中的单一值是否等於0或者等於某一个数值。
至於F-检定,方差分析(或译变异数分析,Analysis of Variance),它的原理大致也是上面说的,但它是透过检视变量的方差而进行的。
它主要用于:均数差别的显著性检验、分离各有关因素并估计其对总变异的作用、分析因素间的交互作用、方差齐性(Equality of Variances)检验等情况。
4. T检验和F检验的关系
t检验过程,是对两样本均数(mean)差别的显著性进行检验。
惟t检验须知道两个总体的方差(Variances)是否相等;t检验值的计算会因方差是否相等而有所不同。
也就是说,t检验须视乎方差齐性(Equality of Variances)结果。
所以,SPSS在进行t-test for Equality of Means的同时,也要做Levene's Test for Equality of Variances 。
4.1
在Levene's Test for Equality of Variances一栏中 F值为2.36, Sig.
为.128,表示方差齐性检验「没有显著差异」,即两方差齐(Equal Variances),故下面t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。
4.2.
在t-test for Equality of Means中,第一排(Variances=Equal)的情况:
t=8.892, df=84, 2-Tail Sig=.000, Mean Difference=22.99
既然Sig=.000,亦即,两样本均数差别有显著性意义!
4.3
到底看哪个Levene's Test for Equality of Variances一栏中sig,还是看t-test for Equality of Means中那个Sig. (2-tailed)啊?
答案是:两个都要看。
先看Levene's Test for Equality of Variances,如果方差齐性检验「没有显著差异」,即两方差齐(Equal Variances),故接著的t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。
反之,如果方差齐性检验「有显著差异」,即两方差不齐(Unequal Variances),故接著的t检验的结果表中要看第二排的数据,亦即方差不齐的情况下的t检验的结果。
4.4
你做的是T检验,为什么会有F值呢?
就是因为要评估两个总体的方差(Variances)是否相等,要做Levene's Test for Equality of Variances,要检验方差,故所以就有F值。
另一种解释:
t检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
F检验又叫方差齐性检验。
在两样本t检验中要用到F检验。
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。
若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。
其中要判断两总体方差是否相等,就可以用F检验。
若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;
若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。
之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。
简单来说就是实用T检验是有条件的,其中之一就是要符合方差齐次性,这点需要F检验来验证。