运筹学 单纯 形讲义法原理
- 格式:ppt
- 大小:785.00 KB
- 文档页数:16
运筹学单纯形法
运筹学单纯形法,又称单纯性法,是一种用于求解线性规划问题的数学方法,它在运筹学中发挥着重要作用。
它主要应用于决策及资源分配问题,可以帮助决策者更好地把握资源的优化配置,并寻求最优解。
单纯性法是以线性规划问题作为理论基础,它是将该问题转化为一系列形如Ax=b的线性方程组的运筹学方法。
在这个方程组通过调整方程中的系数和右面常数而变换为形如Cx≤d的不等式形式,而这种不等式系统称为单纯性约束条件。
单纯性法从不等式中寻找一系列基向量,并通过改变基向量来实现改变不等式的求解方程之间的关系,从而求出最优解的问题。
传统的单纯性法分为有界单纯性和无界单纯性两种情形。
无界单纯性以简单费用曲线方法、扩展的简单费用曲线方法和增广次数法三大类。
有界单纯性主要是对对角单纯性和非对角单纯性这两类单纯性系统分别使用不同的方法进行求解。
单纯性求解方法在线性规划问题求解中具有重要应用,它能通过求解线性规划问题中的一系列互不相关的子问题来求出最优解。
使用该方法,可以以最少的成本达到最优的收益,它包括费用最低优化、网络流优化、全格研究和数学优化模型等。
运筹学---单纯形法单纯形法是一种解线性规划问题的有效算法。
在这个问题中,我们寻找一组决策变量,以便最大化或最小化一个线性目标函数,同时满足一系列线性限制条件。
单纯形法通过暴力搜索可行解并逐步优化目标函数来求解该问题。
单纯形法的主要思想是从一个初始可行解开始,并通过迭代来逐步移动到更优的解。
在每一步迭代中,算法将当前解移动到一个相邻的顶点,直到找到一个优于当前解的顶点。
具体操作包括选择一个非基变量,并将其作为入基变量,同时选择一个基变量并将其作为出基变量。
新的基变量将替换原来的非基变量,并且目标函数的值将被更新。
关键是如何选择入基变量和出基变量。
为此,单纯形法使用一个称为单纯形表的矩阵来跟踪线性规划问题的状态。
单纯形表包含目标函数系数,限制条件系数,决策变量的当前值以及对角线上的单位矩阵。
通过适当地操作这个表,可以确定要移动到哪个相邻顶点,并相应地更新解和目标函数的值。
一般来说,单纯形法需要在指数时间内解决线性规划问题,因为需要遍历所有可能的可行解。
但是,在实际应用中,单纯形法往往比其他算法更快和更有效。
此外,在使用单纯形法时,需要注意陷入无限循环或者找不到一个可行解的可能性。
单纯形法的主要优点是:它是一种简单而直观的求解线性规划问题的方法;它易于实现,并且在许多情况下可以很快地求解问题。
它还可以用于解决大规模问题,包括具有成千上万个变量和限制条件的问题。
在实际应用中,单纯形法经常与其他算法结合使用,例如内点法或分支定界法。
这些方法可以提供更好的性能和结果。
但是,在许多情况下,单纯形法仍然是解决线性规划问题的首选算法。
在总体上,单纯形法是一种强大而灵活的工具,可以帮助研究人员和决策者在面对复杂的决策问题时做出明智的选择,并实现最大的效益。
单纯形算法原理与计算步骤详解单纯形算法是一种常用于线性规划问题求解的优化算法,其基本思想是通过不断迭代改变可行解,使目标函数值逐渐趋近最优解。
本文将详细介绍单纯形算法的原理和计算步骤。
一、单纯形算法原理单纯形算法基于以下原理:假设存在一个线性规划问题,其中目标函数需要最小化,约束条件为一组线性等式和不等式。
算法通过在可行域内循环改变基变量,以求得最优解。
算法的基本思想是从初始可行解出发,不断迭代地转移到更优的解,直到找到最优解。
单纯形算法的迭代过程中,每一次迭代都会选择一个非基变量进行转移,使目标函数值逐步减小。
二、单纯形算法的计算步骤下面将详细介绍单纯形算法的计算步骤,以帮助读者更好地理解该算法。
1. 初始化阶段在初始化阶段,需要将线性规划问题转化为标准型,并找到初始可行解。
标准型的要求是:目标函数为最小化,约束条件为等式和非负约束。
2. 检验阶段在检验阶段,需要进行基变量的选择和检验是否达到最优解。
首先选择一个入基变量,该变量的选择通常基于某些准则,如最大增量准则、最小比率准则等。
3. 转换阶段在转换阶段,需要进行基变量的转换,使目标函数值不断减小。
通过将选定的入基变量与已有的基变量组成一个新的基,进而得到新的可行解。
在转换过程中,还需要进行非基变量的选择和计算。
选择一个出基变量,使得目标函数值减小的幅度最大。
然后,通过高斯消元法计算出相应的新基。
4. 终止判断阶段在每次迭代后,都需要判断是否已达到最优解或存在无界解。
如果目标函数不能减小或者无界,则算法终止。
否则,返回检验阶段继续迭代。
5. 结果输出阶段当算法终止时,需要输出最优解以及最优解对应的目标函数值。
三、单纯形算法的优化尽管单纯形算法是一种常用的线性规划求解方法,但在某些情况下,其迭代次数可能会非常大。
为了优化算法效率,可以采用以下方法:1. 人工变量法当初始可行解需要引入人工变量时,可以通过人工变量法来优化算法。
该方法通过对目标函数引入人工变量,并对目标函数进行最小化,从而减少迭代次数。
运筹学单纯形法讲解一、单纯形法基本概念在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。
设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。
单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。
由单纯形求出的最优解就叫做单纯形的最优解。
在实际应用中,一般用来求最优解的都是单纯形。
二、单纯形法适用条件和范围在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。
但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。
非线性规划只能得到对象最优解。
三、单纯形法具体步骤和算法介绍1、明确问题的目标。
2、计算出所有解,按确定的先后顺序排列。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
四、单纯形法的误差和精度1、明确问题的目标。
一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。
但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。
2、计算出所有解,按确定的先后顺序排列。
首先,找出最优解,再在这个最优解附近寻找另外的比最优解更好的最优解,直到所有点都达到满意的精度。
这种方法称为“穷举法”。
穷举法通常用于没有更好的方法时,常用于工程实际中。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。
5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。
单纯形法的精度可达0.01或0.05。