高三数学期中试卷(理)
- 格式:doc
- 大小:203.00 KB
- 文档页数:3
学校 班级 姓名 考场 考号装订线余江县桃李中学2013-2014届高三上学期期中考试数学试卷(理)一、选择题1.已知函数f(x)=lg (-x )的定义域为M,函数⎩⎨⎧<+->=1,132,2x x x y x的定义域为N,则M C R ∩N=( )A 、[0,1)B 、(2,+∞)C 、(0,+∞)D 、[0,1)∪(2,+∞)2.复数i(2i)z =--(i 为虚数单位)在复平面内所对应的点在 ( )A.第一象限B.第二象限C.第三象限D.第四象限3.已知a ,b 均为单位向量,它们的夹角为60°,那么,|3|b a +等于( )7. A 10. B 13. C 15.D4.设A ={20|≤≤x x },B ={21|≤≤y y },在下列各图中,能表示从集合A 到集合B 的函数的是( )5.函数()()lg 1f x x =-的大致图象是( )6.设函数()f x 在R 上可导,其导函数为)('x f ,且函数)(')1(x f x y -=的图像如图所示,则下列结论中一定成立的是( )A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f 7.给出下列说法: ①命题“若6πα=,则sin 21=α”的否命题是假命题; ②命题p:存在R x ∈,使sinx>1,则⌝p:任意R x ∈,1sin ≤x ;③“)(22z k k ∈+=ππϕ”是“函数y=sin(2x +ϕ)为偶函数”的充要条件; ④命题p:存在x ∈(0,2π),使21cos sin =+x x ,命题q:在△ABC 中,若B A sin sin >则A>B,那么命题(⌝p)且q 为真命题. 其中正确的个数是( )A 、4B 、3C 、2D 、18.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A .2,3π-B .2,6π-C .4,6π-D .4,3π9.在四边形ABCD 中, )2,4(),2,1(-==BD AC ,则四边形的面积为 ( )A .5B .25C .5D .1010.已知2cos sin cos )(2ax x b x a x f --=的最大值是21,且43)3(f =π,则=π-)3(f ( )A .21B .43-C .4321或-D .430-或 题号 12345678910答案二、填空题11.计算定积分=+⎰-dx x x 112)sin ( .12.已知函数cos (0)()(1)1(0)xx f x f x x π⎧=⎨-+>⎩≤,则44()()33f f +-= . 13.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集 用区间表示为 .14.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,22sin ,32,33BAC AB AD ∠===则BD 的长为15. 给出下列个命题: ①若函数 R )为偶函数,则范围是15[,]24②已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值③函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,则()f x 的解析式为()sin(2)3f x x π=+;④设ω>0,函数sin()23y x πω=++的图象向右平移43π个单位后与原图象重合,则ω的最小值是32. 其中正确的命题为____________. 三、解答题()6k k Z πφπ=+∈()sin(2)(3f x a x x πφ=++∈xy O3π712π1-16.(12分)已知集合A ={x|2x -a x +2a -12=0},集合B ={x|2x -5x +6=0},是否存实数a ,使得集合A ,B 能同时满足下列三个条件:①A≠B ;②A ∪B =B ;③(A∩B)≠∅若存在,求出实数a 的值或取值范围;若不存在,请说明理由.17. (12分)已知函数)(x f y =,若存在0x ,使得00)(x x f =,则称0x 是函数)(x f y =的一个不动点,设二次函数2()(1)2f x ax b x b =+++-. (1) 当2,1a b ==时,求函数)(x f 的不动点;(2) 若对于任意实数b ,函数)(x f 恒有两个不同的不动点,求实数a 的取值范围;18.(12分)已知A 、B 、C 为△ABC 的三个内角且向量=⎪⎭⎫ ⎝⎛=n C m 2cos ,1 )23,2cos 2sin 3(C C + 共线.(1)求角C 的大小:(2)设角A ,B ,C 的对边分别是a ,b ,c ,且满足2acosC+c=2b ,试判断△ABC 的形状.19.(12分)设曲线1()n y x n N +*=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =.(1)当1(1,1)n =时,求曲线在点处的切线方程; (2)求1299a a a +++…的值。
2021-2022学年陕西省渭南市蒲城县高三(上)期中数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x∈Z|x2<4},B={0,1,2}()A.{﹣1,0,1,2}B.{0,1}C.{0,1,2}D.{﹣2,﹣1,0,1,2}2.(5分)命题“∀x∈R,x3+sin x≥0”的否定是()A.∃x∈R,x3+sin x≥0B.∀x∈R,x3+sin x<0C.∃x∈R,x3+sin x<0D.∃x∈R,x3+sin x≤03.(5分)已知,则tan2α的值为()A.B.C.D.4.(5分)若a,b∈R,则“a3>b3”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)函数f(x)=在[﹣,]上的图象大致为()A.B.C.D.6.(5分)某公司为激励创新,计划逐年加大研发资金投入,若该公司2018年全年投入研发资金130万元,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)A.2020年B.2021年C.2022年D.2023年7.(5分)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,BC=1,P是DC的中点,则=()A.B.C.3D.98.(5分)将函数的图像向右平移个单位长度()A.B.C.D.9.(5分)设函数,若对于任意的实数x,恒成立()A.0B.1C.D.10.(5分)魏晋南北朝时期,我国数学家祖冲之利用割圆术,求出圆周率π约为,直到近千年后这一记录才被打破.若已知π的近似值还可以表示成4sin52°,则的值为()A.B.C.8D.﹣811.(5分)已知2a+a=log2b+b=log3c+c,则下列关系不可能成立的是()A.a<b<c B.a<c<b C.a<b=c D.c<b<a12.(5分)设f(x)为定义在R上的奇函数,f(﹣3)=0.当x>0时(x)+2f(x)>0(x)为f(x)的导函数(x)>0成立的x的取值范围是()A.(﹣∞,﹣3)∪(0,3)B.(﹣3,0)∪(3,+∞)C.(﹣3,0)∪(0,3)D.(﹣∞,﹣3)∪(3,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知函数f(x)=x sin x+cos x,则f'(﹣π)=.14.(5分)若非零向量,满足||=3|+2|,则与夹角的余弦值为.15.(5分)已知定义在R上的函数f(x),对任意实数x都有f(x+4)=﹣f(x)(x)的图像关于y轴对称,且f(﹣5),则f(2021)=.16.(5分)某校开展数学活动,甲、乙两同学合作用一副三角板测量学校的旗杆高度,如图,乙站在D点测得旗杆顶端E点的仰角为30°.已知甲、乙两同学相距(BD)6米(AB)1.5米,乙的身高(CD),则旗杆的高EF为米.(结果精确到0.1,参考数据:≈1.41,≈1.73)三、解答题(本大题共6小题,共70分.解答应写出文字说明证明过程或演算步骤)17.(10分)已知函数f(x)=cos2x﹣sin2x+2.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调递减区间.18.(12分)已知A、B、C为△ABC的三个内角,它们的对边分别为a、b、c,若2a cos A =c cos B+b cos C.(1)求A;(2)若a=,△ABC的面积S=,求b+c的值.19.(12分)我国作为世界上主要的产茶国,在全球茶叶生产、消费和出口中都占据重要地位.某茶叶销售商通过上一年销售统计发现,某种品牌的茶叶每袋进价为40元(52≤x ≤57,x∈N)与日均销售量之间的函数关系如表:销售价格(元/每袋)575655545352日均销售量(袋)697275788184(Ⅰ)求平均每天的销售量y(袋)与销售单价x(元/袋)之间的函数解析式;(Ⅱ)求平均每天的销售利润w(元)与销售单价x(元/袋)之间的函数解析式;(Ⅲ)当每袋茶叶的售价为多少元时,该茶叶销售商每天可以获得最大利润?最大利润是多少?20.(12分)已知函数f(x)=lnx.(Ⅰ)求函数F(x)=f(x+1)﹣x的单调区间;(Ⅱ)若函数存在两个极值点x1,x2,求实数m的取值范围.21.(12分)已知函数.(Ⅰ)若函数f(x)是R上的奇函数,求a的值;(Ⅱ)若函数f(x)的定义域是一切实数,求a的取值范围;(Ⅲ)若函数f(x)在区间[0,1]上的最大值与最小值的差不小于222.(12分)已知函数f(x)=(x﹣1)(x2+2)e x﹣2x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)证明:f(x)>﹣x2﹣4.2021-2022学年陕西省渭南市蒲城县高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x∈Z|x2<4},B={0,1,2}()A.{﹣1,0,1,2}B.{0,1}C.{0,1,2}D.{﹣2,﹣1,0,1,2}【解答】解:∵A={x∈Z|x2<4}={﹣3,0,1},6,2},∴A∩B={﹣1,8,1}∩{0,8,1}.故选:B.2.(5分)命题“∀x∈R,x3+sin x≥0”的否定是()A.∃x∈R,x3+sin x≥0B.∀x∈R,x3+sin x<0C.∃x∈R,x3+sin x<0D.∃x∈R,x3+sin x≤0【解答】解:命题为全称命题,则命题的否定为∃x∈R,x3+sin x<0,故选:C.3.(5分)已知,则tan2α的值为()A.B.C.D.【解答】解:∵,∴tan6α====﹣.故选:A.4.(5分)若a,b∈R,则“a3>b3”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:因为函数y=x3为增函数,∴由a>b,可以推出a3>b3,由a3>b3,可以推出a>b,故“a5>b3”是“a>b”的充要条件.故选:C.5.(5分)函数f(x)=在[﹣,]上的图象大致为()A.B.C.D.【解答】解:根据题意,f(x)==﹣f(x),则[﹣,]上,其图象关于原点对称,又由在区间(0,)上,7x>0,2﹣x>6,则f(x)>0;故选:C.6.(5分)某公司为激励创新,计划逐年加大研发资金投入,若该公司2018年全年投入研发资金130万元,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)A.2020年B.2021年C.2022年D.2023年【解答】解:设2018年全年投入研发资金为130,2018年后n年投入的研发资金为a n,则数列{a n}是以130×1.12为首项,以1.12为公比的等比数列,∴a n=130×(8.12)n,令130×(1.12)n>200,得n>,即当n≥7时.所以2022年会超过200万元.故选:C.7.(5分)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,BC=1,P是DC的中点,则=()A.B.C.3D.9【解答】解:因为=,==﹣,所以||=||=|,故选:C.8.(5分)将函数的图像向右平移个单位长度()A.B.C.D.【解答】解:函数的图像向右平移,所得函数图像的解析式为y=3sin[7(x﹣)+),令5x﹣=kπ(k∈Z)+,k∈Z.令k=0,则x=,即平移后的图像中与y轴最近的对称中心的坐标是(,5),故选:A.9.(5分)设函数,若对于任意的实数x,恒成立()A.0B.1C.D.【解答】解:∵函数,若对于任意的实数x,,∴f()是函数的最小值+=2kπ+π,即ω=3k+,则令k=0,可得ω的最小值为,故选:D.10.(5分)魏晋南北朝时期,我国数学家祖冲之利用割圆术,求出圆周率π约为,直到近千年后这一记录才被打破.若已知π的近似值还可以表示成4sin52°,则的值为()A.B.C.8D.﹣8【解答】解:将π=4sin52°代入中,得=====﹣,故选:B.11.(5分)已知2a+a=log2b+b=log3c+c,则下列关系不可能成立的是()A.a<b<c B.a<c<b C.a<b=c D.c<b<a【解答】解:由题意设2a+a=log2b+b=log4c+c=k,则2a+a=k,log2b+b=k,log2c+c=k,则2a=﹣a+k,log2b=﹣b+k,log4c=﹣c+k,分别画出函数y=2x,y=log2x,y=log2x和y=﹣x+k的图像,如图示:k<1时,a<c<b,k=1时,a<b=c,k>4时,a<b<c,故c<b<a不可能,故选:D.12.(5分)设f(x)为定义在R上的奇函数,f(﹣3)=0.当x>0时(x)+2f(x)>0(x)为f(x)的导函数(x)>0成立的x的取值范围是()A.(﹣∞,﹣3)∪(0,3)B.(﹣3,0)∪(3,+∞)C.(﹣3,0)∪(0,3)D.(﹣∞,﹣3)∪(3,+∞)【解答】解:令g(x)=x2f(x),∵当x>0时,xf'(x)+8f(x)>0,∴当x>0时,g′(x)=7xf(x)+x2f′(x)=x[xf'(x)+2f(x)]>2,∴g(x)=x2f(x)在(0,+∞)上单调递增又f(x)为定义在R上的奇函数,y=x5为定义在R上的偶函数,∴g(x)=x2f(x)为R上的奇函数;②由f(﹣3)=f(3)=3,知g(﹣3)=g(3)=0由①②③,得f(x)>7成立的x的取值范围是(﹣3,+∞),故选:B.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知函数f(x)=x sin x+cos x,则f'(﹣π)=π.【解答】解:由f(x)=x sin x+cos x,得f′(x)=sin x+x cos x﹣sin x=x cos x,∴f'(﹣π)=﹣πcos(﹣π)=﹣πcosπ=﹣π×(﹣1)=π.故答案为:π.14.(5分)若非零向量,满足||=3|+2|,则与夹角的余弦值为﹣.【解答】解:由题意可得=9=+8,化简可得4,∴||•||•|,>,∴cos<,=﹣,故答案为:﹣.15.(5分)已知定义在R上的函数f(x),对任意实数x都有f(x+4)=﹣f(x)(x)的图像关于y轴对称,且f(﹣5),则f(2021)=2.【解答】解:因为函数f(x)的图像关于y轴对称,所以f(x)为偶函数,由f(x+4)=﹣f(x),可得f(x+8)=﹣f(x+2)=f(x),所以函数f(x)的周期为8,则f(2021)=f(5+252×8)=f(5)=f(﹣5)=2.故答案为:3.16.(5分)某校开展数学活动,甲、乙两同学合作用一副三角板测量学校的旗杆高度,如图,乙站在D点测得旗杆顶端E点的仰角为30°.已知甲、乙两同学相距(BD)6米(AB)1.5米,乙的身高(CD),则旗杆的高EF为10.3米.(结果精确到0.1,参考数据:≈1.41,≈1.73)【解答】解:过点A作AM⊥EF于M,过点N作CN⊥EF于N,∴MN=0.25m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣6.25)m,∵∠ECN=30°,∴tan∠ECN===,解得x≈8.7,则EF=EM+MF≈8.8+2.5=10.3m,故答案为:10.4.三、解答题(本大题共6小题,共70分.解答应写出文字说明证明过程或演算步骤)17.(10分)已知函数f(x)=cos2x﹣sin2x+2.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调递减区间.【解答】解:(1)由cos2x=cos2x−sin2x,sin2x=2sin x cos x得:,所以f(x)的最小正周期为π.(2)由(1)知,令,解得.所以f(x)的单调递减区间为[](k∈Z).18.(12分)已知A、B、C为△ABC的三个内角,它们的对边分别为a、b、c,若2a cos A=c cos B+b cos C.(1)求A;(2)若a=,△ABC的面积S=,求b+c的值.【解答】解:(1)因为2a cos A=c cos B+b cos C,由正弦定理得,所以2sin A cos A=sin(B+C)=sin A,由于sin A≠5,即,则A=;(2)因为S△ABC=bc sin A==.则bc=4,由余弦定理知:a7=b2+c2﹣3bc cos Aa2=(b+c)2﹣6bc(1+cos A)所以,所以.19.(12分)我国作为世界上主要的产茶国,在全球茶叶生产、消费和出口中都占据重要地位.某茶叶销售商通过上一年销售统计发现,某种品牌的茶叶每袋进价为40元(52≤x ≤57,x∈N)与日均销售量之间的函数关系如表:销售价格(元/每袋)575655545352日均销售量(袋)697275788184(Ⅰ)求平均每天的销售量y(袋)与销售单价x(元/袋)之间的函数解析式;(Ⅱ)求平均每天的销售利润w(元)与销售单价x(元/袋)之间的函数解析式;(Ⅲ)当每袋茶叶的售价为多少元时,该茶叶销售商每天可以获得最大利润?最大利润是多少?【解答】解:(I)由表可知,每箱销售价格每提高1元,∴y=69﹣3(x﹣57),即y=﹣7x+240(52≤x≤57.(II)∵某种品牌的茶叶每袋进价为40元,∴w=(x﹣4)(﹣3x+240)=﹣6x2+360x﹣9600(52≤x≤57,x∈N).(III)∵w=﹣3x4+360x﹣9600=﹣3(x﹣60)2+1200(52≤x≤57,x∈N).∴当52≤w≤57,x∈N时,∴当x=57时,w取得最大值.20.(12分)已知函数f(x)=lnx.(Ⅰ)求函数F(x)=f(x+1)﹣x的单调区间;(Ⅱ)若函数存在两个极值点x1,x2,求实数m的取值范围.【解答】解:(Ⅰ)∵f(x)=lnx,∴F(x)=f(x+1)﹣x=ln(x+1)﹣x(x>﹣6),∴F′(x)=﹣7=,当x∈(﹣1,2)时,F(x)在(﹣1;当x∈(0,+∞)时,F(x)在(7;∴函数F(x)的单调递增区间为(﹣1,0),+∞);(Ⅱ)∵=lnx﹣mx+,∴g′(x)=﹣m﹣=,令h(x)=mx5﹣x+m,要使g(x)存在两个极值点x1,x2,则方程mx6﹣x+m=0有两个不相等的正数根x1,x6,故只需满足,解得0<m<,).21.(12分)已知函数.(Ⅰ)若函数f(x)是R上的奇函数,求a的值;(Ⅱ)若函数f(x)的定义域是一切实数,求a的取值范围;(Ⅲ)若函数f(x)在区间[0,1]上的最大值与最小值的差不小于2【解答】解:(Ⅰ)函数f(x)是R上的奇函数,则f(0)=0.……………………(2分)又此时f(x)=﹣x是R上的奇函数.所以a=7为所求.………………………………(4分)(Ⅱ)函数f(x)的定义域是一切实数,则恒成立.即恒成立.……………………………………(6分)故只要a≥0即可 ………………………………………………………………(2分)(Ⅲ)由已知函数f(x)是减函数,故f(x)在区间[02(5+a),最小值是.…………………………………(8分)由题设………(11分)故 为所求22.(12分)已知函数f(x)=(x﹣1)(x2+2)e x﹣2x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)证明:f(x)>﹣x2﹣4.【解答】解:(1)函数f(x)=(x﹣1)(x2+3)e x﹣2x的导数为f′(x)=(x3+4x2)e x﹣2,可得曲线y=f(x)在点(2,f(0))处的切线斜率为k=﹣2,﹣2),则曲线y=f(x)在点(8,f(0))处的切线方程为y=﹣2x﹣2;(2)证明:要证f(x)>﹣x8﹣4,即证(x﹣1)(x5+2)e x>2x﹣x2﹣4,设g(x)=(x﹣1)(x6+2)e x,g′(x)=x2(x+4)e x,当x>﹣2时,g′(x)>0;当x<﹣5时,g(x)递减,可得g(x)在x=﹣2处取得极小值,且为最小值﹣18e﹣2;设h(x)=8x﹣x2﹣4,可得h(1)为最大值﹣5.由﹣18e﹣2>﹣3,可得(x﹣4)(x2+2)e x>2x﹣x2﹣4恒成立,则f(x)>﹣x6﹣4.。
2024学年湖北省荆门市龙泉中学高三下期中考试(数学试题理)试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设0.380.3log 0.2,log 4,4a b c ===,则( )A .c b a <<B .a b c <<C .a c b <<D .b a c <<2.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42B .21C .7D .33.定义,,a a b a b b a b≥⎧⊗=⎨<⎩,已知函数21()2sin f x x =-,21()2cos g x x =-,则函数()()()F x f x g x =⊗的最小值为( ) A .23B .1C .43D .24.已知函数2,0()2,0x xx f x ex x x ⎧>⎪=⎨⎪--≤⎩若函数1()()()2g x f x k x =-+在R 上零点最多,则实数k 的取值范围是( ) A .2(0,)3eB .2(,0)3e-C.( D.5.已知1cos ,,32πααπ⎛⎫=-∈ ⎪⎝⎭,则()sin πα+= ( )A.3B.3-C.3±D .136.若集合{}|sin 21A x x ==,,42k B y y k Z ππ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .A B A ⋃=B .R RC B C A ⊆C .AB =∅D .R R C A C B ⊆7.已知函数()(),12,1xe xf x f x x ⎧≤⎪=⎨->⎪⎩,若方程()10f x mx --=恰有两个不同实根,则正数m 的取值范围为( )A .()1,11,12e e -⎛⎫-⎪⎝⎭B .(]1,11,12e e -⎛⎫-⎪⎝⎭C .()1,11,13e e -⎛⎫-⎪⎝⎭D .(]1,11,13e e -⎛⎫-⎪⎝⎭8.已知双曲线2222:1(0,0)x y E a b a b-=>>满足以下条件:①双曲线E 的右焦点与抛物线24y x =的焦点F 重合;②双曲线E 与过点(4,2)P 的幂函数()f x x α=的图象交于点Q ,且该幂函数在点Q 处的切线过点F 关于原点的对称点.则双曲线的离心率是( ) A .312+ B .512+ C .32D .51+9.设复数z 满足31ii z=+,则z =( )A .1122i + B .1122-+i C .1122i - D .1122i -- 10.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对11.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( )A .10,10⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()10,+∞ 12.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()2x xf xg x a a -+=-+(0a >且1a ≠),若(2)g a =,则函数()22f x x +的单调递增区间为( ) A .(1,1)-B .(,1)-∞C .(1,)+∞D .(1,)-+∞二、填空题:本题共4小题,每小题5分,共20分。
2020-2021学年安徽省合肥六中高三(上)期中数学试卷(理科)一、选择题(共12小题).1.(5分)已知集合A={x|﹣2<x<1},B={x|y=lg(3x﹣x2)},则()A.A∩B=(﹣2,3)B.A∪B=(﹣2,3)C.A∪B=(﹣∞,1)∪(3,+∞)D.A∩B=(﹣2,0)2.(5分)与角2021°终边相同的角是()A.221°B.﹣2021°C.﹣221°D.139°3.(5分)已知m=0.92020,n=20200.9,p=log0.92020,则m,n,p的大小关系是()A.m<n<p B.m<p<n C.p<m<n D.p<n<m4.(5分)已知平面向量=(﹣1,2),=(3,5),若(+λ)⊥,则λ=()A.B.﹣C.D.﹣5.(5分)已知[x]表示不超过实数x的最大整数,g(x)=[x]为取整函数,x0是函数f(x)=lnx+x﹣4的零点,则g(x0)=()A.4B.5C.2D.36.(5分)函数f(x)=ln(﹣kx)的图象不可能是()A.B.C.D.7.(5分)在公差大于0的等差数列{a n}中,2a7﹣a13=1,且a1,a3﹣1,a6+5成等比数列,则数列{(﹣1)n﹣1a n}的前21项和为()A.21B.﹣21C.441D.﹣4418.(5分)已知函数满足,则f(x)图象的一条对称轴是()A.B.C.D.9.(5分)如图,已知三棱锥V﹣ABC,点P是VA的中点,且AC=2,VB=4,过点P作一个截面,使截面平行于VB和AC,则截面的周长为()A.12B.10C.8D.610.(5分)已知数列{a n}满足a n+2=a n+1+a n,n∈N*.若4a5+3a6=16,则a1+a2+…+a9=()A.16B.28C.32D.4811.(5分)如图,长方体ABCD﹣A1B1C1D1中,E、F分别为棱AB、A1D1的中点.直线DB1与平面EFC的交点O,则的值为()A.B.C.D.12.(5分)已知关于x的不等式在(0,+∞)上恒成立,则实数λ的取值范围为()A.B.(e,+∞)C.D.(0,e)二、填空题(共4小题).13.(5分)(cos x+sin x)dx的值为.14.(5分)函数的图象在点(0,f(0))处的切线方程为.15.(5分)已知锐角α、β满足,则的最小值为.16.(5分)在长方体ABCD﹣A1B1C1D1中,,BC=1,点M在正方形CDD1C1内,C1M⊥平面A1CM,则三棱锥M﹣A1CC1的外接球表面积为.三、解答题(共6小题).17.(10分)已知sinθ+cosθ=,θ∈(﹣,).(1)求θ的值:(2)设函数f(x)=sin2x﹣sin2(x+θ)x∈R,求函数f(x)的单调增区间.18.(12分)已知数列{a n}的前n项和S n满足2S n=3n2﹣n,数列{log3b n}是公差为﹣1的等差数列,b1=1.(1)求数列{a n},{b n}的通项公式;(2)设c n=a2n+1+b2n+1,求数列{c n}的前n项和T n.19.(12分)在三棱柱ABC﹣A1B1C1中,AB=2,BC=BB1=4,,且∠BCC1=60°.(1)求证:平面ABC1⊥平面BCC1B1;(2)设二面角C﹣AC1﹣B的大小为θ,求sinθ的值.20.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,S为△ABC的面积,sin(B+C)=.(Ⅰ)证明:A=2C;(Ⅱ)若b=2,且△ABC为锐角三角形,求S的取值范围.21.(12分)已知函数f(x)=cos x.(1)已知α,β为锐角,,,求cos2α及tan(β﹣α)的值;(2)函数g(x)=3f(2x)+1,若关于x的不等式g2(x)≥(a+1)g(x)+3a+3有解,求实数a的最大值.22.(12分)已知函数f(x)=mx﹣xlnx(x>1).(1)讨论f(x)的极值;(2)若m为正整数,且f(x)<2x+m恒成立,求m的最大值.(参考数据:ln4≈1.39,ln5≈1.61)参考答案一、选择题(共12小题).1.(5分)已知集合A={x|﹣2<x<1},B={x|y=lg(3x﹣x2)},则()A.A∩B=(﹣2,3)B.A∪B=(﹣2,3)C.A∪B=(﹣∞,1)∪(3,+∞)D.A∩B=(﹣2,0)解:∵集合A={x|﹣2<x<1},B={x|y=lg(3x﹣x2)}={x|0<x<3},∴A∩B={0<x<1},A∪B={x|﹣2<x<3},故A,C,D均错误,B正确,故选:B.2.(5分)与角2021°终边相同的角是()A.221°B.﹣2021°C.﹣221°D.139°解:与角2021°终边相同的角是:k•360°+2021°,k∈Z,当k=﹣5时,与角2021°终边相同的角是221°.故选:A.3.(5分)已知m=0.92020,n=20200.9,p=log0.92020,则m,n,p的大小关系是()A.m<n<p B.m<p<n C.p<m<n D.p<n<m解:∵0<0.92020<0.90=1,20200.9>20200=1,log0.92020<log0.91=0,∴p<m<n.故选:C.4.(5分)已知平面向量=(﹣1,2),=(3,5),若(+λ)⊥,则λ=()A.B.﹣C.D.﹣解:∵,,且,∴,解得.故选:B.5.(5分)已知[x]表示不超过实数x的最大整数,g(x)=[x]为取整函数,x0是函数f(x)=lnx+x﹣4的零点,则g(x0)=()A.4B.5C.2D.3解:函数f(x)=lnx+x﹣4是在x>0时,函数是连续的增函数,∵f(e)=1+e﹣4<0,f(3)=ln3﹣1>0,∴函数的零点所在的区间为(e,3),g(x0)=[x0]=2.故选:C.6.(5分)函数f(x)=ln(﹣kx)的图象不可能是()A.B.C.D.解:∵A,B选项中,图象关于原点对称,∴f(x)为奇函数,即f(x)+f(﹣x)=0,即,∴k=±1,当k=1时,f(x)的图象为选项A;当k=﹣1时,f(x)的图象为选项B;而C,D选项中,图象关于y轴对称,所以f(x)为偶函数,即f(x)=f(﹣x),即,∴k=0,当k=0时,f(x)≥0,故f(x)的图象为选项D,不可能为选项C.故选:C.7.(5分)在公差大于0的等差数列{a n}中,2a7﹣a13=1,且a1,a3﹣1,a6+5成等比数列,则数列{(﹣1)n﹣1a n}的前21项和为()A.21B.﹣21C.441D.﹣441解:公差d大于0的等差数列{a n}中,2a7﹣a13=1,可得2a1+12d﹣(a1+12d)=1,即a1=1,a1,a3﹣1,a6+5成等比数列,可得(a3﹣1)2=a1(a6+5),即为(1+2d﹣1)2=1+5d+5,解得d=2(负值舍去)则a n=1+2(n﹣1)=2n﹣1,n∈N*,数列{(﹣1)n﹣1a n}的前21项和为a1﹣a2+a3﹣a4+...+a19﹣a20+a21=1﹣3+5﹣7+ (37)39+41=﹣2×10+41=21.故选:A.8.(5分)已知函数满足,则f(x)图象的一条对称轴是()A.B.C.D.解:函数满足,所以φ)=0,由于,故φ=.所以f(x)=A sin(2x+),令(k∈Z),解得(k∈Z).当k=1时,解得.故选:D.9.(5分)如图,已知三棱锥V﹣ABC,点P是VA的中点,且AC=2,VB=4,过点P作一个截面,使截面平行于VB和AC,则截面的周长为()A.12B.10C.8D.6解:如图所示,过点P作PF∥AC,交VC于点F,过点F作FE∥VB交BC于点E,过点E作EQ∥AC,交AB于点Q;由作图可知:EQ∥PF,所以四边形EFPQ是平行四边形;可得EF=PQ=VB=2,EQ=PF=AC=1;所以截面四边形EFPQ的周长为2×(2+1)=6.故选:D.10.(5分)已知数列{a n}满足a n+2=a n+1+a n,n∈N*.若4a5+3a6=16,则a1+a2+…+a9=()A.16B.28C.32D.48解:∵a n+2=a n+1+a n,∴a3=a2+a1,a4=a3+a2=2a2+a1,a5=a4+a3=3a2+2a1,a6=a5+a4=5a2+3a1,a7=a6+a5=8a2+5a1,a8=a7+a6=13a2+8a1,a9=a8+a7=21a2+13a1,∴a1+a2+…+a9=54a2+34a1=2×(27a2+17a1),∵4a5+3a6=16,∴4(3a2+2a1)+3(5a2+3a1)=16,即27a2+17a1=16,∴a1+a2+…+a9=2×(27a2+17a1)=2×16=32,故选:C.11.(5分)如图,长方体ABCD﹣A1B1C1D1中,E、F分别为棱AB、A1D1的中点.直线DB1与平面EFC的交点O,则的值为()A.B.C.D.解:交点O既在平面ECF上,又在平面D1DBB1上,∴O在面ECF与面D1DBB1的交线上,延展平面ECF,得到面ECHF,H在C1D1上,则K,M都即在面ECFH上,又在平面D1DBB1上,∴KM为面ECFH与面D1DBB1的交线,∴O在KM上,∵O在DB1上,∴DB1∩KM=O,取出平面D1DBB1,∵△KOB1∽△MOD,∴=.由△DMC∽△BME,得DM=,设G为C1D1的中点,由三角形相似可得,再由题意可得A1G∥FH,则,则.∴==.故选:A.12.(5分)已知关于x的不等式在(0,+∞)上恒成立,则实数λ的取值范围为()A.B.(e,+∞)C.D.(0,e)解:不等式在(0,+∞)上恒成立,即不等式>lnx在(0,+∞)上恒成立,则(eλx+1)λx>(x+1)lnx=(e lnx+1)lnx恒成立,设f(x)=(e x+1)x(x>0),则f(λx)>f(lnx),∵f′(x)=e x(x+1)+1>0,∴f(x)在(0,+∞)上单调递增,∴λx>lnx,∴λ>,设g(x)=(x>0),∴g′(x)=,令g′(x)=0,解得x=e,当0<x<e时,g′(x)>0,函数g(x)单调递增,当x>e时,g′(x)<0,函数g(x)单调递减,∴g(x)max=g(e)=,∴λ>.故选:A.二、填空题(每小题5分,共20分)13.(5分)(cos x+sin x)dx的值为2.解:(cos x+sin x)dx=(sin x﹣cos x)=(sin﹣cos)﹣(sin0﹣cos0)=(1﹣0)﹣0+1=2.故答案为:2.14.(5分)函数的图象在点(0,f(0))处的切线方程为2x+y =0.解:由,得f′(x)=2f′()+sin x,取x=,得f′()=2f′()+sin,解得f′()=﹣1,∴f′(x)=﹣2+sin x,得f′(0)=﹣2,又f(0)=﹣cos0+1=0,∴f(x)的图象在点(0,f(0))处的切线方程为y=﹣2x,即2x+y=0.故答案为:2x+y=0.15.(5分)已知锐角α、β满足,则的最小值为18.解:∵,∴sin(α+β)=sinαcosβ+cosαsinβ=sin=,设x=sinαcosβ,y=cosαsinβ,则x+y=,∵α、β均为锐角,∴x>0,y>0,∴=+=2(x+y)(+)=2(1+4+)≥2×(5+2)=18,当且仅当=,即=,即x=,y=时,等号成立.∴的最小值为18.故答案为:18.16.(5分)在长方体ABCD﹣A1B1C1D1中,,BC=1,点M在正方形CDD1C1内,C1M⊥平面A1CM,则三棱锥M﹣A1CC1的外接球表面积为11π.解:如图:点M在正方形CDD1C1内,C1M⊥平面A1CM,∴点M为正方形CDD1C1对角线的交点,∴MCC1是等腰直角三角形,M是直角顶点,设E是CC1的中点,则E是△MCC1的外心,取F是BB1的中点,则EF∥BC,而BC⊥平面CDD1C1,∴EF⊥平面CDD1C1,∴三棱锥M﹣A1CC1的外接球的球心O在直线EF上,由已知可计算FC==,A1F==>FC,∴点O在EF的延长线上,设OF=x,则由OA1=OC,可得()2+x2=(x+1)2+()2,解得x=,∴OC==,∴外接球表面积是S=4π×()2=11π,故答案为:11π.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知sinθ+cosθ=,θ∈(﹣,).(1)求θ的值:(2)设函数f(x)=sin2x﹣sin2(x+θ)x∈R,求函数f(x)的单调增区间.解:(1)因为sinθ+cosθ=,所以(sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ=1+sin2θ=()2=,即sin2θ=,又θ∈(﹣,),所以2,所以2θ=﹣,θ=﹣.(2)由(1)可得θ=﹣,则f(x)=sin2x﹣sin2(x﹣),所以f(x)=(1﹣cos2x)﹣[1﹣cos(2x﹣)]=cos2x﹣+cos(2x﹣)=﹣cos2x+(cos2x+sin2x)=sin2x﹣cos2x=(sin2x﹣cos2x)=sin(2x﹣),令2k≤2x﹣≤2kπ+,k∈Z,则k≤x≤kπ+,k∈Z,所以函数的单调增区间为[k,kπ+],k∈Z.18.(12分)已知数列{a n}的前n项和S n满足2S n=3n2﹣n,数列{log3b n}是公差为﹣1的等差数列,b1=1.(1)求数列{a n},{b n}的通项公式;(2)设c n=a2n+1+b2n+1,求数列{c n}的前n项和T n.解:(1)数列{a n}的前n项和S n满足2S n=3n2﹣n,当n=1时,解得a1=1,当n≥2时,,两式相减得:a n=3n﹣2.数列{log3b n}是公差为﹣1的等差数列,b1=1.所以log3b n=1﹣n,所以.(2)c n=a2n+1+b2n+1=,所以=19.(12分)在三棱柱ABC﹣A1B1C1中,AB=2,BC=BB1=4,,且∠BCC1=60°.(1)求证:平面ABC1⊥平面BCC1B1;(2)设二面角C﹣AC1﹣B的大小为θ,求sinθ的值.解:(1)证明:在△ABC中,AB2+BC2=20=AC2,所以∠ABC=90°,即AB⊥BC.因为BC=BB1,AC=AB1,AB=AB,所以△ABC≌△ABB1.所以∠ABB1=∠ABC=90°,即AB⊥BB1.又BC∩BB1=B,所以AB⊥平面BCC1B1.又AB⊂平面ABC1,所以平面ABC1⊥平面BCC1B1.(2)解:由题意知,四边形BCC1B1为菱形,且∠BCC1=60°,则△BCC1为正三角形,取CC1的中点D,连接BD,则BD⊥CC1.以B为原点,以的方向分别为x,y,z轴的正方向,建立空间直角坐标系B﹣xyz,则B(0,0,0),B1(0,4,0),A(0,0,2),,.设平面ACC1A1的法向量为=(x,y,z),,.由,得取x=1,得=(1,0,).由四边形BCC1B1为菱形,得BC1⊥B1C;又AB⊥平面BCC1B1,所以AB⊥B1C;又AB∩BC1=B,所以B1C⊥平面ABC1,所以平面ABC1的法向量为.所以cos<>===.设二面角C﹣AC1﹣B的大小为θ,则sinθ==.20.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,S为△ABC的面积,sin(B+C)=.(Ⅰ)证明:A=2C;(Ⅱ)若b=2,且△ABC为锐角三角形,求S的取值范围.【解答】(Ⅰ)证明:由,即,∴,sin A≠0,∴a2﹣c2=bc,∵a2=b2+c2﹣2bc cos A,∴a2﹣c2=b2﹣2bc cos A,∴b2﹣2bc cos A=bc,∴b﹣2c cos A=c,∴sin B﹣2sin C cos A=sin C,∴sin(A+C)﹣2sin C cos A=sin C,∴sin A cos C﹣cos A sin C=sin C,∴sin(A﹣C)=sin C,∵A,B,C∈(0,π),∴A=2C.(Ⅱ)解:∵A=2C,∴B=π﹣3C,∴sin B=sin3C.∵且b=2,∴,∴==,∵△ABC为锐角三角形,∴,∴,∴,∵为增函数,∴.21.(12分)已知函数f(x)=cos x.(1)已知α,β为锐角,,,求cos2α及tan(β﹣α)的值;(2)函数g(x)=3f(2x)+1,若关于x的不等式g2(x)≥(a+1)g(x)+3a+3有解,求实数a的最大值.解:(1)∵函数f(x)=cos x,α,β为锐角,=cos(α+β),∴sin(α+β)==,∴tan(α+β)==﹣2.∵,∴cos2α====﹣.tan2α===﹣,故2α为钝角.tan(β﹣α)=tan[(α+β)﹣2α]===.(2)∵函数g(x)=3f(2x)+1=3cos2x+1∈[﹣2,4],若关于x的不等式g2(x)≥(a+1)g(x)+3a+3=(a+1)[g(x)+3]有解,令t=g(x)+3,则t∈[1,7],且(t﹣3)2≥(a+1)t有解,即a+1≤t+﹣6能成立,即a+7≤(t+)能成立.由于函数h(t)=t+在[1,3]上单调递减,在[3,9]上单调递增,h(1)=10,h(9)=10,故h(t)在[1,7]上的最大值为10,故有a+7≤10,即a≤3,故a的最大值为3.22.(12分)已知函数f(x)=mx﹣xlnx(x>1).(1)讨论f(x)的极值;(2)若m为正整数,且f(x)<2x+m恒成立,求m的最大值.(参考数据:ln4≈1.39,ln5≈1.61)解:(1)由f(x)=mx﹣xlnx(x>1),得f′(x)=m﹣1﹣lnx.当m﹣1≤0,即m≤1时,f′(x)>0对x>1恒成立,∴f(x)在(1,+∞)上单调递减,f(x)无极值;当m﹣1>0,即m>1时,令f′(x)=0,得x=e m﹣1,由f′(x)>0,得1<x<e m﹣1,由f′(x)<0,得x>e m﹣1,∴f(x)在x=e m﹣1处取得极大值,且极大值为f(e m﹣1)=me m﹣1﹣(m﹣1)e m﹣1=e m﹣1.综上所述,当m≤1时,f(x)无极值;当m>1时,f(x)的极大值为e m﹣1,无极小值.(2)∵当x>1时,f(x)<2x+m恒成立,∴当x>1时,mx﹣xlnx<2x+m,即m<对x>1恒成立,令h(x)=,得h′(x)=,令g(x)=x﹣lnx﹣3,则g′(x)=1﹣,∵x>1,∴g′(x)=1﹣>0,得g(x)是增函数,由g(x1)=x1﹣lnx1﹣3=0,得lnx1=x1﹣3,∵g(4)=4﹣ln4﹣3=1﹣ln4≈1﹣1.39=﹣0.39<0,g(5)=5﹣ln5﹣3=2﹣ln5≈2﹣1.61=0.39>0.∵g(x1)=0,g(x)为增函数,∴4<x1<5,当x∈(1,x1)时,h′(x)<0,h(x)单调递减,当x∈(x1,+∞)时,h′(x)>0,h(x)单调递增,∴x=x1时,h(x)取得最小值为h(x1),∴m<h(x1)=,又m为正整数,∴m≤4,故m的最大值为4.。
兰州一中2022-2023-1学期期中考试试题高三数学(理)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 答案写在答题卷(卡)上,交卷时只交答题卷(卡).第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合{3,1,0,2,4}U =--,{1,0}A =-,{0,2}B =,则()U A B ⋃=( ) A .{3,1}- B .{3,4}- C .{3,1,2,4}--D .{1,0,2}-2.已知a R ∈,()13ai i i +=+,(i 为虚数单位),则=a ( ) A .1-B .1C .3-D .33.已知()f x 是R 上的偶函数,()g x 是R 上的奇函数,它们的部分图像如图,则()()⋅f x g x 的图像大致是( )A .B .C .D .4.已知等差数列{}n a 的前n 项和为n S ,且918S =,71a =,则1a =( ) A .4B .2C .12-D .1-5.已知x 、y 都是实数,那么“x y >”的充分必要条件是( ).A .lg lg x y >B .22x y >C .11x y> D .22x y >6.我国南北朝时期的数学家祖暅提出了一个原理“幂势既同,则积不容异”,即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是半径为2的一个半圆,则该几何体的体积为( ) A 3π B 3πC 3πD 3π 7.设x ,y 满足约束条件23250y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则z x y =-+的最小值为( )A .2B .1-C .2-D .3-8.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()x f x e x =+,则32(2)a f =-,2(log 9)b f =,(5)c f =的大小关系为( )A .a b c >>B .a c b >>C .b c a >>D .b a c >>9.设函数()f x 定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当()1,1x ∈-时,()21f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭ B .()7f x +为奇函数C .()f x 在()6,8上为减函数D .()f x 的一个周期为810.已知函数222,2,()366,2,x ax x f x x a x x ⎧--≤⎪=⎨+->⎪⎩若()f x 的最小值为(2)f ,则实数a的取值范围为( ) A .[2,5]B .[2,)+∞C .[2,6]D .(,5]-∞11.已知双曲线2221x y a-=(0a >)的左、右焦点分别为1F ,2F ,过点2F 作一条渐近线的垂线,垂足为P 若12PF F △的面积为22率为( ) A 23B 32C .3D 1412.已知函数3()5()R f x x x x =+∈,若不等式()22(4)0f m mt f t ++<对任意实数2t ≥恒成立,则实数m 的取值范围为( ) A .(2,2-- B .4,3⎛⎫-∞- ⎪⎝⎭ C .((),22,-∞+∞D .(,2-∞第Ⅱ卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分)13.有甲、乙、丙三项任务,甲、乙各需1人承担,丙需2人承担且至少1人是男生,现有2男2女共4名学生承担这三项任务,不同的安排方法种数是______.(用数字作答)14.已知()1,2a =,()1,1b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围为______.15.已知()f x 是R 上的奇函数,()g x 是在R 上无零点的偶函数,()20f =,当0x >时,()()()()0f x g x f x g x ''-<,则使得()()lg 0lg f x g x <的解集是________16.已知0x >,0y >,且24x y +=,则112x y y ++最小值为________. 三、解答题(本大题共6小题,共70分)(一)必考题:共五小题,每题12分,共60分。
潍坊市高三数学期中考试真题试卷(理科)查字典数学网小编编辑整理了潍坊市2021年高三数学期中考试真题试卷(理科),本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分1 50分。
考试时刻120分钟。
请同学们做好以下练习!第Ⅰ卷(共50分)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合A={0,2,a},B={1,a2},若AB={-4,0,1,2,16},则a的值为()A.1B.2C.-4D.42.若定义在R上的函数满足则关于任意的,都有A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.如图,阴影区域的边界是直线y=0,x=2,x=0及曲线,则那个区域的面积是A 4B 8C D4. ,三角形的面积,则三角形外接圆的半径为5.已知,若是的最小值,则的取值范畴为A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]7.已知,符号表示不超过x的最大整数,若函数有且仅有3个零点,则的取值范畴是( )第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答案纸的相应位置上。
11.将函数的图像向右平移个单位后得到函数的图像。
12.已知,且的夹角为锐角,则的取值范畴是。
13.已知函数,若直线对任意的都不是曲线的切线,则的取值范畴为。
14.已知,定义。
经运算,照此规律,则15.下图展现了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点m,如图①:将线段AB围成一个圆,使两端点A,B恰好重合,如图②:再将那个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图③,图③中直线AM与x轴交于点N(n,0),则m的象确实是n,记作。
下列说法中正确命题的序号是(填出所有正确命题的序号)①②是奇函数③在定义域上单调递增④是图像关于点对称。
三、解答题:本大题共6小题,共75分,解承诺写出文字说明,证明过程或演算步骤。
南阳市2022年秋期高中三年级期中质量评估数学试题(理)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效.2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.5.保持卷面清洁,不折叠、不破损.第Ⅰ卷 选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合40,{54}1x A x B x x x -⎧⎫=≤=-<<⎨⎬+⎩⎭∣∣, 则()R A B ⋂=ðA. (,1](4,)-∞-⋃+∞B. (,1)(4,)-∞-⋃+∞C. (-5,-1)D. (-5,-1]2. 若||||2z i z i +=-=, 则||z = A. 1D. 23. 若,x y 满足3020x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩ 则2y -的最小值是A. -1B. -3C. -5D. -74. 已知数列{}n a 的前n 项和211n S n n =-. 若710k a <<, 则k = A. 9B. 10C. 11D. 125.已知sin 12x π⎛⎫-= ⎪⎝⎭, 则cos 26x π⎛⎫-= ⎪⎝⎭A. 58-B. 58C. 4-D.46. 在ABC 中,30,C b c x ︒===. 若满足条件的ABC 有且只有一个, 则x 的可能取值是 A.12B.2C. 17. 若函数()(sin )x f x e x a =+在点(0,(0))A f 处的切线方程为3y x a =+, 则实数a 的值为 A. 1B. 2C. 3D. 48. 在ABC 中, 角,,A B C所对的边分别为,,cos ),a b c c b A a b -==则ABC 的外接圆面积为A. 4πB. 6πC. 8πD. 9π9. 函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图像如图所示, 将该函数图像上各点的横坐标缩短到原来的一半 (纵坐标不变), 再向右平移(0)θθ>个单位长度后, 所得到的图像关于点7,024π⎛⎫⎪⎝⎭对称, 则θ的最小值为A.76π B. 6πC. 8πD. 724π10. 已知定义在R 上的函数()f x 满足:(3)(3),(6)(6)f x f x f x f x +=-+=--, 且当[0,3]x ∈时,()21()x f x a a =⋅-∈R , 则(1)(2)(3)(2023)f f f f ++++=A. 14B. 16C. 18D. 2011. 已知:2221tan log 38,21tan 8a b c ππ-===+, 则 A. a b c << B. a c b << C. c a b << D. c b a <<12. 已知正数,a b 满足221ln(2)ln 1a a b b +≤-+, 则22a b +=A.52C.32第Ⅱ卷 非选择题(共 90 分)二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分) 13. 已知2()lg5lg(10)(lg )f x x x =⋅+, 则(2)f =_____.14. 在ABC 中,3,4,8AB BC CA CB ==⋅=, 则AB 边上中线CD 的长为_____.15. 已知函数sin ,sin cos ,()cos ,sin cos ,x x x f x x x x ≤⎧=⎨>⎩则1()2f x <的解集是_____.16. 若方程2ln 1x x e ax x -=--存在唯一实根,则实数a 的取值范围是_____.三、解答题(本大题共 6 小题,共 70 分. 解答应写出文字说明、证明过程或演算步骤)17. (本题满分 10 分)已知函数22()2cos sin 3f x x x π⎛⎫=-+- ⎪⎝⎭.(1)求函数()y f x =的单调递增区间;(2) 若函数()()02g x f x πϕϕ⎛⎫=+<< ⎪⎝⎭的图像关于点,12π⎛⎫ ⎪⎝⎭中心对称,求()y g x =在,63ππ⎡⎤⎢⎥⎣⎦上的值域.18. (本题满分 12 分)已知数列{}n a 和{}n b 满足:)*121,2,0,n n a a a b n ==>=∈N ,且{}n b 是以 2 为公比的等比数列. (1) 证明: 24n n a a +=;(2) 若2122n n n c a a -=+, 求数列{}n c 的通项公式及其前n 项和n S . 19. (本题满分 12 分)已知函数()ln ,()(1)f x x x g x k x ==-. (1) 求()f x 的极值;(2) 若()()f x g x ≥在[2,)+∞上恒成立, 求实数k 的取值范围. 20. (本题满分 12 分)数列{}n a 中,n S 为{}n a 的前n 项和,()()*24,21n n a S n a n ==+∈N . (1)求证: 数列{}n a 是等差数列,并求出其通项公式;(2) 求数列12n S n ⎧⎫⎨⎬+⎩⎭的前n 项和n T .21. (本题满分 12 分)已知,,a b c 分别是ABC 的内角,,A B C 所对的边, 向量(sin ,sin ),(cos ,cos )A B B A ==m n(1)若234,cos 3a b C ==, 证明: ABC 为锐角三角形; (2)若ABC 为锐角三角形, 且sin 2C ⋅=m n , 求ba的取值范围.22. (本题满分 12 分)已知函数21()12x f x e x ax =---, 若()()()2g x h x f x +=, 其中()g x 为偶函数,()h x 为奇函数.(1)当1a =时,求出函数()g x 的表达式并讨论函数()g x 的单调性;(2) 设()f x '是()f x 的导数. 当[1,1],[1,1]a x ∈-∈-时,记函数|()|f x 的最大值为M , 函数()f x '的最大值为N . 求证:M N <.高三(理)数学参考答案第1页(共6页)2022年秋期高中三年级期中质量评估数学试题(理)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案DCDBBDBDCABA二、填空题(本大题共4小题,每小题5分,共20分)13.114.215.13(2,2)()36k k k Z ππππ++∈16.(]1,01e ⎧⎫-∞⋃+⎨⎬⎩⎭三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.【解析】(1)211cos 21cos 221cos 21cos 2322()2222x x x x x f x π⎛⎫-++ ⎪++⎝⎭=+=+31sin 2cos 21sin 24423x x x π⎛⎫=++=++ ⎪⎝⎭.………………………………3分令5222,,2321212k x k k k x k πππππππππ-+≤+≤+∈-+≤≤+Z,∴()y f x=的单调递增区间为5,,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ……………………5分(2)()12()12233g x x x ππϕϕ⎡⎤⎛⎫=+++=+++ ⎪⎢⎥⎣⎦⎝⎭.………………6分∵()y g x =关于点,12π⎛⎫⎪⎝⎭中心对称,高三(理)数学参考答案第2页(共6页)∴222,,2332k k k ππππϕπϕ⋅++=∈=-+Z ,……………………………………7分∵02πϕ<<,∴3πϕ=.∴()1)1sin 222g x x x π=++=-………………………………………8分当2,,2,6333x x ππππ⎡⎤⎡⎤∈∈⎢⎢⎥⎣⎦⎣⎦∴sin 2x ⎤∈⎥⎣⎦…………………………………9分所以1()1,24g x ⎡⎤∈-⎢⎥⎣⎦.………………………………………………………10分18.【解析】(1)由n b =得,2211==a a b ,故211222--=⋅=n n n b …………………………………………………………2分则12212)(-+==n n n n b a a ①所以,12212+++=n n n a a ②………………………………………………………4分由①②得,n n a a 42=+.…………………………………………………………6分(2)由(1)知数列}{2n a 和数列}{12-n a 均为公比为4的等比数列,…………8分所以,1212224--=⋅=n n n a a ,22111-224--=⋅=n n n a a 2122n n n c a a -=+=1122245222---⨯=⋅+n n n .…………………………………10分所以,)14(3541455-=-⨯-=nn n S ………………………………………………12分高三(理)数学参考答案第3页(共6页)19.【解析】(1)()f x 的定义域是(0,)+∞,()ln 1f x x '=+,令()0,f x '=则1x e=,……………………………………………………………2分当1(0,)x e∈,()0,f x '<()f x 单调递减,当1(,)x e∈+∞,()0,f x '>()f x 单调递增,所以()f x 在1x e=处取得极小值,………………………………………………4分故()f x 有极小值1e-,无极大值.…………………………………………………5分(2)(法一)由()()f x g x ≥在[)2,+∞上恒成立,即ln 1x x k x ≤-在[)2,+∞上恒成立,只需min ln ()1x xk x ≤-…………………………7分令ln ()1x xh x x =-,则2ln 1()(1)x x h x x --'=-,………………………………………9分令()ln 1x x x ϕ=--,则1()x x xϕ-'=,………………………………………10分易知当(1,)x ∈+∞时,()0x ϕ'>,()x ϕ单调递增,所以()(0)0x ϕϕ≥=,所以ln 10x x -->,即()0h x '>,即()h x 单调递增,故min ()(2)2ln 2h x h ==.…………………………………………………………11分所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分(法二)由题(ln 1)k x x x -≥,即(n 1)l k x x x -≥,令(1)()ln h x x k x x=--………6分则22(11())kx k x x kh x xx x '=--=--,…………………………………………………7分高三(理)数学参考答案第4页(共6页)当2k ≤时,0x k ->,()0f x '>,()f x 递增,所以min ()(2)ln 202kh x h ==-≥,所以2ln 2k ≤;…………………………………9分当2k >时,有x k >时,()0f x '>,()f x 递增,x k <时,()0f x '<,()f x 递减,即min ()()ln (1)h x h k k k ==--,可证ln (1)0k k --<,显然不合题意,舍去.…11分综上,所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分20.【解析】(1)当1n =时,则1121a a =+,所以11a =,因为)1(2+=n n a n S ①所以,当2n ≥时,)1(1-21-1-+=n n a n S )(②…………………………2分①-②得:()()()1211,2n n n a n a n --=--≥,③故,()()()12321,3n n n a n a n ---=--≥,④③-④得:()1223n n n a a a n --=+≥,所以{}n a 为等差数列,…………………………5分又213d a a =-=,所以,()13132n a n n =+-=-;…………………………6分(2)由()()21n n S n a n N *=+∈得2)13(-=n n S n ,故1221211(2(33)3(1)31n S n n n n n n n ==⋅=-++++,.………………………9分故1231111211111...)()...()]246232231n n T S S S S n n n =++++=-+-+++++++212(1313(1)nn n =-=++…………………………………………………………12分21.【解析】高三(理)数学参考答案第5页(共6页)(1)令3412(0)a b k k ==>,由2222222(4)(3)cos ,32243a b c k k c C ab k k +-+-===⨯⋅3c k ∴=.………………………………………………………………………………2分即4,3,3a k b k c k ===,从而a 边最大,…………………………………………3分又222222(3)(3)(4)21cos 02233189b c a k k k A bc k k +-+-====>⋅⋅,即A 为锐角,………5分∴ABC ∆为锐角三角形.……………………………………………………………6分(2)因为sin cos sin cos sin()A B B A A B ⋅=⋅+⋅=+m n ,而在ABC △中,π,0πA B C C +=-<<,所以sin()sin A B C +=,又sin 2C ⋅=m n ,所以sin 2sin ,C C =得1cos 2C =,所以π3C =.……………………………………7分又ABC ∆为锐角三角形,1022π1032A A ππ⎧<<⎪⎪∴⎨⎪<-<⎪⎩,解得,tan 623A A ππ<<>, (8)分1sin sin sin 1322sin sin sin 2A A Ab B a A A A π⎛⎫+ ⎪⎝⎭==== ,………………………10分结合3tan 3A >12+∈1,22⎛⎫⎪⎝⎭.…………………………………………11分所以1,22b a ⎛⎫∈ ⎪⎝⎭.………………………………………………………………………12分22.【解析】(1)当1=a 时,21()12xf x e x x =---,由题()()()2g x h x f x +=,其中)(x g 为偶函数,)(x h 为奇函数,易知()()()g x f x f x =+-,从而得2()2x x g x e e x -=+--.………2分所以'()2x x g x e e x -=--.令()'()x g x ϕ=,则'()2x x x e e ϕ-=+-.因为'()220x x x e e ϕ-=+-≥=,当且仅当0x =时等号成立,高三(理)数学参考答案第6页(共6页)所以'()g x 在R 上单调递增.………………………………………………………………4分注意到()'00g =,当(,0)x ∈-∞时,'()0g x <,(0,)x ∈+∞时,'()0g x >.所以()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.………………………………5分(2)由()f x 的定义域是R .'()x f x e x a =--,设函数()x h x e x a =--,则'()1x h x e =-.令'()0h x =,得0x =.……………………6分因为)'(h x 在R 上单调递增,所以当(,0)x ∈-∞时'()0h x <,当(0,)x ∈+∞时'()0h x >.因此()h x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.于是()()010h x h a ≥=-≥,即'()0f x ≥,所以()f x 在R 上单调递增..………………………………………………………………7分注意到()00f =,所以在(),0-∞上()0f x <,在()0,∞+上()0f x >.所以函数(),0()(),0f x x y f x f x x -<⎧==⎨≥⎩,()y f x =在(),0-∞上单调递减,在()0,∞+上单调递增.故()(){}()-1,1max f x maxf f =,…………………………………………………8分又]1,1[-∈a ()()3313311,12222f e a e a f a a e e=--=---=-+=--|(1)||(1)|f f --=013<--e e ,因此max 3|()||(1)|2f x f e a ==--.……………9分又()max max 3|'()|111|()|2f x f e a e a e a f x '≥=--=-->--=,……………11分所以|()||'()|max max f x f x <,即M N <…………………………………………………12分。
2022-2023学年四川省成都市青羊区石室中学高三(上)期中数学试卷(理科)1. 已知复数z满足,则在复平面内复数z对应的点在( )A. 第四象限B. 第三象限C. 第二象限D. 第一象限2.已知数列的前n项和是,则( )A. 20B. 18C. 16D. 143. 设全集,集合,,则( )A. B. C. D.4. 函数在区间的图象大致为( )A. B.C. D.5. 某几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D.6.已知命题p:在中,若,则;命题q:向量与向量相等的充要条件是且在下列四个命题中,是真命题的是( )A. B. C. D.7. 已知函数的部分图象如图所示,则下列说法正确的是( )A. 直线是函数的图象的一条对称轴B. 函数的图象的对称中心为,C. 函数在上单调递增D. 将函数的图象向左平移个单位长度后,可得到一个偶函数的图象8. 数列中,,对任意m,,,若,则( )A. 2B. 3C. 4D. 59. 2020年,由新型冠状病毒感染引起的新型冠状病毒肺炎在国内和其他国家暴发流行,而实时荧光定量法以其高灵敏度与强特异性,被认为是的确诊方法,实时荧光定量PCR法,通过化学物质的荧光信号,对在PCR扩增进程中成指数级增加的靶标DNA实时监测,在PCR扩增的指数时期,荧光信号强度达到阈值时,DNA的数量与扩增次数n满足,其中p为扩增效率,为DNA的初始数量.已知某样本的扩增效率,则被测标本的DNA大约扩增次后,数量会变为原来的125倍.参考数据:( )A. 10B. 11C. 12D. 1310. 设,,其中e是自然对数的底数,则( )A. B. C. D.11. 已知正三棱柱的所有顶点都在球O的表面上,若球O的表面积为,则正三棱柱的体积的最大值为( )A. B. C. D.12. 已知的三个顶点都在抛物线上,点为的重心,直线AB 经过该抛物线的焦点,则线段AB的长为( )A. 8B. 6C. 5D.13.已知向量满足,则______.14. 在二项式的展开式中,各项的系数之和为512,则展开式中常数项的值为______.15. 已知双曲线C:的左、右焦点分别为,,点P是双曲线C的右支上一点,若,且的面积为3,则双曲线C的焦距为______. 16. 已知函数,若关于x的方程有8个不同的实数解,则整数m的值为______其中e是自然对数的底数17. 已知a,b,c为的内角A,B,C所对的边,向量,且求角C;若,,D为BC的中点,,求的面积.18. 全国中学生生物学竞赛隆重举行.为做好考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于40至100之间,将数据按照分成6组,制成了如图所示的频率分布直方图.求频率分布直方图中m的值,并估计这50名学生成绩的中位数;在这50名学生中用分层抽样的方法从成绩在的三组中抽取了11人,再从这11人中随机抽取3人,记为3人中成绩在的人数,求的分布列和数学期望;19. 如图,四棱柱中,底面ABCD是矩形,且,,,若O为AD的中点,且求证:平面ABCD;线段BC上是否存在一点P,使得二面角的大小为?若存在,求出BP的长;若不存在,说明理由.20. 已知曲线C上的任意一点到点的距离和它到直线l:的距离的比是常数,过点F作不与x轴重合的直线与曲线C相交于A,B两点,过点A作AP垂直于直线l,交直线l于点P,直线PB与x轴相交于点求曲线C的方程;求面积的最大值.21.已知函数在处的切线方程为求实数m和n的值;已知,是函数的图象上两点,且,求证:22. 在平面直角坐标系xOy中,已知直线l的参数方程为为参数,以坐标原点O为极点,x轴的非负半轴为极轴取相同的长度单位,建立极坐标系,曲线C的极坐标方程为求直线l的普通方程和曲线C的直角坐标方程;若点P的极坐标为,直线l与曲线C相交于A,B两点,求的值.23. 已知函数,M为不等式的解集.求集合M;设a,,求证:答案和解析1.【答案】B【解析】解:因为,所以,所以复数z对应的点为,故在复平面内复数z对应的点在第三象限.故选:结合复数的除法运算化简z,由复数与复平面的对应关系即可求解.本题主要考查复数的几何意义,属于基础题.2.【答案】C【解析】解:设数列的前n项和为,则,故故选:由直接代值运算即可.本题主要考查了等车数列的和与项的递推关系,属于基础题.3.【答案】A【解析】解:因为全集,集合,所以,又因为,所以,故选:解一元二次不等式进而确定全集中的元素,根据集合A,求得,根据集合的交集运算即可求得答案.本题考查集合的运算性质,属于基础题.4.【答案】A【解析】解:函数,,所以为奇函数,排除B,D;当时,,排除故选:由函数的奇偶性及函数值的大小进行排除即可求得结论.本题主要考查函数的图象的判断,考查函数的性质,属于基础题.5.【答案】C【解析】解:根据几何体的三视图,得;该几何体是一正方体,从上面去掉一个圆锥,且圆锥的底面直半径、高都与正方体边长相等;该几何体的体积为故选:根据几何体的三视图,得出该几何体是一正方体,中间去掉一个圆锥的组合体,由此求出它的体积.本题利用空间几何体的三视图求体积的应用问题,解题的关键是由三视图得出几何体的结构特征是什么.6.【答案】D【解析】解:命题q:向量与向量相等的充要条件是向量与向量大小相等,方向相同,故命题q是假命题,命题p:在中,若,由于余弦函数在上单调递减,则,故命题p为真命题;因此,为假命题,为假命题,为假命题,为真命题.故选:结合余弦三角函数单调性可判断p正确,由向量相等的条件可判断q错误.本题考查复合命题的真假,属于基础题.7.【答案】B【解析】解:由函数图象可知,,最小正周期为,所以,将点代入函数解析式中,得,又因为,所以,故,对于选项A,令,,即,,令,则,故选项A错误;对于选项B ,令,则,,所以,,即函数的图象的对称中心为,,故选项B 正确;对于选项C ,令,解得,因为,所以函数在上单调递减,在上单调递增,故选项C 错误;对于选项D ,将函数的图象向左平移个单位长度后,得到的图象,该函数不是偶函数,故选项D 错误.故选:先根据函数图象,求出函数的解析式,然后根据三角函数的周期,对称轴,单调区间,奇偶性逐项进行检验即可求解.本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系,属于中档题.8.【答案】C【解析】解:由,令,则,即,数列是首项为2,公比为2的等比数列,则,,,则,解得,故选:取,可得出数列是等比数列,可得数列的通项公式,利用等比数列求和公式可得出关于k 的等式,即可得出答案.本题考查构造法和等比数列的定义和通项公式、求和公式,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.9.【答案】C【解析】解:因为,所以由题意知,得,故被测标本的DNA 大约扩增12次后,数量会变为原来的125倍.故选:根据题意,化简,得,可得,利用参考数据,可得答案.本题以实际问题为载体,考查函数模型的构建,考查运算求解能力,属于基础题.10.【答案】D【解析】解:设,得令,解得当时,,单调递减;当时,,单调递增,所以,即,则,,所以最小.又因为,且,所以,所以综上所述,故选:构造,利用导数证明的的单调性,赋值,可大致估计a,b 大小,,通过放缩可比较a,b大小,进而得出答案.本题考查导数的综合运用,考查运算求解能力,属于中档题.11.【答案】C【解析】解:如图,设正三棱柱上、下底面的中心分别为H,,连接,根据对称性可知,线段的中点O即为正三棱柱外接球的球心,线段OA即为该外接球的半径,又由已知得,,设正三棱柱的底面边长为x,则,在中,,,正三棱柱的体积,令,则,,,,当时,,单调递增;当时,,单调递减,所以故选:结合正三棱柱和外接球关系先求出外接球半径,令正三棱柱底面边长为x,由函数关系表示出体积V与x函数关系,利用导数可求最值.本题考查正三棱柱的最值的求解,函数思想的应用,利用导数研究函数的单调性,属中档题.12.【答案】B【解析】解:设抛物线的焦点为F,则,根据题意可知,点为的重心,若直线AB的斜率不存在,则不妨取,,则结合重心可得C为,不合题意;故直线AB的斜率存在,设直线AB的方程为,,,,,则有,,,联立方程得,,则,,因为点为的重心,所以,即,所以,,即,解得,则,故线段AB的长为6,故选:判断直线AB的斜率存在,设出直线方程,联立抛物线方程可得根与系数的关系式,利用三角形的重心即可求得参数k的值,根据抛物线的弦长公式即可求得答案.本题考查直线和圆锥曲线相交时的弦长问题,联立圆锥曲线方程,利用根与系数的关系去化简求值,三角形重心的坐标公式,抛物线的几何性质,属中档题.13.【答案】【解析】解:由两边平方得故答案为:通过平方的方法化简已知条件,从而求得本题主要考查平面向量数量积运算,考查运算求解能力,属于基础题.14.【答案】135【解析】解:因为二项式的展开式中,各项的系数之和为512,所以令,得,解得又因为的展开式的通项公式为,令,解得,所以展开式中常数项为故答案为:根据各项的系数之和为512得到,解得,然后利用通项公式求常数项即可.本题考查二项式定理,属于基础题.15.【答案】【解析】解:设双曲线C:的半虚轴为b,半焦距为c,,,又,两式相减可得,则,又的面积为3,,,解得,,,,即,又,,,,得,又,且,,双曲线C的焦距为故答案为:根据双曲线定义结合余弦定理可推得,结合三角形面积可推得,由可得,继而推得,,再利用勾股定理结合即可求得本题主要考查双曲线的性质,考查转化能力,属于中档题.16.【答案】5【解析】解:因为,所以当时,,当时,,即满足,则是偶函数.当时,则,,当时,,单调递增;当时,,单调递减;当时,,作出函数的图象,如图所示:设,因为有8个不同的实数解,所以由图象可得,关于t的方程有2个不同的实数解,且都大于e,所以有,解得,又因为,所以整数m的值为5,故答案为:判断函数的奇偶性,利用导数判断其单调性,继而作出其图象,数形结合,将关于x的方程有8个不同的实数解,转化为关于t的方程有2个不同的实数解,列出不等式组,即可求得答案.本题主要考查函数的零点与方程根的关系,解决此类比较复杂的方程的根的个数问题,一般方法是采用换元法,数形结合,将根的个数问题转化为函数图象的交点问题,考查数形结合思想与运算求解能力,属于中档题.17.【答案】解:因为,,所以,由正弦定理得,即,由余弦定理得,因为,所以在三角形ADC中,,即,解得或,即或,因为,故,因为,所以,故,所以,所以【解析】本题主要考查平面向量的数量积公式,考查转化能力,属于中档题.根据已知条件,结合向量垂直的性质,以及正弦定理、余弦定理,即可求解.根据已知条件,结合余弦定理,以及三角面积公式,即可求解.18.【答案】解:由频率分布直方图的性质可得,,解得,设中位数为a,则,解得,故估计这50名学生成绩的中位数为的三组频率之比为:::3:1,从中分别抽取7人,3人,1人,故所有可能取值为0,1,2,3,,,,,故的分布列为:0123P故【解析】根据已知条件,结合频率分布直方图的性质,结合中位数公式,即可求解.根据已知条件,结合分层抽样的定义,求得从中分别抽取7人,3人,1人,推得所有可能取值为0,1,2,3,分别求出对应的概率,再结合期望公式的公式,即可求解.本题主要考查随机变量分布列的求解,以及期望公式的应用,属于中档题.19.【答案】解:证明:,且,为等边三角形,为AD的中点,,又,且,平面ABCD;如图,过O作,以O为原点,建立空间直角坐标系,则,,设,,设平面的法向量为,又,,则,取,又平面的一个法向量为,,解得或舍去,,当BP的长为时,二面角的值为【解析】由已知得为等边三角形,,再由,能证明平面建系,利用向量法及方程思想即可求解.本题考查线面垂直的判定定理,向量法求解二面角问题,方程思想,属中档题.20.【答案】解:设曲线C上的任意一点的坐标为,由题意,得,即,所以曲线C的方程为;由题意,设直线AB的方程为,,,则联立方程得,则,所以,,所以又因为,所以直接PB的方程为令,则,所以,因为,所以令,,则又因为在上单调递减,所以当时,,故面积的最大值为【解析】由题意列出曲线方程化简即可求解;设直线AB的方程为,,,表示出P,联立直线与椭圆方程消去x,表示出关于y的韦达定理,结合B,P求出直接PB的方程,令,求出M坐标,进而得到,由求出面积,结合换元法和对勾函数性质可求面积的最大值.本题考查椭圆的标准方程及其性质,考查直线与椭圆的综合运用,考查函数思想和运算求解能力,属于中档题.21.【答案】解:由,得因为函数在处的切线方程为,所以,,则;证明:由可得,,,所以当时,,单调递增;当时,,单调递减.因为,是函数的图象上两点,且,不妨设,且,所以由,得,即设,设,则,所以,即,故要证,只需证,即证,即证,即证,即证,即证令,,则,证明不等式;设,则,所以当时,;当时,,所以在上为增函数,在上为减函数,故,所以成立.由上述不等式可得,当时,,故恒成立,故在上为减函数,则,所以成立,即成立.综上所述,【解析】先求导,由,可求对应的m和n的值;设,由可判断,由得,设,,,得,代换整理得,原不等式要证,只需证,全部代换为关于t 的不等式得,设,,由导数得,再证,放缩得,进而得证.本题考查导数的几何意义,考查利用导数研究函数的单调性,极值及最值,考查不等式的证明,考查逻辑推理能力及运算求解能力,属于中档题.22.【答案】解:因为直线l的参数方程为为参数,所以直线l的普通方程为,因为,即,所以,得,所以曲线C的直角坐标方程为;因为点P的极坐标为,所以点P的直角坐标为,所以点P在直线l上,将直线l的参数方程为参数,代入,化简得,设A,B两点所对应的参数分别为,,则,,故,,所以,,所以【解析】利用消元法将参数方程化为普通方程即可得到直线l的普通方程;利用极坐标方程与直角坐标方程的转化公式即可得到曲线C的直角坐标方程;将点P的极坐标化为直角坐标判断得P在直线l上,再利用直线参数方程中参数的几何意义,将直线l代入曲线C的直角坐标方程,结合韦达定理即可求解.本题主要考查简单曲线的极坐标方程,考查转化能力,属于中档题.23.【答案】解:①当时,不等式可化为,解得,则;②当,不等式可化为,解得,则;③当时,不等式可化为,解得,则综上所述,;证明:因为当且仅当时取等号,所以要证,只需证,即证,即证,即证,即证由可知,因为a,,所以,,所以成立.综上所述,【解析】采用零点讨论法去绝对值可直接求解;结合绝对值三角不等式得,要证,即证,即证,去平方结合因式分解即可求证.本题考查不等式的解法及其证明,考查分类讨论思想以及推理论证能力,运算求解能力,属于中档题.。
高三理科数学期中考试卷一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = x + 12. 已知向量a = (1, 2),向量b = (2, 3),则向量a与向量b的点积为()A. 4B. 5C. 6D. 73. 函数f(x) = x^2 - 4x + 3的零点个数为()A. 0B. 1C. 2D. 34. 已知等差数列{a_n}的首项为1,公差为2,则第5项a_5的值为()A. 9B. 10C. 11D. 125. 圆x^2 + y^2 = 9的圆心坐标为()A. (0, 0)B. (3, 0)C. (0, 3)D. (-3, 0)6. 函数y = sin(x)的周期为()A. πB. 2πC. π/2D. 4π7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B = ()A. {1, 2, 3}B. {2, 3}C. {1, 3, 4}D. {1, 2}8. 已知函数f(x) = x^2 + 2x + 1,g(x) = x^2 - 2x + 1,则f(x) - g(x) = ()A. 4xB. 2xC. 2D. 49. 已知直线y = 2x + 3与x轴的交点坐标为()A. (-3/2, 0)B. (3/2, 0)C. (0, -3)D. (0, 3)10. 函数y = ln(x)的定义域为()A. (-∞, 0)B. [0, +∞)C. (0, +∞)D. (-∞, +∞)二、填空题(每题4分,共20分)11. 已知函数f(x) = 3x - 2,若f(a) = 7,则a = _______。
12. 已知等比数列{b_n}的首项为2,公比为3,则第4项b_4 =_______。
13. 已知函数y = 2x^3 + 3x^2 - 5x + 1,求导数y' = _______。
西北师大附中2022—2023学年第一学期期中考试试题高三数学(理) 命题人:张丽娇 审题人:惠银东一、选择题(本题共12小题,每小题5分,共60项是符合题目要求的.)1.已知集合{}3,2,1,2A =---,{B x =2|56x x --≤}0,则A ⋂C R B =( )A .{}3-B .{}3,2,1---C .{}3,2--D .{}1,2- 2.集合{}{}201A x x ax a =++=⊆,则a 为( )A .12-B .()0,4a ∈C .()[),04,a ∈-∞⋃+∞D .()10,42a ⎧⎫∈-⋃⎨⎬⎩⎭ 3.已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( )A.充分不必要条件 B .必要不充分条件C.充要条件 D .既不充分也不必要条件4.已知命题000:,3sin 4cos p x x x ∃∈+=R ;命题 1:,1xq x e ⎛⎫∀∈≤ ⎪⎝⎭R ,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∨⌝D .()p q ⌝∨5.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝⎛⎭⎫1+S N .它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N叫作信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比S N从1000提升到8000,则C 大约增加了(lg 2≈0.301)( )A .10%B .20%C .30%D .50%6.已知,,m n l 是不同的直线,,αβ是不同的平面,以下命题正确的是( )①若m ∥n ,,m n αβ⊂⊂,则α∥β;②若,m n αβ⊂⊂,α∥l m β⊥,,则l n ⊥; ③若,,m n αβα⊥⊥∥β,则m ∥n ;④若αβ⊥,m ∥α,n ∥β,则m n ⊥;A .②③B .③④C .②④D .③7.已知非常数函数f(x)满足f (−x )f (x )=1(x ∈R),则下列函数中,不是奇函数的是( )A .f (x )−1f (x )+1B .f (x )+1f (x )−1C .f (x )−1f (x )D . f (x )+1f (x )8.已知3log 2a =,4log 3b =,23c =,则( ) A .a c b << B .c a b << C .b a c << D .b c a <<9.函数f (x )=3|x |·cos 2x x的部分图象大致是( )10.若()f x 的定义域为R ,对,x y R ∀∈,()()()()(),11f x y f x y f x f y f ++-== 则()221k f k ==∑( )A .-3B .-2C .0D .111.已知正四棱锥的侧棱长为l ,其各顶点都在同一个球面上,若该球的体积为36π, 且3≤l ≤3√3,则该正四棱锥体积的取值范围是( )A.[18,814]B.[274,643]C.[274,814]D.[18,27]12.定义在R 上的函数f(x)的导函数为f′(x),若f′(x)<f(x),则不等式e x f(x +1)<e 4f(2x -3)的解集是( )A .(-∞,2)B .(2,+∞)C .(4,+∞)D .(-∞,4)二、填空题(本题共4小题,每小题5分,共20分)13.若()3,01,0x x f x x x⎧≤⎪=⎨>⎪⎩,则()()2f f -=__________. 14.函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为__________. 15.∫(3−3sinx +√9−x 2)dx =__________.16.已知定义在R 上的偶函数f (x ),满足f (x +4)=f (x )+f (2),且在区间[0,2]上单调递增,则 ①函数f (x )的一个周期为4;②直线x =-4是函数f (x )图象的一条对称轴;③函数f (x )在[-6,-5)上单调递增,在[-5,-4)上单调递减;④函数f (x )在[0,100]上有25个零点.其中正确命题的序号是________.(注:把你认为正确的命题序号都填上)三、解答题(共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(14分)在以下三个条件中任选一个,补充在下面问题中,并进行解答.“①函数y =√x 2+2x −k 的定义域为R ,②∃x ∈R ,使得|x −1|+|x −2|+k ⩽0, ③方程x 2+k =0有一根在区间[1,+∞)内”问题:已知条件p :______,条件q :函数f(x)=2x 2−kx 在区间(−3,a)上不单调,若p 是q 的必要条件,求实数a 的最大值.18.(14分)已知函数f (x )=ln (m x x+1−1)(其中m ∈R 且m ≠0)是奇函数.(1)求m 的值;(2)若对任意的x ∈[ln2,ln4],都有不等式f (e x )−x +lnk ≥0恒成立, 求实数k 的取值范围.19.(14分)已知函数f (x )=x 2-2x +aln x(a ∈R).(1)若函数在x =1处的切线与直线x -4y -2=0垂直,求实数a 的值;(2)当a >0时,讨论函数f(x)的单调性.20.(14分)已知函数f (x )=2a+1a −1a 2x ,a >0 (1)证明:函数f (x )在(0,+∞)上单调递增;(2)设0<m <n ,若f (x )的定义域和值域都是[m,n ],求n −m 的最大值.21.(14分)已知函数()212x f x e x ax =--有两个极值点12x x ,, (1)求实数a 的取值范围;(2)求证:()()122f x f x +>.。
北京市海淀区高三年级第二学期期中练习数学(理)试卷2014.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}211,2,,,,2A B y y x x A A B ⎧⎫===∈=⎨⎬⎩⎭集合则A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ 2.复数()()1i 1i z =+-在复平面内对应的点的坐标为A. (1,0)B. (0,2)C.()1,0D. (2,0) 3.下列函数()f x 图象中,满足1()(3)(2)4f f f >>的只可能是A B C D4.已知直线l 的参数方程为1,1x t y t =+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x 5.在数列{}n a 中,“12,2,3,4,n n a a n -== ”是“{}n a 是公比为2的等比数列”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6. 小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有A. 4种B.5种C.6种D.9种7.某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为A.1B.2C.3D.48. 已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点的个数为a ,则 A .0a = B .1a = C .2a = D .2a >二、填空题:本大题共6小题,每小题5分,共30分.9.一个空间几何体的三视图如图所示,该几何体的体积为______.10. 函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.11.如图,AB 切圆O 于B,AB =,1AC =,则AO 的长为_______.12. 已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m _______.13.如图,已知ABC ∆中,30BAD ∠= ,45CAD ∠= ,3,2AB AC ==,则BDDC=_____________.14.已知向量序列:123,,,,,n a a a a 满足如下条件:1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n = ).ABC俯视图主视图侧视图若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a 中第_____项最小.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数ππ()2sin cos 66f x x x =,过两点(,()),(1,(1))A t f t B t f t ++的直线的斜率记为()g t . (Ⅰ)求(0)g 的值;(II )写出函数()g t 的解析式,求()g t 在33[,]22-上的取值范围.16. (本小题满分13分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B 的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ACB =30°,∠ABC =90°,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F ,将∆ABD 沿BD 折起,使平面ABD ⊥平面BCD,如图2所示. (Ⅰ)求证:AE ⊥平面BCD ;(Ⅱ)求二面角A –DC –B 的余弦值.(Ⅲ)在线段AF 上是否存在点M 使得//EM 平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.BF18. (本小题满分13分)已知曲线:e ax C y =.(Ⅰ)若曲线C 在点(0,1)处的切线为2y x m =+,求实数a 和m 的值; (Ⅱ)对任意实数a ,曲线C 总在直线l :y ax b =+的上方,求实数b 的取值范围.19. (本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长; (Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =- , 则称()A n 与()B n 互为正交点列.(Ⅰ)求(3)A :123(0,2),(3,0),(5,2)A A A 的正交点列(3)B ;(Ⅱ)判断(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 是否存在正交点列(4)B ?并说明理由; (Ⅲ)5n n ∀≥∈,N ,是否都存在无正交点列的有序整点列()A n ?并证明你的结论.1图 图 2海淀区高三年级第二学期期中练习参考答案数 学 (理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
高三数学(理科)上学期期中考试试卷(含标准答案)满分:150 时间:120分钟一、选择题 (本大题共12小题。
每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.设i 为虚数单位,则复数34ii+的共轭复数为( ) A .43i --B .43i -+C .43i +D . 43i -2、设集合错误!未找到引用源。
,错误!未找到引用源。
则错误!未找到引用源。
( )A 、错误!未找到引用源。
B 、错误!未找到引用源。
C 、错误!未找到引用源。
D 、错误!未找到引用源。
3.已知向量21cos ,sin ,a b αα=-=(),(),且//,a b 4tan πα-()等于( ) A .-3 B .3 C .31 D .31-4、设函数)0(ln 31)(>-=x x x x f ,则)(x f y =( )A .在区间),1(),1,1(e e 内均有零点B .在区间),1(),1,1(e e 内均无零点C .在区间)1,1(e 内有零点,在区间),1(e 内无零点D .在区间)1,1(e内无零点,在区间),1(e 内有零点5.下列有关命题的说法正确的是A .命题“若0xy =错误!未找到引用源。
,则0x =错误!未找到引用源。
”的否命题为:“若0xy =错误!未找到引用源。
,则0x ≠错误!未找到引用源。
”B .“若0=+y x ,则x ,y 互为相反数错误!未找到引用源。
”的逆命题为真命题C .命题“R ∈∃x 错误!未找到引用源。
,使得2210x -<错误!未找到引用源。
”的否定是:“R ∈∀x 错误!未找到引用源。
,均有2210x -<错误!未找到引用源。
”D .命题“若cos cos x y =错误!未找到引用源。
,则x y =错误!未找到引用源。
”的逆否命题为真命题6、已知a 是实数,则函数ax a x f sin 1)(+=的图象不可能是( )7.已知函数1x y a-=(0a >,且1a ≠)的图象恒过定点,若点在一次函数y mx n=+的图象上,其中,0m n >,则11m n+的最小值为( ) A .4 B .2 C .2 D .18..如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”。
2021-2022学年四川省成都七中高三(上)期中数学试卷(理科)一、单选题(本大题共12小题,共60.0分))6的展开式中,x3项的系数为()1.在(x2−1xA. −20B. −15C. 15D. 20(其中i为虚数单位)的虚部为()2.复数z=4−3i2+iA. −2B. −1C. 1D. 23.设全集U={0,1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则A∩(∁U B)=()A. {0,6}B. {1,4}C. {2,4}D. {3,5}4.已知直线ax+by−1=0(a>0,b>0)与圆x2+y2=4相切,则log2a+log2b的最大值为()A. 3B. 2C. −2D. −35.青少年视力被社会普遍关注,为了解他们的视力状况,经统计得到图2中12名青少年的视力测量值a i(i=1,2,3,⋯,12)(五分记录法)的茎叶图(图1),其中茎表示个位数,叶表示十分位数.如果执行如图所示的算法程序,那么输出的结果是()A. 4B. 5C. 6D. 76.已知一个几何体的三视图如图,则它的表面积为()A. 3πB. 4πC. 5πD. 6π7.如果直线l与两条曲线都相切,则称l为这两条曲线的公切线.如果曲线C1:y=lnx和曲线C2:y=x−ax(x>0)有且仅有两条公切线,那么常数a的取值范围是()A. (−∞,0)B. (0,1)C. (1,e)D. (e,+∞)8.“α为第二象限角”是“sinα−√3cosα>1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.抛物线y2=2px(p≠0)上的一点P(−9,12)到其焦点F的距离|PF|等于()A. 17B. 15C. 13D. 1110.关于函数f(x)=sinxcos(x−π6)的叙述中,正确的有()①f(x)的最小正周期为2π;②f(x)在区间[−π6,π3]内单调递增;③f(x+π3)是偶函数;④f(x)的图象关于点(π12,0)对称.A. ①③B. ①④C. ②③D. ②④11.攒尖在中国古建筑(如宫殿、坛庙、园林等)中大量存在,攒尖式建筑的屋面在顶部交汇成宝顶,使整个屋顶呈棱锥或圆锥形状.始建于1752年的廓如亭(位于北京颐和园内,如图)是全国最大的攒尖亭宇,八角重檐,蔚为壮观.其檐平面呈正八边形,上檐边长为a,宝顶到上檐平面的距离为ℎ,则攒尖坡度(即屋顶斜面与檐平面所成二面角的正切值)为()A. (√2+1)ℎ2aB. 3(√2−1)ℎ2aC. (√2+1)ℎ3aD. 2(√2−1)ℎa12. 在平行四边形ABCD 中,AB =2,AD =1,∠BAD =60°,E 是BC 的中点,则AC ⃗⃗⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =( )A. 3B. 4C. 5D. 6二、单空题(本大题共4小题,共20.0分) 13. 命题“∃x ∈N ,2x <x 2”的否定是______.14. 若不等式4x −2a+x +2>0对x ∈R 恒成立,则实数a 的取值范围是______. 15. 已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的两个焦点分别为F 1,F 2,且两条渐近线互相垂直,若C 上一点P 满足|PF 1|=3|PF 2|,则∠F 1PF 2的余弦值为______. 16. 已知某品牌电子元件的使用寿命X(单位:天)服从正态分布N(98,64).(1)一个该品牌电子元件的使用寿命超过100天的概率为______;(2)由三个该品牌的电子元件组成的一条电路(如图所示)在100天后仍能正常工作(要求K 能正常工作,A ,B 中至少有一个能正常工作,且每个电子元件能否正常工作相互独立)的概率为______.(参考公式:若X ~N(μ,σ2),则P(μ−0.25σ<X ≤μ+0.25σ)=0.2.)三、解答题(本大题共7小题,共82.0分) 17. 设M 为不等式|x +1|+4≥|3x −1|的解集.(1)求M ;(2)若a ,b ∈M ,求|ab −a −b|的最大值.)内存在极值点α.18.已知函数f(x)=e x−ksinx在区间(0,π2(1)求实数k的取值范围;(2)求证:在区间(0,π)内存在唯一的β,使f(β)=1,并比较β与2α的大小.19.如图,在直四棱柱ABCD−A1B1C1D1中,底面ABCD是菱形,E是BC的中点.(1)求证:BD1//平面C1DE;(2)已知∠ABC=120°,AA1=√2AB,求直线A1D与平面C1DE所成角的正弦值.20.某企业有甲、乙两条生产线,其产量之比为4:1.现从两条生产线上按分层抽样的方法得到一个样本,其部分统计数据如表(单位:件),且每件产品都有各自生产线的标记.(1)请将2×2列联表补充完整,并根据独立性检验估计:大约有多大把握认为产品的等级差异与生产线有关?(2)为进一步了解产品出现等级差异的原因,现将样本中所有二等品逐个进行技术检验(随机抽取且不放回).设甲生产线的两个二等品恰好检验完毕时,已检验乙生产线二等品的件数为ξ,求随机变量的分布列及数学期望.参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).21.已知n∈N∗,数列{a n}的首项a1=1,且满足下列条件之一:①a n+1=a n2+12n;②2na n+1=(n+1)a n.(只能从①②中选择一个作为已知)(1)求{a n}的通项公式;(2)若{a n}的前n项和S n<m,求正整数m的最小值.22. 在平面直角坐标系xOy 中,伯努利双纽线C(如图)的普通方程为(x 2+y 2)2=2(x 2−y 2),直线l 的参数方程为{x =tcosαy =tsinα(其中α=(0,π4),t 为参数). (1)为极点,x 轴的非负半轴为极轴建立极坐标系,求C 和l 的极坐标方程; (2)设A ,B 是C 与x 轴的交点,M ,N 是C 与l 的交点(四点均不同于O),当α变化时,求四边形AMBN 的最大面积.23. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2√3,左顶点A 到右焦点F 的距离为3. (1)求椭圆C 的方程及离心率;(2)设直线l 与椭圆C 交于不同两点M ,N(不同于A),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.答案和解析1.【答案】A【解析】解:由于(x2−1x)6的展开式的通项公式为T r+1=(−1)r C6r⋅x12−3r,令12−3r=3,可得r=3,故展开式中含x3项的系数为:(−1)3⋅C63=−20.故选:A.先求出二项式展开式的通项公式,再令x的幂指数等于3,即可求解结论.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.2.【答案】A【解析】解:z=4−3i2+i =(4−3i)(2−i)(2+i)(2−i)=8−6i−4i+3i24−i2=5−10i5=−2i+1,∴复数z的虚部为−2.故选:A.利用i2=−1,将分式化为整式,从而得到虚部的值.该题考查虚数的化简,属于基础题型.3.【答案】C【解析】解:全集U={0,1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},所以∁U B={0,2,4,6},A∩(∁U B)={2,4}.故选:C.根据补集与交集的定义计算即可.本题考查了补集与交集的运算问题,是基础题.4.【答案】D【解析】解:因为直线ax+by−1=0与圆x2+y2=4相切,所以√a2+b2=2,即a2+b2=14,而log2a+log2b=log2ab≤log2a2+b22=log2142=−3,当且仅当a=b=√24时,等号成立,所以log2a+log2b的最小值为−3.故选:D.根据点到直线的距离公式可得a2+b2=14,再结合对数的运算性质和基本不等式,即可得解.本题考查直线与圆的位置关系,利用基本不等式求最值,对数的运算性质等,考查逻辑推理能力和运算能力,属于中档题.5.【答案】B【解析】解:由程序框图可知,该程序实现了统计a i≤4.3的个数,由茎叶图知,a i≤4.3共有5个,故选:B.该程序实现了统计a i≤4.3的个数,结合茎叶图得到答案.本题综合考查了茎叶图与程序框图,属于中档题.6.【答案】B【解析】解:根据几何体的三视图转换为直观图为:该几何体由一个圆锥和一个半球组成的几何体;如图所示:故S表=12×4⋅π⋅12+π×1×√(√3)2+12=4π.故选:B.首先把三视图转换为几何体的直观图,进一步求出几何体的表面积.本题考查的知识要点:三视图和几何体的直观图之间的转换,球体和圆锥体的表面积,几何体的表面积公式的应用,主要考查学生的运算能力和数学思维能力,属于中档题.7.【答案】B【解析】解:设曲线C1:y=lnx上一点A(x1,lnx1),由y=lnx,得y′=1x ,∴y′|x=x1=1x1,可得曲线C1:y=lnx在A处的切线方程为y−lnx1=1x1(x−x1);设曲线C2:y=x−ax (x>0)上一点B(x2,1−ax2),由y=1−ax ,得y′=ax,则y′|x=x2=a x22,可得曲线C2:y=x−ax (x>0)在B处的切线方程为y−1+ax2=ax22(x−x2).则{1x1=ax22lnx1−1=1−2ax2,可得√x1(lnx1−2)=−2√a.令f(x)=√x(lnx−2),f′(x)=2√x −2)+√x⋅1x=2√x.当x∈(0,1)时,f′(x)<0,f(x)单调递减,当x∈(1,+∞)时,f′(x)>0,f(x)单调递增,∴f(x)min=f(1)=−2,∴要使曲线C1和曲线C2有且仅有两条公切线,则关于x的方程√x(lnx−2)=−2√a有两不同解,又当x→0时,f(x)→0,∴−2<−2√a<0,得0<√a<1,即0<a<1则常数a的取值范围是(0,1).故选:B.设曲线C1:y=lnx上一点A(x1,lnx1),曲线C2:y=x−ax (x>0)上一点B(x2,1−ax2),利用导数求得两曲线在切点处的切线方程,再由两切线的斜率相等,切线在y轴上的截距相等,可得√x1(lnx1−2)=−2√a,令f(x)=√x(lnx−2),利用导数求其最小值,得到−2√a的范围,进一步求得a的范围.本题考查利用导数研究过曲线上某点处的切线方程,考查化归与转化思想,训练了利用导数求最值,是中档题.8.【答案】A【解析】解:由sinα−√3cosα>1⇔12sinα−√32cosα>12⇔sin(α−π3)>12,当α为第二象限角时,∴2kπ+π2<α<2kπ+π,∴2kπ+π6<α−π3<2kπ+2π3,k∈Z.∴12<sin(α−π3)≤1,满足sinα−√3cosα>1;当sinα−√3cosα>1即sin(α−π3)>12时,例如取α=π时,满足sin(α−π3)=sin2π3=√3 2>12,但α=π不满足在第二象限.由上分析可知“α为第二象限角”是“sinα−√3cosα>1”的充分不必要条件.故选:A.由sinα−√3cosα>1⇔12sinα−√32cosα>12⇔sin(α−π3)>12,依次可解决此题.本题考查三角函数图象性质、三角恒等变换及充分、必要条件的判定,考查数学运算能力及推理能力,属于中档题.9.【答案】C【解析】解:因为点P(−9,12)在抛物线y2=2px上,所以122=−18p,解得p=−8,所以抛物线方程为y2=−16x,焦点F的坐标为(−4,0),所以|PF|=√(−9+4)2+122=13.故选:C.将点P的坐标代入抛物线方程中求出p,从而可得焦点F的坐标,利用两点间的距离公式求解即可.本题主要考查抛物线的方程,两点间的距离公式,考查运算求解能力,属于基础题.10.【答案】C【解析】解:f(x)=sinx(cosxcosπ6+sinxsinπ6)=sinx(√32cosx+12sinx)=√3 2sinxcosx+12sin2x=√34sin2x+12×1−cos2x2=√34sin2x−14cos2x+14=12sin(2x−π6)+14,所以f(x)的最小正周期T=π,①错误;当x∈[−π6,π3]时,2x−π6∈[−π2,π2],此时正弦函数为单调递增函数,故②正确;f(x+π3)=12sin[2(x+π3)−π6]+14=12sin(2x+π2)+14=12cos2x+14,令g(x)=f(x+π3),所以g(x)=12cos2x+14g(−x)=12cos(−2x)+14=12cos2x+14=g(x),又函数定义域为R,故函数f(x+π3)是偶函数,③正确;令2x−π6=kπ,k∈Z,解得x=π12+kπ2,k∈Z,所以f(x)的对称中心为(π12+kπ2,14)k∈Z,当k=0时,f(x)有一个对称中心为(π12,14),故④错误;故选:C.先将解析式进行化简整理,根据整理之后的解析式对选项进行逐一验证.本题考查了命题的真假判断,涉及到了三角函数的性质,属于基础题.11.【答案】D【解析】解:由题意,上檐平面的八边形如图所示,其中AB=a,∠OAB=∠OBA=67.5°,且E为AB的中点,所以OE =AEtan∠OAB ,又2tan∠OAB1−tan 2∠OAB =tan2∠OAB =tan135°=−1, 解得tan∠OAB =1+√2,tan∠OAB =1−√2(舍), 又AE =a2, 所以OE =1+√22a ,由题意可知,攒尖坡度为ℎOE=2ℎ(1+√2)a=2(√2−1)ℎa. 故选:D .根据正八边形的性质,结合二倍角正切公式以及正切的定义,求出上檐平面中心到檐边的距离,再根据题设求攒尖坡度即可.本题考查了立体几何的信息题,正八边形几何性质的应用,两角和的正切公式的应用,攒尖坡度的理解,考查了逻辑推理能力、空间想象能力与化简运算能力,属于中档题.12.【答案】D【解析】解:如图,在平行四边形ABCD 中,AB =2,AD =1,∠BAD =60°,E 是BC 的中点,所以AC ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ ),AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗⃗ , 则AC ⃗⃗⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ )⋅(AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ 2+12AD ⃗⃗⃗⃗⃗⃗ 2+32AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ =4+12+32×2×1×12=6,故选:D .以AB ⃗⃗⃗⃗⃗ 、AD⃗⃗⃗⃗⃗⃗ 为基底分别表示出AC ⃗⃗⃗⃗⃗ 、AE ⃗⃗⃗⃗⃗ ,再利用向量数量积运算性质代入计算即可. 本题考查平面向量数量积运算性质,属于中档题.13.【答案】∀x∈N,2x≥x2【解析】解:根据题意,命题“∃x∈N,2x<x2”是特称命题,则其否定为:∀x∈N,2x≥x2;故答案为:∀x∈N,2x≥x2.根据题意,由特称命题与全称命题的关系,分析可得答案.本题考查命题的否定,注意全称命题和特称命题的关系,属于基础题.14.【答案】(−∞,32)【解析】解:令t=2x,则t>0,所以不等式转化为t2−2a t+2>0在(0,+∞)上恒成立,令f(t)=t2−2a t+2,其图象开口向上,且对称轴为t=2a−1>0,所以Δ=22a−8<0,解得a<32,所以实数a的取值范围为(−∞,32).故答案为:(−∞,32).利用换元法将问题转化为t2−2a t+2>0在(0,+∞)上恒成立,利用二次函数图象与性质,列式求解即可.本题考查了不等式恒成立问题的求解,换元法的理解与应用,二次函数图象与性质的应用,要掌握不等式恒成立问题的一般求解方法:参变量分离法、数形结合法、最值法等,属于中档题.15.【答案】13【解析】解:由双曲线的定义可得|PF1|=|PF2|+2a=3|PF2|,可得|PF2|=a,|PF1|=3a,因为双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线互相垂直,所以a=b,c=√2a故|F1F2|=2√2a,在△PF1F2中,cos∠F1PF2=a2+9a2−8a22×a×3a =13.故答案为:13.依题意可得可得a =b ,运用双曲线的定义和三角形的余弦定理,即可求解. 本题考查双曲线的定义和性质,主要是渐近线方程的求法,考查化简变形能力和运算能力,属于中档题.16.【答案】0.4 32125【解析】解:由题意可知,μ=98,σ=8, 所以P(X >100)=1−P(μ−0.25σ<X≤μ+0.25σ)2=0.4;由题意,要使电路能正常工作的概率为P =25×25×25+25×(1−25)×25+25×25×(1−25)=32125. 故答案为:0.4;32125.利用正态分布曲线的对称性求解P(X >100),由相互独立事件的概率乘法公式求解电路能正常工作的概率.本题考查了正态分布曲线的应用,相互独立事件的概率乘法公式的应用,解题的关键是掌握正态分布曲线的对称性,考查了运算能力,属于基础题.17.【答案】解:(1)x <−1时,−x −1+4≥−3x +1,解得x ≥−1,不合题意;−1≤x <13时,x +1+4≥1−3x ,解得:x ≥−1,故−1≤x <13,x ≥13时,x +1+4≥3x −1,解得:x ≤3,故13≤x ≤3, 综上,不等式的解集是M =[−1,3];(2)|ab −a −b|=|ab −a −b +1−1|=|(a −1)(b −1)−1| ∵a ∈[−1,3],b ∈[−1,3], ∴a −1∈[−2,2],b −1∈[−2,2],∴|(a −1)(b −1)−1|≤|(a −1)(b −1)|+1=|a −1||b −1|+1≤5, 当且仅当a −1=b −1=±2时“=”成立, 故|ab −a −b|的最大值是5.【解析】(1)通过讨论x的范围,求出不等式的解集M即可;(2)根据绝对值不等式的性质以及a,b的取值范围求出|ab−a−b|的最大值即可.本题考查了解绝对值不等式问题,考查绝对值不等式的性质,是中档题.18.【答案】(1)解:函数f(x)=e x−ksinx,则f′(x)=e x−kcosx,因为f(x)在区间(0,π2)内存在极值点α,所以f′(α)=0,则k=e αcosα且α∈(0,π2),则k′=e α(cosα+sinα)cos2α>0,所以函数k=e αcosα在(0,π2)上单调递增,则k>1,当k>1时,f′′(x)=e x+ksinx>0在(0,π2)上恒成立,则f′(x)在(0,π2)上单调递增,又f′(0)=1−k<0,f′(π)=eπ+k>0,则当x∈(0,α)时,f′(x)<0,则f(x)单调递增,当x∈(α,π2)时,f′(x)>0,则f(x)单调递减,所以f(x)在x=α处取得极小值,符合题意.综上所述,实数k的取值范围为(1,+∞);(2)证明:要证明在区间(0,π)内存在唯一的β,使f(β)=1,只需证明g(x)=e x−ksinx−1在区间(0,π)内存在唯一的β,因为g′(x)=e x−kcosx,由(1)可知,g(x)在(0,α)上单调递减,在(α,π2)上单调递增,又x∈[π2,π)时,g′(x)>0,则g(x)单调递增,综上所述,g(x)在(0,α)上单调递减,在(α,π)上单调递增,又g(0)=0>g(α),g(π)=eπ−1>0,所以g(x)在(0,α)内无零点,在(α,π)内存在一个零点,故存在唯一的β∈(0,π),使得g(β)=0,即在区间(0,π)内存在唯一的β,使f(β)=1;由(1)可知,eα=kcosα>1,所以g(2α)=e2α−ksin2α−1=e2α−2sinα⋅eα−1=eα(eα−2sinα)−1,令ℎ(x)=e2x−2e x sinx−1,x∈(0,π2),则ℎ′(x)=2e x[e x−(cosx+sinx)],令y=e x−(cosx+sinx),则y′=e x+sinx−cosx>0,故函数y=e x−(cosx+sinx)在(0,π2)上单调递增,所以y>0,即ℎ′(x)>0,故ℎ(x)在(0,π2)上单调递增,所以ℎ(x)>ℎ(0)=0,故在α∈(0,π2)上,g(2α)>0,所以g(2α)>g(β)=0,又g(x)在(α,π)上单调递增,且α<β,2α<π,所以β<2α.【解析】(1)求出f′(x),利用极值点的定义得到f′(α)=0,则k=e αcosα且α∈(0,π2),利用导数研究函数k=e αcosα的单调性,即可得到k的取值范围,然后验证即可;(2)将问题转化为证明g(x)=e x−ksinx−1在区间(0,π)内存在唯一的β,利用导数结合(1)中的结论,即可证明;表示出g(2α),构造函数ℎ(x)=e2x−2e x sinx−1,x∈(0,π2),利用导数研究函数ℎ(x)的单调性以及取值情况,可得ℎ(x)>ℎ(0)=0,从而g(2α)> g(β)=0,再利用g(x)的单调性,即可比较得到答案.本题考查了导数的综合应用,利用导数研究函数单调性的运用,函数极值点的理解与应用,函数零点存在性定理的应用,综合性强,考查了逻辑推理能力与化简运算能力,转化化归数学思想方法的运用,属于难题.19.【答案】(1)证明:由题设,连接CD 1交DC 1于O ,易知:O 是CD 1的中点,连接OE ,∵E 是BC 的中点,∴OE//BD 1,又OE ⊂面C 1DE ,BD 1不在面C 1DE 内, ∴BD 1//面C 1DE .(2)解:底面ABCD 是菱形,∠ABC =120°,即∠DAB =60°,若F 为AB 中点,则DF ⊥AB ,∴∠ADF =30°,故在直四棱柱ABCD −A 1B 1C 1D 1中有DF ⊥DC 、DD 1⊥DC 、DD 1⊥DF , ∴可构建以D 为原点,DF ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 为x 、y 、z 轴正方向的空间直角坐标系, 设AA 1=√2AB =√2, ∴D(0,0,0),E(√34,34,0),C 1(0,1,√2),A 1(√32,−12,√2), 则DE ⃗⃗⃗⃗⃗⃗ =(√34,34,0),DC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,√2),DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,√2), 若m⃗⃗⃗ =(x,y,z)是面C 1DE 的一个法向量, 则{DE ⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =√34x +34y =0DC 1⃗⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =y +√2z =0,令x =√3,则m ⃗⃗⃗ =(√3,−1,√22), ∴|cos <m ⃗⃗⃗ ,DA 1⃗⃗⃗⃗⃗⃗⃗⃗ >|=|m ⃗⃗⃗ ⋅DA 1⃗⃗⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ ||DA1⃗⃗⃗⃗⃗⃗⃗⃗ ||=√3×3√2=√63,故直线A 1D 与平面C 1DE 所成角的正弦值√63.【解析】(1)连接CD 1交DC 1于O ,连接OE ,易得OE//BD 1,再根据线面平行的判定即可证结论.(2)F 为AB 中点,结合已知可构建以D 为原点,DF ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 为x 、y 、z 轴正方向的空间直角坐标系,设AA 1=√2AB =√2,写出对应点坐标,并求出直线A 1D 的方向向量和平面C 1DE 的法向量,由空间向量夹角的坐标表示求直线A 1D 与平面C 1DE 所成角的正弦值. 本题主要考查线面平行的证明,空间向量的应用,线面角的计算等知识,属于中等题.20.【答案】解:由题意可得,一共抽样50个,产量之比为4:1,按分层抽样抽取,故甲生产线抽取50×45=40,乙生产线抽取50×15=10, 故甲生产线抽取一等品40−2=38, 乙生产线抽取二等品10−7=3,填表如下:所以K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=50(38×2−2×7)240×10×45×5≈5.556>5.024,故有97.5%把握认为产品的等级差异与生产线有关;(2)依题意得,检验顺序的所有可能为甲甲乙乙乙,甲乙甲乙乙,乙甲甲乙乙,甲乙乙甲乙,乙甲乙甲乙,乙乙甲甲乙,甲乙乙乙甲,乙甲乙乙甲,乙乙甲乙甲,乙乙乙甲甲,共10种可能,ξ的所有可能取值为:0,1,2,3, P(ξ=0)=110, P(ξ=1)=210=15,P(ξ=2)=310, P(ξ=3)=410=25, 所以ξ的分布列为:所以E(ξ)=0×110+1×15+2×310+3×25=2.【解析】(1)分析题意完成2×2列联表,直接套公式求出K2,对照参数下结论;(2)直接求出概率,写出分布列,套公式求出数学期望.本题考查了独立性检验,离散型随机变量的均值问题,属于基础题.21.【答案】解:(1)若选择条件①:由a n+1=a n2+12n,得a n+1⋅2n+1=a n⋅2n+2,即a n+1⋅2n+1−a n⋅2n=2,又n=1时,a1×21=2,所以{a n⋅2n}是以2为首项,以2为公差的等差数列,所以a n⋅2n=2+2(n−1)=2n,即a n=2n2n;若选择条件②:由2na n+1=(n+1)a n,得a n+1n+1=12×a nn,又n=1时,a11=1,所以数列{a nn }是以1为首项,以12为公比的等比数列,所以a nn =(12)n−1,即a n=n2n−1=2n2n;(2)由(1)可知S n=221+422+623+⋯+2n2n,则12S n=222+423+⋯+2n−22n+2n2n+1,两式相减得12S n=1+222+223+⋯+22n−2n2n+1=1+2(122+123+⋯+12n)−n2n=1+2×14[1−(12)n−1]1−12−n2n=2−n+22n,所以S n=4−2n+42n<4,故正实数m的最小值为4.【解析】(1)若选择条件①:根据a n+1=a n2+12n可得a n+1⋅2n+1=a n⋅2n+2,即a n+1⋅2n+1−a n⋅2n=2,结合a1×21=2即可得到{a n⋅2n}的通项公式,进一步可得{a n}的通项公式;若选择条件②:由2na n+1=(n+1)a n可得a n+1n+1=12×a nn,结合a11=1即可求出{a nn}的通项公式,进一步可得{a n}的通项公式;(2)由(1)可知S n=221+422+623+⋯+2n2n,则12S n=222+423+⋯+2n−22n+2n2n+1,从而两式相减并化简整理可得出S n =4−2n+42n<4,进一步即可确定正整数m 的最小值.本题考查数列的递推公式,错位相减求和法,考查学生的逻辑推理和运算求解的能力,属于中档题.22.【答案】解:(1)伯努利双纽线C(如图)的普通方程为(x 2+y 2)2=2(x 2−y 2),根据{x =ρcosθy =ρsinθx 2+y 2=ρ2转换为极坐标方程为ρ2=2cos2θ;直线l 的参数方程为{x =tcosαy =tsinα(其中α∈(0,π4),t 为参数),转换为直角坐标方程为y =tanαx ;转换为极坐标方程为θ=α(α∈(0,π4)),(2)当θ=0时,则ρ2=2,所以A(−√2,0),B(√2,0);又θ=α,且α∈(0,π4),是经过原点,结合伯努利双纽线C 的对称性知:点M 和N 的纵标和横标互为相反数;若点M 在第一象限,则点N 在第三象限; 所以S 四边形AMBN =2S △ABM =|AB|⋅y M =2√2⋅|y M |, 联立{ρ2=2cos2θθ=α,则ρ=√2cos2α,y M =ρsinα,所以y M =√2sin 2α(1−2sin 2α)=2√12sin 2α−sin 4α=2√116−(14−sin 2α)2,由于α∈(0,π4), 所以sin 2α∈(0,12), 所以0<y M ≤12.故当y M =12时S 四边形AMBN =2S △ABM =|AB|⋅y M =2√2⋅|y M |=√2.【解析】(1)直接利用转换关系,在参数方程、极坐标方程和直角坐标方程之间进行转换;(2)利用三角函数的关系式的变换和二次函数性质的应用求出四边形面积的最大值. 本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,三角形的面积公式,三角函数的关系式的变换,二次函数性质,主要考查学生的运算能力和数学思维能力,属于中档题.23.【答案】解:(1)由题意可得{2b =2√3a +c =3a 2=b 2+c 2,解得{b =√3a =2c =1,所以椭圆方程为x 24+y 23=1, 离心率e =c a =12,证明:(2)当直线l 的斜率存在时,可设l :y =kx +m ,代入椭圆方程x 24+y 23=1,得(3+4k 2)x 2+8kmx +4m 2−12=0,设M(x 1,y 1),N(x 2,y 2),所以{x 1+x 2=−8km 3+4k x 1x 2=4m 2−123+4k 2, 由(1)可知,点A(−2,0),离心率e =12,因为直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,所以k AM ⋅k AN =−12,所以k AM ∗k AN =k 2x 1x 2−km(x 1+x 2)+m 2x 1x 2+2(x 1+x 2)+4=−12, 把{x 1+x 2=−8km 3+4k 2x 1x 2=4m 2−123+4k 2代入,整理得5m 2−8km −4k 2=0, 即(m −2k)(5m +2k)=0,所以m =2k 或m =−25k ,由直线l :y =kx +m ,当m =2k 时,y =kx +2k =k(x +2)经过定点(−2,0),与A 重合,舍去, 当m =−25k 时,v =kx −25k =k(x −25)经过B 定点(25,0).所以l 过定点(25,0).【解析】(1)用待定系数法求出椭圆C 的方程;(2)运用“设而不求法“,结合韦达定理和直线恒过定点的求法,可得直线l 经过定,0).点(25本题考查椭圆的方程及直线与椭圆的综合,属于难题.。
2021-2022学年天津市蓟县高三(上)期中数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.函数的定义域为集合A,函数y=ln(2x+1)的定义域为集合B,则A∩B=( )A .B .C .D .2.函数f(x)=|x﹣2|﹣lnx在定义域内零点可能落在下列哪个区间内( )A.(0,1)B.(2,3)C.(3,4)D.(4,5)3.已知向量,,满足(+2)(﹣)=﹣6,且||=1,||=2,则与的夹角为( )A .B .C .D .4.将函数y=sin2x 的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是( )A.y=2cos2x B.y=2sin2x C .D.y=cos2x5.由直线y=x和曲线y=x3围成的封闭图形面积为( )A .B .C.1 D.26.有四个关于三角函数的命题:p1:∃A∈R ,+=;p2:∃A,B∈R,sin(A﹣B)=sinA﹣sinB;p3:∀x∈[0,π],=sinx,p4:sinx=cosy→x+y=其中假命题是( )A.P1,P4B.P2,P4C.P1,P3D.P2,P37.已知函数f(x)=满足对任意的实数x1≠x2,都有>0成立,则实数a的取值范围是( )A.(0,1)B.(0,)C.[,)D.[,1)8.定义在R上的函数f(x)满足f(4)=1,f′(x)为f(x)的导函数,已知y=f′(x)的图象如图所示,若两个正数a,b 满足的取值范围是( ) A .B .C .D.(﹣∞,3)二、填空题(共6小题,每小题5分,满分30分)9.函数f(x)=sinωx•cosωx的最小正周期为2,则ω=__________.10.已知x,y∈R+,x+y=1,则+的最小值为__________.11.已知函数y=f(x)为R上的奇函数,且x≥0时,f(x)=x2+2x﹣2x+1+a ,则f(﹣1)=__________.12.在极坐标系中,过点M(,)的直线l与极轴的夹角α=,l的极坐标方程为__________.13.(几何证明选讲选做题)如图,半径为2的⊙O中,∠AOB=90°,D为OB的中点,AD的延长线交⊙O于点E,则线段DE的长为__________.14.在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,动点E和F分别在线段BC和DC上,且=λ,=,则•当λ=__________时有最小值为__________.三、解答题(共6小题,满分80分)15.(13分)在△ABC中,BC=,AC=3,sinC=2sinA.(1)求AB的值;(2)已知D为AB的中点,求线段CD的长.16.(13分)已知函数f(x)=x﹣alnx,g(x)=﹣,(a∈R)(1)若a=1,求函数f(x)的极值;(2)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间.17.(13分)已知f(x)=sin(2x﹣),且f(a+)=﹣,<α<.(1)求cosα;(2)求.18.(13分)若函数f(x)=2sinxcosx+2cos2x+m在区间[0,]的最大值为6.(1)求常数m的值;(2)求函数当x∈R时的最小值,并求出相应的x的取值集合;(3)求该函数x∈[0,π]的单调增区间.19.(14分)设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值;(2)当x∈[1,e]时,求f(x)的最值;(3)证明:f(x)≤2x﹣2.20.(14分)已知函数f(x)=(x2﹣3x+3)•e x,设t>﹣2,f(﹣2)=m,f(t)=n.(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(2)试推断m,n的大小并说明理由;(3)求证:对于任意的t>﹣2,总存在x0∈(﹣2,t),满足=,并确定这样的x0的个数.2021-2022学年天津市蓟县高三(上)期中数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.函数的定义域为集合A,函数y=ln(2x+1)的定义域为集合B,则A∩B=( )A .B .C .D .【考点】交集及其运算;对数函数的定义域.【专题】计算题.【分析】依据负数没有平方根列出关于x的不等式,求出不等式的解集即为集合A,依据负数和0没有对数列出关于x的不等式,求出不等式的解集即为集合B,然后求出两集合的交集即可.【解答】解:由函数有意义,得到1﹣2x≥0,解得:x ≤,所以集合A={x|x ≤};由函数y=ln(2x+1)有意义,得到2x+1>0,解得:x >﹣,所以集合B={x|x >﹣},在数轴上画出两集合的解集,如图所示:则A∩B=(﹣,].故选A【点评】此题属于以函数的定义域为平台,考查了交集的运算.此类题往往借助数轴来计算,会收到意想不到的收获.2.函数f(x)=|x﹣2|﹣lnx在定义域内零点可能落在下列哪个区间内( )A.(0,1)B.(2,3)C.(3,4)D.(4,5)【考点】函数零点的判定定理.【专题】计算题.【分析】欲求函数的零点所在的区间,依据所给的函数的解析式,把区间的端点代入函数的解析式进行验算,得到函数的值同0进行比较,在推断出区间两个端点的乘积是否小于0,从而得到结论.【解答】解:∵函数f(x)=|x﹣2|﹣lnxf(1)=1>0,f(2)=﹣ln2<0f(3)=1﹣ln3<0,f(4)=2﹣ln4>0 f(5)=3﹣ln5>0∴f(1)f(2)<0,f(3)f(4)<0∴函数的零点在(1,2),(3,4)上,故选C.【点评】本题考查函数的零点的判定定理,本题解题的关键是做出区间的两个端点的函数值,本题是一个基础题.3.已知向量,,满足(+2)(﹣)=﹣6,且||=1,||=2,则与的夹角为( )A .B .C .D .【考点】数量积表示两个向量的夹角.【专题】计算题;平面对量及应用.【分析】利用向量的数量积公式,化简等式,即可求得与的夹角.【解答】解:设与的夹角为θ∵(+2)•(﹣)=﹣6,且||=1,||=2,∴1+•﹣8=﹣6∴•=1∵•=||||cosθ∴cosθ=,又∵θ∈[0,π]∴θ=故选B.【点评】本题考查向量的数量积公式,考查同学的计算力量,属于基础题.4.将函数y=sin2x 的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是( )A.y=2cos2x B.y=2sin2x C .D.y=cos2x【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】依据向左平移,再向上平移,推出函数的解析式,即可.【解答】解:将函数y=sin2x 的图象向左平移个单位,得到函数=cos2x的图象,再向上平移1个单位,所得图象的函数解析式为y=1+cos2x=2cos2x,故选A.【点评】本题考查函数y=Asin(ωx+φ)的图象变换,考查图象变化,是基础题.5.由直线y=x和曲线y=x3围成的封闭图形面积为( )A .B .C.1 D.2【考点】定积分在求面积中的应用.【专题】计算题;导数的概念及应用.【分析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数x3﹣x在区间[0,1]上的定积分的值的2倍,再用定积分计算公式加以运算即可得到本题答案.【解答】解:∵曲线y=x3和曲线y=x的交点为A(1,1)、原点O和B(﹣1,﹣1)∴由定积分的几何意义,可得所求图形的面积为S=2=2()=2()=故选:B【点评】本题求两条曲线围成的曲边图形的面积,着重考查了定积分的几何意义和积分计算公式等学问,属于基础题.6.有四个关于三角函数的命题:p1:∃A∈R ,+=;p2:∃A,B∈R,sin(A﹣B)=sinA﹣sinB;p3:∀x∈[0,π],=sinx,p4:sinx=cosy→x+y=其中假命题是( )A.P1,P4B.P2,P4C.P1,P3D.P2,P3【考点】命题的真假推断与应用.【专题】计算题.【分析】推断特称命题为真只须举特例即可,推断全称命题为真,则需要严格证明,推断特称命题为假,须严格证明,而推断全称命题为假,只须举反例即可.【解答】解:∵恒成立,∴命题p1为假命题∵当A=0,B=0时,sin(A﹣B)=sinA﹣sinB,∴命题p2为真命题∵==|sinx|,而x∈[0,π],∴sinx≥0,∴=sinx∴命题p3为真命题∵sin=cos0,而+0≠,∴命题p4为假命题故应选A【点评】本题考查了推断全称命题和特称命题真假的方法,解题时要精确把握命题特点,恰当推断7.已知函数f(x)=满足对任意的实数x1≠x2,都有>0成立,则实数a的取值范围是( )A.(0,1)B.(0,)C.[,)D.[,1)【考点】函数单调性的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】依据条件便有,从而得到f(x)在R上单调递减,这样依据一次函数、对数函数及减函数的定义便可得到,这样解该不等式组便可得出实数a的取值范围.【解答】解:依据条件知,f(x)在R上单调递减;∴;解得;∴实数a的取值范围为[).故选:C.【点评】考查减函数的定义,依据减函数的定义推断一个函数为减函数的方法,以及一次函数、对数函数及分段函数的单调性.8.定义在R上的函数f(x)满足f(4)=1,f′(x)为f(x)的导函数,已知y=f′(x)的图象如图所示,若两个正数a,b 满足的取值范围是( )A .B .C .D.(﹣∞,3)【考点】简洁线性规划的应用;函数的单调性与导数的关系.【专题】压轴题;图表型.【分析】先依据导函数的图象推断原函数的单调性,从而确定a、b的范围得到答案.【解答】解:由图可知,当x>0时,导函数f'(x)>0,原函数单调递增∵两正数a,b满足f(2a+b)<1,∴0<2a+b<4,∴b<4﹣2a,0<a<2,画出可行域如图.k=表示点Q(﹣1,﹣1)与点P(x,y)连线的斜率,当P点在A(2,0)时,k 最小,最小值为:;当P点在B(0,4)时,k最大,最大值为:5.取值范围是C.故选C.【点评】本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.二、填空题(共6小题,每小题5分,满分30分)9.函数f(x)=sinωx•cosωx的最小正周期为2,则ω=.【考点】三角函数的周期性及其求法.【专题】计算题;函数思想;分析法;三角函数的图像与性质.【分析】由二倍角公式化简函数解析式可得f(x)=sin2ωx,由周期公式即可解得ω的值.【解答】解:∵f(x)=sinωx•cosωx=sin2ωx,最小正周期为2,∴2=,解得:ω=.故答案为:.【点评】本题主要考查了二倍角公式,周期公式的应用,属于基础题.10.已知x,y∈R+,x+y=1,则+的最小值为3.【考点】基本不等式.【专题】转化思想;不等式的解法及应用.【分析】首先,将所给的条件代入,转化为基本不等式的结构形式,然后,利用基本不等式进行求解.【解答】解:∵x,y∈R+,x+y=1,∴+=+=++1≥2+1=3,故答案为:3.【点评】本题重点考查了基本不等式问题,考查等价转化思想的机敏运用,属于中档题.11.已知函数y=f(x)为R上的奇函数,且x≥0时,f(x)=x2+2x﹣2x+1+a,则f(﹣1)=﹣1.【考点】函数奇偶性的性质;函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】利用函数的奇偶性,直接求解函数值即可.【解答】解:函数y=f(x)为R上的奇函数,且x≥0时,f(x)=x2+2x﹣2x+1+a,可得f(0)=02+2×0﹣20+1+a=0,解得a=2.x≥0时,f(x)=x2+2x﹣2x+1+2,f(﹣1)=﹣f(1)=﹣[12+2﹣21+1+2]=﹣1.故答案为:﹣1.【点评】本题考查函数的奇偶性的性质的应用,考查计算力量.12.在极坐标系中,过点M(,)的直线l与极轴的夹角α=,l的极坐标方程为ρcosθ﹣ρsinθ﹣+1=0.【考点】简洁曲线的极坐标方程.【专题】计算题;函数思想;分析法;坐标系和参数方程.【分析】先把点的极坐标化为直角坐标,再求得直线方程的直角坐标方程,化为极坐标方程.【解答】解:在直角坐标系中,过点M(,)的直线l与极轴的夹角α=的直线的斜率为,其直角坐标方程是y﹣1=(x﹣1),即x+y﹣+1=0,其极坐标方程为ρcosθ﹣ρsinθ﹣+1=0,故答案为:ρcosθ﹣ρsinθ﹣+1=0,【点评】本题考查极坐标方程与直角坐标方程的互化,求出直角坐标系中直线的方程是解题的关键.13.(几何证明选讲选做题)如图,半径为2的⊙O中,∠AOB=90°,D为OB的中点,AD的延长线交⊙O于点E,则线段DE的长为.【考点】与圆有关的比例线段.【专题】计算题.【分析】延长BO交⊙O与点C,我们依据已知中⊙O的半径为2,,∠AOB=90°,D为OB 的中点,我们易得,代入相交弦定理,我们即可求出线段DE的长.【解答】解:延长BO交⊙O与点C,由题设知:,又由相交弦定理知AD•DE=BD•DC,得故答案为:【点评】本题考查的学问是与圆有关的比例线段,其中延长B0交圆于另一点C,从而构造相交弦的模型是解答本题的关键.14.在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,动点E和F分别在线段BC和DC上,且=λ,=,则•当λ=时有最小值为.【考点】平面对量数量积的运算.【专题】综合题;转化思想;向量法;平面对量及应用.【分析】利用等腰梯形的性质结合向量的数量积公式将所求表示为关于λ的代数式,依据具体的形式求最值.【解答】解:由题意,得到AD=BC=CD=2,所以=(+)•(+),=(+)(+),=•+λ++•,=4×2×cos60°+λ×2×2×cos60°+×4×2+×2×2×cos120°,=+2λ+≥+2×2=,(当且仅当λ=时等号成立).故答案为:,.【点评】本题考查了等腰梯形的性质以及向量的数量积公式的运用、基本不等式求最值;关键是正确表示所求,利用基本不等式求最小值.三、解答题(共6小题,满分80分)15.(13分)在△ABC中,BC=,AC=3,sinC=2sinA.(1)求AB的值;(2)已知D为AB的中点,求线段CD的长.【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】(1)依据正弦定理即可求值得解.(2)依据余弦定理可求cosA,由D为AB边的中点,可求AD,依据余弦定理即可求得CD的值.【解答】(本题满分13分)解:(1)在△ABC 中,依据正弦定理,,于是.…(2)在△ABC 中,依据余弦定理,得,∵D为AB边的中点,∴AD=,在△ACD 中,由余弦定理有:.…(13分)【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.16.(13分)已知函数f(x)=x﹣alnx,g(x)=﹣,(a∈R)(1)若a=1,求函数f(x)的极值;(2)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间.【考点】利用导数争辩函数的极值.【专题】导数的综合应用.【分析】(Ⅰ)先求出函数f(x)的导数,得到函数的单调区间,从而求出函数的微小值;(Ⅱ)先求出函数h (x)的导数,通过争辩a的范围,从而得到函数的单调性.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),当a=1时,f(x)=x﹣lnx,f′(x)=1﹣=,x (0,1) 1 (1,+∞)f′(x)﹣0 +f(x)微小∴f(x)在x=1处取得微小值1;(Ⅱ)h(x)=x+﹣alnx,h′(x)=1﹣﹣=,①当a+1>0时,即a>﹣1时,在(0,1+a)上,h′(x)<0,在(1+a,+∞)上,h′(x)>0,∴h(x)在(0,1+a)递减,在(1+a,+∞)递增;②当1+a≤0,即a≤﹣1时,在(0,+∞)上h′(x)>0,∴h(x)在(0,+∞)上递增.【点评】本题考查了函数的单调性、极值问题,考查导数的应用,分类争辩思想,是一道中档题.17.(13分)已知f(x)=sin(2x ﹣),且f (a+)=﹣,<α<.(1)求cosα;(2)求.【考点】三角函数中的恒等变换应用.【专题】计算题;函数思想;三角函数的求值.【分析】(1)直接利用函数值列出方程,求出,利用两角和与差的三角函数求解即可.(2)求出正切函数值,化简所求的表达式为正切函数的形式,代入求解即可.【解答】解:(Ⅰ).∴,∵,∴,又∵,∴∴=…(Ⅱ)同理(Ⅰ),,∴,,∴原式=…(13分)【点评】本题考查两角和与差的三角函数,同角三角函数的基本关系式的应用,考查计算力量.18.(13分)若函数f(x)=2sinxcosx+2cos2x+m在区间[0,]的最大值为6.(1)求常数m的值;(2)求函数当x∈R时的最小值,并求出相应的x的取值集合;(3)求该函数x∈[0,π]的单调增区间.【考点】两角和与差的正弦函数;正弦函数的单调性;三角函数的最值.【专题】计算题;函数思想;三角函数的图像与性质.【分析】化简函数的解析式为一个角的一个三角函数的形式,(1)利用已知条件求出相位的范围,然后求解m即可.(2)求出函数的最小值,然后求解x的集合.(3)利用正弦函数的单调区间求解函数的单调区间即可.【解答】解:(1)∵函数f(x )在区间上为增函数,在区间上为减函数,∴在区间的最大值为=6,∴解得m=3.(2)(x∈R)的最小值为﹣2+4=2.此时x 的取值集合由,解得:…(3)函数设z=,函数f(x)=2sinz+4的单调增区间为由,得,设A=[0,π]B={x|},∴∴,x∈[0,π]的增区间为:.…(13分)【点评】本题考查两角和与差的三角函数,函数的最值以及函数的单调区间的求法,考查计算力量.19.(14分)设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值;(2)当x∈[1,e]时,求f(x)的最值;(3)证明:f(x)≤2x﹣2.【考点】利用导数争辩曲线上某点切线方程;利用导数求闭区间上函数的最值.【专题】方程思想;构造法;导数的综合应用;不等式的解法及应用.【分析】(1)求得函数的导数,由题意可得f(1)=0,f′(1)=2,解方程可得a,b的值;(2)求得导数,求得极值点,求出端点处的函数值,可得最值;(3)构造函数g(x)=f(x)﹣(2x﹣2)=2﹣x﹣x2+3lnx,求出导数和单调区间,可得极值和最值,即可证得不等式.【解答】解:(1)函数f(x)=x+ax2+blnx 的导数为.由已知条件得,解得a=﹣1,b=3.(2)f(x)的定义域为(0,+∞),由(1)知f(x)=x﹣x2+3lnx.令f′(x)=0解得.xf′(x)+ 0 ﹣f(x)增减当x=时,取得最大值;当x=e时,取得最小值f(e)=e﹣e2+3.(3)设g(x)=f(x)﹣(2x﹣2)=2﹣x﹣x2+3lnx,,当0<x<1时,g′(x)>0,当x>1时,g′(x)<0,则g(x)在(0,1)递增,在(1,+∞)递减.即有x=1处取得极大值,且为最大值0故当x>0时,g(x)≤0,即f(x)≤2x﹣2.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查构造函数的思想方法证明不等式,属于中档题.20.(14分)已知函数f(x)=(x2﹣3x+3)•e x,设t>﹣2,f(﹣2)=m,f(t)=n.(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(2)试推断m,n的大小并说明理由;(3)求证:对于任意的t>﹣2,总存在x0∈(﹣2,t),满足=,并确定这样的x0的个数.【考点】利用导数求闭区间上函数的最值;根的存在性及根的个数推断;利用导数争辩函数的单调性;利用导数争辩函数的极值.【专题】综合题.【分析】(Ⅰ)首先求出函数的导数,然后依据导数与函数单调区间的关系确定t的取值范围,(Ⅱ)运用函数的微小值进行证明,(Ⅲ)首先对关系式进行化简,然后利用根与系数的关系进行判定.【解答】解:(1)由于f′(x)=(2x﹣3)e x+(x2﹣3x+3)e x,由f′(x)>0⇒x>1或x<0,由f′(x)<0⇒0<x<1,∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,要使函数f(x)在[﹣2,t]上为单调函数,则﹣2<t≤0,(2)由于函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,所以f(x)在x=1处取得微小值e,又f(﹣2)=13e﹣2<e,所以f(x)在[2,+∞)上的最小值为f(﹣2),从而当t>﹣2时,f(﹣2)<f(t),即m<n,(3)证:∵,∴,即为x02﹣x0=,令g(x)=x2﹣x ﹣,从而问题转化为证明方程g(x)==0在(﹣2,t)上有解并争辩解的个数,由于g(﹣2)=6﹣(t﹣1)2=﹣,g(t)=t(t﹣1)﹣=,所以当t>4或﹣2<t<1时,g(﹣2)•g(t)<0,所以g(x)=0在(﹣2,t)上有解,且只有一解,当1<t<4时,g(﹣2)>0且g(t)>0,但由于g(0)=﹣<0,所以g(x)=0在(﹣2,t)上有解,且有两解,当t=1时,g(x)=x2﹣x=0,解得x=0或1,所以g(x)=0在(﹣2,t)上有且只有一解,当t=4时,g(x)=x2﹣x﹣6=0,所以g(x)=0在(﹣2,t)上也有且只有一解,综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),满足,且当t≥4或﹣2<t≤1时,有唯一的x0适合题意,当1<t<4时,有两个x0适合题意.【点评】本题以函数为载体,考查利用导数确定函数的单调性,考查函数的极值,同时考查了方程解的个数问题,综合性强,尤其第(3)问力量要求比较高.。
兰州一中2020-2021-1学期期中考试试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 请将答案填在答题卡上.第Ⅰ卷(选择题共60分)注意事项:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并请认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目标号涂黑,如需改动,用橡皮擦干净后,再选择其它答案标号,在试卷上答案无效.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( ) A.0B.1C.2D.32.已知z =11+i +i (i 为虚数单位),则|z |=( )A.12B.22C.32D.2 3.某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n 等于( ) A.12B.18C.24D.364.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A.6B.5C.4D.35.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|2a -b |等于( ) A.2 2B.17C.15D.2 56. ( )A.a b c <<B.b c a <<C.c a b <<D.c b a <<7.已知命题p :x 2+2x -3>0;命题q :x >a ,且q ⌝的充分不必要条件是p ⌝,则a 的取值范围是( ) A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]8.函数y =2|x |·sin 2x 的图象可能是( )212(),52xx f x x x ⎧-≤⎪=⎨-+>⎪⎩9.函数若互不相等的实数a ,b ,c 满足f (a )=f (b )=f (c ),则2a +2b +2c 的取值范围是( ) A.(16,32)B.(18,34)C.(17,35)D.(6,7)10.函数f (x )的定义域为D ,若满足:①f (x )在D 内是单调函数;②存在[a ,b ]⊆D ,使f (x )在 [a ,b ]上的值域为⎣⎡⎦⎤a 2,b 2,那么就称y =f (x )为“半保值函数”,若函数f (x )=log a (a x +t 2)(a >0,且a ≠1)是“半保值函数”,则t 的取值范围为( ) A.⎝⎛⎭⎫0,14 B.⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-12,12 11.已知函数f (x )=kx +1,g (x )=e x +1(-1≤x ≤1),若f (x )与g (x )的图象上分别存在点M ,N ,使得点M ,N 关于直线y =1对称,则实数k 的取值范围是( ) A.⎣⎡⎭⎫1e ,+∞ B.⎣⎡⎦⎤-e ,1e C.[-e ,+∞) D.(]-∞,-e ∪⎣⎡⎭⎫1e ,+∞ 12.已知f (x )在R 上是奇函数,且f ′(x )为f (x )的导函数,对任意x ∈R ,均有()'()ln 2f x f x >成立,若f (-2)=2,则不等式f (x )>-2x-1的解集为( )A.(-2,+∞)B.(2,+∞)C.(-∞,2)D.(-∞,-2)第Ⅱ卷(非选择题 共90分)注意事项:本卷共10小题,用黑色碳素笔将答案答在答题卡上.答在试卷上的答案无效.二、填空题:本大题共4小题,每小题5分,共20分. ()2log 013.30x x x f x x >⎧=⎨≤⎩已知函数,则18f f ⎡⎤⎛⎫=⎪⎢⎥⎝⎭⎣⎦ ________.()22214.4=x x dx --+⎰定积分________.15.若,,a b c 均为正数, 且346a b c ==, 则2c ca b+的值是_______________. ()()1123116.21x a x a x f x R a x -⎧-+<=⎨≥⎩已知函数的值域为,则实数的取值范围是______. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (本题满分12分)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且满足 (a +b +c )(sin B +sin C -sin A )=b sin C . (1)求角A 的大小;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值.18.(本题满分12分)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形, AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.序号 分组(分数段) 频数(人数) 频率 1 [0, 60) a 0.1 2[60, 75)15b19.(本题满分12分)为迎接我校建校120周年,某班开展了一次“校史知识”竞赛活动,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,成绩均为整数)进行统计,制成如右图的频率分布表: (1)求,,,a b c d 的值;(2)决赛规则如下:为每位参加决赛的选手准备四道题目,选手对其依次作答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对一道,则获得二等奖.某同学进入决赛,每道题答对的概率P 的值恰好与频率分布表中不少于90分的频率的值相同.设该同学决赛中答题个数为X ,求X 的分布列以及X 的数学期望.20.(本题满分12分)已知P 点坐标为(0,-2),点A ,B 分别为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,直线BP 交E 于点Q ,△ABP 是等腰直角三角形,且PQ →=32QB →.(1)求椭圆E 的方程;(2)设过点P 的动直线l 与E 相交于M ,N 两点,当坐标原点O 位于以MN 为直径的圆外时,求直线l 斜率的取值范围.21.(本题满分12分)已知函数f (x )=-a ln x +x +1-ax .(1)讨论函数f (x )的单调性;(2)设g (x )=e x +mx 2-2e 2-3,当a =e 2+1时,对任意x 1∈[1,+∞),存在x 2∈[1,+∞),使g (x 2)≤ f (x 1),求实数m 的取值范围.选考题:(请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.请在答题卷上注明题号.)22.(本题满分10分)平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρ(cos θ-sin θ)=1.(1)求C 的普通方程和l 的直角坐标方程;(2)已知直线l 与y 轴交于点M ,且与曲线C 交于A ,B 两点,求⎪⎪⎪⎪1|MA |-1|MB |的值.23.(本题满分10分)已知函数()|21||23|f x x x =++-. (1)求不等式6)(≤x f 的解集;(2)若关于x 的不等式|1|)(-<a x f 的解集非空,求实数a 的取值范围.兰州一中2020-2021学年度高三第一学期期中数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分, 考试时间120分钟. 请将答案填在答题卡上.第Ⅰ卷(选择题共60分)注意事项:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并请认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目标号涂黑,如需改动,用橡皮擦干净后,再选择其它答案标号,在试卷上答案无效.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( C ) A.0B.1C.2D.32.已知z =11+i +i(i 为虚数单位),则|z |=( B )A.12B.22C.32D.23.某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n 等于( D ) A.12B.18C.24D.364.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( C ) A.6B.5C.4D.35.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|2a -b |等于( A ) A.2 2B.17C.15D.25.6.6.设123log 2,ln 2,5a b c -===,则 ( C )A.a b c <<B.b c a <<C.c a b <<D.c b a <<7.已知命题p :x 2+2x -3>0;命题q :x >a ,且q ⌝的一个充分不必要条件是p ⌝,则a 的取值范围是( A ) A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]8.函数y =2|x |·sin 2x 的图象可能是( D )9.函数f (x )=⎩⎪⎨⎪⎧|2x -1|,x ≤2,-x +5,x >2.若互不相等的实数a ,b ,c 满足f (a )=f (b )=f (c ),则2a +2b +2c 的取值范围是( B ) A.(16,32)B.(18,34)C.(17,35)D.(6,7)10.函数f (x )的定义域为D ,若满足:①f (x )在D 内是单调函数;②存在[a ,b ]⊆D ,使f (x )在 [a ,b ]上的值域为⎣⎡⎦⎤a 2,b 2,那么就称y =f (x )为“半保值函数”,若函数f (x )=log a (a x +t 2)(a >0,且a ≠1)是“半保值函数”,则t 的取值范围为( B ) A.⎝⎛⎭⎫0,14 B.⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫0,12D.⎝⎛⎭⎫-12,12 11.已知函数f (x )=kx +1,g (x )=e x +1(-1≤x ≤1),若f (x )与g (x )的图象上分别存在点M ,N ,使得点M ,N 关于直线y =1对称,则实数k 的取值范围是( D ) A.⎣⎡⎭⎫1e ,+∞B.⎣⎡⎦⎤-e ,1eC.[-e ,+∞)D.(]-∞,-e ∪⎣⎡⎭⎫1e ,+∞ 12.已知f (x )在R 上是奇函数,且f ′(x )为f (x )的导函数,对任意x ∈R ,均有f (x )>f ′(x )ln 2成立,若f (-2)=2,则不等式f (x )>-2x-1的解集为( C )A.(-2,+∞)B.(2,+∞)C.(-∞,2)D.(-∞,-2)第Ⅱ卷(非选择题 共90分)注意事项:本卷共10小题,用黑色碳素笔将答案答在答题卡上.答在试卷上的答案无效.二、填空题:本大题共4小题,每小题5分,共20分. 13. 已知函数()2log ,0,3,0x x x f x x >⎧=⎨≤⎩则18f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦ 127. 14.定积分⎠⎛-22(4-x 2+x )d x =___2π._____.15.若,,a b c 均为正数, 且346a b c ==, 则2c ca b+的值是___2____________. 16.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是_0≤a <12.___.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且满足(a +b +c )(sin B +sin C -sin A )=b sin C . (1)求角A 的大小;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值. 解 (1)∵(a +b +c )(sin B +sin C -sin A )=b sin C ,∴根据正弦定理,知(a +b +c )(b +c -a )=bc ,即b 2+c 2-a 2=-bc . ∴由余弦定理,得cos A =b 2+c 2-a 22bc =-12.又A ∈(0,π),所以A =23π.(2)根据a =3,A =23π及正弦定理得b sin B =c sin C =a sin A =332=2, ∴b =2sin B ,c =2sin C .∴S =12bc sin A =12×2sin B ×2sin C ×32=3sin B sin C .∴S +3cos B cos C =3sin B sin C +3cos B cos C =3cos(B -C ).故当B =C =π6时,S +3cos B cos C 取得最大值 3.18.(本题满分12分)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值. (1)证明 如图,连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1∥DC ,可得B 1C ∥A 1D ,故ME ∥ND , 因此四边形MNDE 为平行四边形,所以MN ∥ED . 又MN ⊄平面C 1DE ,DE ⊂平面C 1DE , 所以MN ∥平面C 1DE .(2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →,DE →,DD 1→的方向为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0,所以⎩⎨⎧-x +3y -2z =0,-4z =0,可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎨⎧-3q =0,-p -2r =0,可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,则sin 〈m ,n 〉=105,所以二面角A -MA 1-N 的正弦值为105. 19.(本题满分12分)为迎接我校建校110周年,某班开展了一次“校史知识”竞赛活动,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数为均匀整数)进行统计,制成如右图的频率分布表:(Ⅰ)求,,,a b c d 的值;(Ⅱ)决赛规则如下:为每位参加决赛的选手准备四道题目,选手对其依次作答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对一道,则获得二等奖.某同学进入决赛,每道题答对的概率P 的值恰好与频率分布表中不少于90分的频率的值相同.设该同学决赛中答题个数为X ,求X 的分布列以及X 的数学期望.解:(Ⅰ(Ⅱ)X 的可能取值为2,3,4.12(2)0.20.20.04,(3)0.20.80.20.064,P X P X C ==⨯===⨯⨯=1233(4)0.20.80.80.896P X C ==⨯+=所以分布列为:()20.0430.06440.896 3.856E X =⨯+⨯+⨯=20.(本题满分12分)已知P 点坐标为(0,-2),点A ,B 分别为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,直线BP 交E 于点Q ,△ABP 是等腰直角三角形,且PQ →=32QB →.(1)求椭圆E 的方程;(2)设过点P 的动直线l 与E 相交于M ,N 两点,当坐标原点O 位于以MN 为直径的圆外时,求直线l 斜率的取值范围.解 (1)由△ABP 是等腰直角三角形,得a =2,B (2,0).设Q (x 0,y 0),则由PQ →=32QB →,得⎩⎨⎧x 0=65,y 0=-45,代入椭圆方程得b 2=1, 所以椭圆E 的方程为x 24+y 2=1. (2)依题意得,直线l 的斜率存在,方程设为y =kx -2.联立⎩⎪⎨⎪⎧y =kx -2,x 24+y 2=1,y 并整理得(1+4k 2)x 2-16kx +12=0.(*) 因直线l 与E 有两个交点,即方程(*)有不等的两实根,故Δ=(-16k )2-48(1+4k 2)>0,解得k 2>34. 设M (x 1,y 1),N (x 2,y 2),由根与系数的关系得⎩⎨⎧x 1+x 2=16k 1+4k 2,x 1x 2=121+4k 2,因坐标原点O 位于以MN 为直径的圆外,所以OM →·ON →>0,即x 1x 2+y 1y 2>0,又由x 1x 2+y 1y 2=x 1x 2+(kx 1-2)(kx 2-2)=(1+k 2)x 1x 2-2k (x 1+x 2)+4=(1+k 2)·121+4k 2-2k ·16k 1+4k 2+4>0,解得k 2<4,综上可得34<k 2<4, 则32<k <2或-2<k <-32. 则满足条件的斜率k 的取值范围为⎝⎛⎭⎫-2,-32∪⎝⎛⎭⎫32,2. 21.(本题满分12分)已知函数f (x )=-a ln x +x +1-a x.(1)讨论函数f(x)的单调性;(2)设g(x)=e x+mx2-2e2-3,当a=e2+1时,对任意x1∈[1,+∞),存在x2∈[1,+∞),使g(x2)≤f(x1),求实数m的取值范围.解(1)由题意知f(x)的定义域为(0,+∞),f′(x)=-ax+1+a-1x2=(x-1)(x-a+1)x2,令f′(x)=0,得x=1或x=a-1.当a≤1时,a-1≤0,由f′(x)<0得0<x<1,由f′(x)>0得x>1,所以函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.当1<a<2时,0<a-1<1,由f′(x)<0,得a-1<x<1,由f′(x)>0得0<x<a-1或x>1,所以函数f(x)在(a-1,1)上单调递减,在(0,a-1)和(1,+∞)上单调递增. 当a=2时,a-1=1,可得f′(x)≥0,此时函数f(x)在(0,+∞)上单调递增.当a>2时,a-1>1,由f′(x)<0得1<x<a-1,由f′(x)>0得0<x<1或x>a-1,所以函数f(x)在(1,a-1)上单调递减,在(0,1)和(a-1,+∞)上单调递增.(2)当a=e2+1时,由(1)得函数f(x)在(1,e2)上单调递减,在(0,1)和(e2,+∞)上单调递增,从而f(x)在[1,+∞)上的最小值为f(e2)=-e2-3.对任意x1∈[1,+∞),存在x2∈[1,+∞),使g(x2)≤f(x1),即存在x 2∈[1,+∞),使g (x 2)的函数值不超过f (x )在区间[1,+∞)上的最小值-e 2-3.由e x +mx 2-2e 2-3≤-e 2-3得e x +mx 2≤e 2,m ≤e 2-e xx 2. 记p (x )=e 2-e xx 2,则当x ∈[1,+∞)时,m ≤p (x )max . p ′(x )=-e x x 2-2(e 2-e x )x (x 2)2=-e x x +2(e 2-e x )x 3, 当x ∈[1,2]时,显然有e x x +2(e 2-e x )>0,p ′(x )<0,当x ∈(2,+∞)时,e x x +2(e 2-e x )>e x x -2e x >0,p ′(x )<0,故p (x )在区间[1,+∞)上单调递减,得p (x )max =p (1)=e 2-e ,从而m 的取值范围为(-∞,e 2-e].四.选考题:(请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.请在答题卷上注明题号.)22. (本题满分10分)坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρ(cos θ-sin θ)=1.(1)求C 的普通方程和l 的直角坐标方程;(2)已知直线l 与y 轴交于点M ,且与曲线C 交于A ,B 两点,求⎪⎪⎪⎪1|MA |-1|MB |的值.解 (1)将直线l 的极坐标方程ρ(cos θ-sin θ)=1化为直角坐标方程为x -y -1=0.将曲线C 的参数方程⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数)化为普通方程为x 2+y 2=9. (2)由(1)知点M (0,-1),故直线l 的参数方程为⎩⎨⎧x =22t ,y =-1+22t(t 为参数),代入圆的方程为t 2-2t -8=0,设A ,B 对应的参数为t 1和t 2,所以t 1+t 2=2,t 1·t 2=-8.故⎪⎪⎪⎪1|MA |-1|MB |=|t 1+t 2||t 1t 2|=28. 23.(本题满分10分)已知函数()|21||23|f x x x =++-. (Ⅰ)求不等式6)(≤x f 的解集;(Ⅱ)若关于x 的不等式|1|)(-<a x f 的解集非空,求实数a 的取值范围. 解:(Ⅰ)原不等式等价于即不等式的解集为}21|{≤≤-x x .,解此不等式得53>-<a a 或.。
高三数学期中试卷(理)
一.选择题(每小题5分,共60分)
1.若集合}),{(2x y y x M ==,}2),{(2
+=
=x y y x P ,那么=P M (
)
A
.),0[+∞ B .),2[+∞
C
.{})1,1(),1,1(- D .{})2,2(),2,2(-
2.已知等比数列的公比是2,且前四项的和为1,那么前八项的和为 ( )
A .15
B .17
C .19
D .21
3.条件P:,||x x =
条件
q :,2x x -≥ 则p 是q 的( )
A .充分不必要条件
B .必要不充分条件 C
.充要条件 D .既不充分也不必要条件
4.函数x
x y )3lg(-=的定义域是( ) A .{}0|≠x x B .{}3|>x x
C .{}3|≥x x
D . {}4|≥x x
5. 函数1
33
+=x
x
y 的值域是( )
A .),21
[+∞
B .)1,43
[
C . (0,1)
D .)1,2
1
[
6. lg ||x y
=的图象大致是 ( )
7.已知函数f (x )=x
3
1log
+2的定义域为(0,3],则它的反函数)(1
x f
-的定义域为 ( )
A.[-1,1]
B.(-∞,1]
C.[1,+∞)
D.[3,+∞)
8.已知函数)3(log )(22a ax x x f +-=在区间[)∞+,3上是增函数,则实数a 的取值范围是( )
A .(]6,∞-
B .(]6,9-
C .(][)∞+⋃-∞-,69,
D .(]9,6-
9.已知定义在R 上的函数y=f (x)满足以下三个条件:①对于任意的x ∈R ,都有
(4)()
f x f x +=;②对于任意的
12,x x R
∈,且1202x x ≤<≤,都有f (x 1)<f (x 2);
③函数y=f (x+2)的图象关于y 轴对称。
则下列结论中正确的是 ( ) (A )f (4.5)<f (7)<f (6.5) (B )f (7)<f (4.5)<f (6.5) (C )f (7)<f (6.5)<f (4.5) (D )f (4.5)<f (6.5)<f (7)
10.若数列{}n a 对于任意的,n N *∈满足224.n n n a a a ++=,且372,4a a ==,则15a =( )
A .8
B .12
C .16
D .32
11.若数列20
11
,76,)
121(12)210(2}{a a a a a a a a n
n n n n n 则若满足=⎪⎪⎩
⎪⎪⎨⎧
<≤-<≤=+的值为 ( )
A .7
6
B .
7
5
C .7
3
D .7
1
12、设函数)
2(log
,2)9()1,0(log )(9
1
-=≠>=f f a a x x f a 则满足的值是 ( )
A .2log
3
B .
2
2 C .2 D .2
二、填空题:(本大题共4小题,每小题4分,共16分)
13.已知函数f (x )=x 3 + ax 2 + bx 在x = 1处有极值为10,则f (2)等于____.
14.若数列{}n x 满足1l g 1l g ()n n x x n N +
+=+∈,且12100100x x x +++= ,则101102200lg()x x x +++ 的值为
__________________.
15.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则a 20
a 10
=__________________.
16.过点P(-1,2)且与曲线y=3 x 2-4x+2在点M(1,1)处的切线平行的直线方程是
_________________.
三、解答题(本大题有6小题,共74分)
17.(本小题满分13分)已知}0)1()1(|{222>++++-=a a y a a y y A ,
}30,2
52
1|{2
≤≤+
-=
=x x x y y B ,若φ=B A ,求实数a 的取值范围
18.求函数2
12x
x y +=的单调区间.
19.已知二次函数f (x )满足:①在1x =时有极值; ②图像过点(0, -3), 且在该点处的切线与直线20x y +=平行. (1)求f (x )的解析式; (2)求函数2
()()
g x f x =的单调递增区间.
20、已知等比数列{}n a ,22a =,5128a = (1)求通项n a
(2)若2log n n b a =,数列{}n b 的前n 项的和为n S ,且360n S =,求n 的值
21.设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设n
n n b a c =,求数列}{n c 的前n 项和T n .
22.(本小题满分14分)
已知函数f x ax x ()ln()=+-221(a 为实数) (I )若f x ()在x =-1处有极值,求a 的值; (II )若f x ()在[32]--,上是增函数,求a 的取范围。