不等式选讲之不等式证明与数学归纳法二轮复习专题练习(一)带答案新高考高中数学
- 格式:doc
- 大小:119.50 KB
- 文档页数:4
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______.2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人得分 二、解答题3.选修4-5:不等式选讲解不等式211x x +--≤.综上所述,不等式211x x +--≤的解集为(],0-∞. …………………………10分4.选修4—5:不等式选讲已知1x ≥,1y ≥,求证:22221x x y xy y x y ++++≤.5.(汇编年高考辽宁卷(文))选修4-5:不等式选讲已知函数()f x x a =-,其中1a >.(I)当=2a 时,求不等式()44f x x ≥=-的解集;(II)已知关于x 的不等式()(){}222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.6.2 .(汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥. 7.已知0a >,0b >,n ∈*N .求证:11n n n n a b ab a b ++++≥. 证明:先证112n n n n a b a b a b +++++≥, 只要证112()()()n n n n a b a b a b +++++≥,即要证11n n n n a b a b ab +++--≥0,即要证()(n n a b a b --)≥0, ………5分 若a b ≥,则a b -≥0,n n a b -≥0,所以()(n n a b a b --)≥0,若a b <,则0a b -<,0n n a b -<,所以()()0n n a b a b -->,综上,得()(n n a b a b --)≥0.从而112n n n n a b a b a b +++++≥, ………8分 因为2a b ab +≥, 所以11n n n na b ab a b ++++≥. ………10分8.已知a ,b ,c 都是正数,且236a b c ++=,求12131a b c +++++的最大值.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.31472.()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m n m 评卷人 得分二、解答题3.含绝对值不等式的解法、分段函数4. 选修4—5:不等式选讲证明:左边-右边=2222()(1)1(1)[(1)1]y y x y x y y yx y x -+--+=--++………4分 =(1)(1)(1)y xy x ---, ………………………………………………………6分 ∵1x ≥,1y ≥,∴0,0,0111y xy x ---≤≥≥. ………………………………………………8分 从而左边-右边≤0,∴22221x x y xy y x y ++++≤. ………………………………………………10分5.6.7.8.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______.2.2 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 评卷人得分 二、解答题3.选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3.证明:因为|m|+|n|≥|m -n|,所以|x a -+≥|.………………………………………… 8分又a ≥2,故21|a -|≥3.所以|x a -+≥.…………………………………………………………………… 10分4.3 .(汇编年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))D.[选修4-5:不定式选讲]本小题满分10分.已知b a ≥>0,求证:b a ab b a 223322-≥-[必做题]第22、23题,每题10分,共20分.请在相应的答题区域内作答,若多做,解答时应写出文字说明、证明过程或演算步骤.5.若⎪⎭⎫ ⎝⎛-∈32,21x ,证明2332321<-++++x x x6.设,,a b c 均为正实数,求证:111111222a b c b c c a a b +++++++≥.7.已知x ,y ,z 均为正数.求证:111.x y z yz zx xy x y z ++++≥8.设a ,b ,c 为正实数,求证:33311123abc a b c+++≥.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.31472.[]0,4 评卷人得分二、解答题3.4.D 证明:∵=---b a ab b a 223322()=---)(223223b b a ab a ())(22222b a b b a a --- ())2)()(()2(22b a b a b a b a b a --+=--=又∵b a ≥>0,∴b a +>0,0≥-b a 02≥-b a ,∴0)2)()((≥--+b a b a b a∴0222233≥---b a ab b a∴b a ab b a 223322-≥-5.证明:由柯西不等式可得 ()()()()()2181232311112131231x x x x x x =++++-++≥+⋅++⋅+-⋅⎡⎤⎣⎦…………………7分 又12,23x ⎛⎫∈-⎪⎝⎭,所以1232332x x x ++++-<.…………………10分 26.选修4-5:不等式选讲解: ∵,,a b c 均为正实数,∴ba ab b a +≥≥⎪⎭⎫ ⎝⎛+121212121,当b a =时等号成立; 则cb bc c b +≥≥⎪⎭⎫ ⎝⎛+121212121,当c b =时等号成立;ac ca a c +≥≥⎪⎭⎫ ⎝⎛+121212121,当a c =时等号成立;三个不等式相加得,ba a c cbc b a +++++≥++111212121,当且仅当c b a ==时等号成立.……………10分.7.选修4-5(不等式选讲)证明:因为x ,y ,z 无为正数.所以12()x y x y yz zx z y x z+=+≥, …………………………4分 同理可得22y z z x zx xy x xy yz y++≥,≥, ……………………………………………………7分 当且仅当x =y =z 时,以上三式等号都成立.将上述三个不等式两边分别相加,并除以2,得111x y z y z z x x y x y z ++++≥. …………10分 8.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 2.已知x y z 、、均为正数,求证:2223111111()3x y z x y z++≤++.评卷人得分 二、解答题3.选修4—5:不等式选讲设2()14,||1f x x x x a =-+-<且,求证:|()()|2(||1)f x f a a -<+.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.4.(汇编年高考课标Ⅱ卷(文))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.5.已知0,0,a b >>且21a b +=,求2224S ab a b =--的最大值.6.已知关于x 的不等式11ax ax a -+-≥(0a >).(1)当1a =时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围.7.证明:+01nn C C +122n n C C +233n n C C 1-+n n n n C nC 2)1(+=n n . 8.若2294 132y x y x +=+求,的最小值,并求相应的x 、y 的值。
【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.[]0,4 2.证明:由柯西不等式得……………5分则,即…………10分 解析:证明:由柯西不等式得2222222111111(111)()()x y z x y z ++++≥++……………5分 则2221111113x y z x y z ⨯++≥++,即2223111111()3x y z x y z ++≤++…………10分 评卷人得分 二、解答题3.4.5.0,0,21,a b a b >>+=∴2224(2)414a b a b ab ab +=+-=-, ………………………………………………………………2分 且1222a b ab =+≥,即24ab ≤,18ab ≤, ……………………………………………………5分 ∴2224S ab a b =--2(14)ab ab =--241ab ab =+-212-≤, 当且仅当11,42a b ==时,等号成立.…………………………………………………………………10分6.(选修4-5:不等式选讲)(1)当1a =时,得211x -≥, 即112x -≥, 解得3122x x ≥≤或, ∴不等式的解集为13(,][,)22-∞+∞. ………………………………………………………5分 (2)∵11,ax ax a a -+-≥- ∴原不等式解集为R 等价于1 1.a -≥ ∴2,0.a a ≥≤或 ∵0a >,∴ 2.a ≥ ∴实数a 的取值范围为),2[+∞. …………………………………………10分7.8.(D )解:由柯西不等式()()()132119422222=+≥++y x y x 219422≥+∴x x 当且仅当 y x y x 321312=⋅=⋅即时取等号 …………………………………………8分 由⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧=+=6141 132,32y x y x y x 得 …………………………………………………………10分。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.1 .(汇编年高考陕西卷(理))(不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为_______. 评卷人得分 二、解答题3.选修4—5:不等式选讲设函数()|21|f x x =-,()|4|g x x =-,且()1f x ≤,()2g y ≤. (1)解不等式()()5f x g x +≤;(2)求证:|23|3x y -+≤.4.已知实数z y x ,,满足,2=++z y x 求22232z y x ++的最小值.【必做题】第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.5.设a 、b 、c 为各不相等的正数,求证:2229a b b c c a a b c ++>+++++.6.已知,,a b c 为实数,且2,a b c ++=求证:222112497a b c ++≥7.已知实数a,b,c ∈R,a+b+c=1,求4a +4b +4c 2的最小值,并求出取最小值时a,b,c 的值。
8.设f (x )= x 2-x + l ,实数a 满足| x -a |<l ,求证:|f (x )-f (a )|<2(| a | +1).【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.;2. 2 评卷人得分 二、解答题3. (1)解:|21||4|5x x -+-≤ 则121245x x x ⎧<⎪⎨⎪-+-⎩≤或者1422145x x x ⎧⎪⎨⎪-+-⎩≤≤≤或者 4<x 2x -1+x -4≤5ìíïîï, 解不等式组得12x <≤0或者122x ≤≤或者x φ∈. 所以不等式的解集为[0,2]. ……………………………………5分(2)证明:因为|21|1x -≤,|4|2y -≤,则|23||(21)(4)||21||4|123x y x y x y --=----+-+=≤≤,故|23|3x y --≤. ……………………………………10分4.由柯西不等式,222222211()(2)(3)()()123x y z x y z ⎡⎤⎡⎤++++⋅++⎢⎥⎣⎦⎣⎦≤, (5)因为2x y z =++,所以222242311x y z ++≥, 当且仅当2311123x y z ==,即6412,,111111x y z ===时,等号成立, 所以22223x y z ++的最小值为2411.…………………………………………………10分5.6.7.8.2()1f x x x =-+,22()()-=--+f x f a x x a a1=-⋅+-x a x a ……………………………………………………………2分 1<+-x a , 又1()21+-=-+-x a x a a …………………………………………… 6分 21≤-+-x a a ……………………………………………8分1212(1)<++=+a a . …………………………………10分。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______.2.已知正数,,x y z 满足2221x y z ++=,则12z S xyz+=的最小值为________ 评卷人得分 二、解答题3.2 .(汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥. 4.解不等式x |x -4|-3<0.5.已知a ,b ,x ,y 均为正数,且1a >1b ,x >y.求证:x x +a >y y +b.6.设1a ,2a ,3a 均为正数,且m a a a m ,a a a 9111:321321≥++=++求证7.设p 是ABC ∆内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC ∆外接圆的半径,证明22212x y z a b c R++≤++.8.设实数,,x y z 满足26x y z ++=,求222x y z ++的最小值,并求此时,,x y z 的值.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.31472.4 评卷人得分 二、解答题3.4. 选修4—5:不等式选讲解 原不等式等价于 ⎩⎨⎧x ≥4,x 2-4x -3<0,或⎩⎨⎧x <4,-x 2+4x -3<0.…………………… 5分 解得⎩⎨⎧x ≥4,2- 7<x <2+ 7,或⎩⎨⎧x <4,x <1或x >3. 即4≤x <2+ 7或3<x <4或x <1.综上,原不等式的解集为{x | x <1或3<x <2+ 7}. (10)分【必做题】第22题、第23题,每题10分,共20分.5.选修45:不等式选讲证明:∵ x x +a -y y +b =x (y +b )-y (x +a )(x +a )(y +b )=bx -a y (x +a )(y +b ), 又b >a >0,x >y >0,∴ (x +a)(y +b)>0,bx >ay ,即bx -ay >0, ∴ x x +a -y y +b >0,即x x +a >y y +b.(10分) 6.7.(选修4—5:不等式选讲)设p 是ABC ∆内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC ∆外接圆的半径,证明22212x y z a b c R++≤++. 证:由柯西不等式得, 111x y z ax by cz a b c ++=++111ax by cz a b c≤++++,…3分 记S 为ABC ∆的面积,则2242abc abc ax by cz S R R++===, ……6分 122abc ab bc ca x y z ab bc ca R abc R++++≤=++22212a b c R ≤++, 故不等式成立.8.解:∵2222222()(112)2)36x y z x y z ++++++=≥(, ………………………5分 ∴2226()x y z ++≥,当且仅当2z x y ==时取等号, ………………………8分 ∵26x y z ++=,∴1,1,2x y z ===.∴222x y z ++的最小值为6,此时1,1,2x y z ===.………………………10分。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.已知正数,,x y z 满足2221x y z ++=,则12z S xyz+=的最小值为________2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人得分 二、解答题3.选修4—5:不等式选讲已知不等式222|2|23a x y z -++≤对满足1x y z ++=的一切实数x ,y ,z 都成立,求实数a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.4.选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3.证明:因为|m|+|n|≥|m -n|,所以|x a -+≥|.………………………………………… 8分又a ≥2,故21|a -|≥3.所以|x a -+≥.…………………………………………………………………… 10分5.1 .(汇编年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))不等式选讲:设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值. 6.设p 是ABC ∆内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC ∆外接圆的半径,证明22212x y z a b c R ++≤++.7.设d c b a ,,,都是正数,且22b a x +=,22d c y +=. 求证:))((bc ad bd ac xy ++≥.8.已知实数a ,b ,c ,d 满足a >b >c >d ,求证:1a -b +1b -c +1c -d ≥9a -d【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.42.()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m n m 评卷人 得分二、解答题3. 略4.5.解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥ 解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为36.(选修4—5:不等式选讲)设p 是ABC ∆内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC ∆外接圆的半径,证明22212x y z a b c R++≤++. 证:由柯西不等式得,111x y z ax by cz a b c ++=++111ax by cz a b c ≤++++,…3分 记S 为ABC ∆的面积,则2242abc abc ax by cz S R R++===, ……6分 122abc ab bc ca x y z ab bc ca R abc R++++≤=++22212a b c R ≤++, 故不等式成立.7.8.。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______. 2.若,,x y z 为正实数,则222
xy yz x y z +++的最大值是22. 提示:2222112222
x y y z xy yz +++≥+. 评卷人 得分
二、解答题
3.选修4—5:不等式选讲
已知不等式222|2|23a x y z -++≤对满足1x y z ++=
的一切实数x ,y ,z 都成立,求实数a 的取值范围.
【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.若,,x y z 为正实数,则222xy yz x y z+++的最大值是22. 提示:2222112222x y y z xy yz +++≥+. 评卷人 得分二、解答题3.已知实数,,a b c 满足a b c >>,且2221,1a b c a b c ++=++=,求证:413a b <+<4.设a 、b 、c 为各不相等的正数,求证:2229a b b c c a a b c++>+++++.5.已知a 、b 、c 是正实数,求证:a 2b 2+b 2c 2+c 2a 2≥b a +c b +a c. 6.已知x ,y ,z 均为正数.求证:111y x z yz zx xy x y z≥++++. 证明:因为x ,y ,z 都是为正数,所以12()x y x y yz zx z y x z +=+≥. …………………3分同理可得22y z z x zx xy x xy yz y++≥,≥. 将上述三个不等式两边分别相加,并除以2,得111x y z y z z x x y x y z ++++≥.………10分1.甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)设经过两次考试后,能被该高校预录取的人数为ξ,求随机变量ξ的期望)(ξE .7.若2294 132y x y x +=+求,的最小值,并求相应的x 、y 的值。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;
2.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 评卷人
得分 二、解答题
3.(本小题满分10分,不等式选讲)
已知:1a b c ++=,,,0a b c >.
(1)求证:127abc ≤
; (2)求证:2223a b c abc ++≥.
[必做题]第22题,第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______. 2.若,,x y z 为正实数,则222xy yz x y z +++的最大值是22. 提示:2222112222x y y z xy yz +++≥+. 评卷人 得分二、解答题3.2 .(汇编年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))D.[选修4-5:不定式选讲]本小题满分10分.已知b a ≥>0,求证:b a ab b a 223322-≥-[必做题]第22、23题,每题10分,共20分.请在相应的答题区域内作答,若多做,解答时应写出文字说明、证明过程或演算步骤. 4.已知0a >,0b >,n ∈*N .求证:11n n n n a b ab a b ++++≥.证明:先证112n n n n a b a b a b +++++≥, 只要证112()()()n n n n a b a b a b +++++≥,即要证11n n n n a b a b ab +++--≥0,即要证()(n n a b a b --)≥0, ………5分 若a b ≥,则a b -≥0,n n a b -≥0,所以()(n n a b a b --)≥0,若a b <,则0a b -<,0n n a b -<,所以()()0n n a b a b -->,综上,得()(n n a b a b --)≥0.从而112n n n n a b a b a b +++++≥, ………8分 因为2a b ab +≥, 所以11n n n na b ab a b ++++≥. ………10分5.已知非负实数x ,y ,z 满足41332222=+++++z y x z y x ,求z y x ++的最大值.6.已知关于x 的不等式|1|||2x x a ---<恒成立,求实数a 的取值范围.7.已知实数a,b,c ∈R,a+b+c=1,求4a +4b +4c 2的最小值,并求出取最小值时a,b,c 的值。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式
211
x --≤的解集为_________ 2.考察下列一组不等式:33224433
252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人
得分 二、解答题
3.选修4-5:不等式选讲
解不等式211x x +--≤.
综上所述,不等式211x x +--≤的解集为
(],0-∞. …………………………10分
4.已知关于x 的不等式|1|||2x x a ---<恒成立,求实数a 的取值范围.
5.设a 、b 、c 为各不相等的正数,求证:
2229a b b c c a a b c
++>+++++.
6.已知实数,,x y z 满足2x y z ++=,求22223x y z ++的最小值;
7.设d c b a ,,,都是正数,且22b a x +=,22d c y +=. 求证:))((bc ad bd ac xy ++≥.
8.若2
294 132y x y x +=+求,
的最小值,并求相应的x 、y 的值。
【参考答案】***试卷处理标记,请不要删除
评卷人
得分 一、填空题
1.[]0,4
2.()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m n m 评卷人 得分
二、解答题
3.含绝对值不等式的解法、分段函数
4.选修4-5:不等式选讲
解:∵|1||||(1)()||1|
x x a x x a a ------=-≤恒成立, ……………………5分 ∴要使关于x 的不等式|1|||2x x a ---<恒成立,当且仅当|1|2a -<, ……8分
即13a -<<.所以实数a 的取值范围为(13)-,. ……………………10分 5.
6.略
7.
8.(D )解:由柯西不等式()()
()132119422222=+≥++y x y x 2
19422≥+∴x x 当且仅当 y x y x 321312=⋅=⋅即时取等号 …………………………………………8分 由⎪⎪⎩
⎪⎪⎨⎧==⎩⎨⎧=+=61
41 132,32y x y x y x 得 (10)
分。