高中数学第二章平面向量2.4平面向量的数量积导学案2(无答案)新人教A版
- 格式:docx
- 大小:83.85 KB
- 文档页数:2
复习课:平面向量的数量积一、教学分析向量是近代数学基本和重要的数学概念之一,有着极其丰富的实际背景,它具有代数和几何的双重身份,是沟通代数、几何的桥梁。
它能与中学数学中许多教学内容许多主干知识相结合,形成知识交汇点。
而且初中课本里已经对平面向量做了简单的介绍,再次将平面向量坐标表示引入高中课程,是现行数学教材的重要特色之一。
本节平面向量数量积的复习课在教学内容方面不仅有对于向量相关知识的回顾,也有对于数量积求法的总结,也涉及到向量数量积的应用;课堂中也很好的融入了数形结合的数学思想和化归思想。
二、教学目标1.掌握平面向量数量积的概念,回顾梳理与平面向量数量积相关的知识点。
2.通过体验、归纳,总结求解平面数量积的方法,同时提高对题目的反思重解能力。
3.通过平面向量数量积的应用,提高分析问题解决问题的能力。
三、教学重点平面向量数量积概念的掌握。
四、教学难点应用数量积解决问题。
五、学生学情分析1.知识方面:学生已完成了平面向量这一章知识内容的学习,并已能运用平面向量的知识解决一些简单的向量几何问题,但是还不能融会贯通地综合理解运用知识,尤其知识的迁移能力还不够。
同时整章的知识脉络还没完全成型。
因此,本节复习课对现阶段的学生来说尤为重要。
2.能力方面:因为刚刚完成向量部分的学习,对于向量的相关知识内化的还不够完善。
部分学生解题时数形结合能力弱,但是由于学生的基础较好,所以大部分学生的求知欲和学习主动性较高。
3.心理方面:学生已具备了一定的归纳知识的意识和能力,而且现阶段学生表现欲也很强,本节课的教学设计正好符合高一学生的这个心理特征。
六、教学过程1、知识回顾1.完成以下问题(1)已知等边△ABC 的边长为3,则=⋅ .(29)(2)已知向量(1,2),(,1),a b x ==且a b ⊥,则x = -2(3)判断下列说法正确的是①22a a = ( √ )②若0a b ⋅=则00a b ==或 ( X )③若0,,b a b c b a c ≠⋅=⋅=则 ( X )④若()()a b c a b c ⋅⋅=⋅⋅,对任意向量,,a b c 都成立 ( X )2.通过以上问题的解决,引出课题,并对以下知识进行回顾梳理。
山东省平邑县高中数学第二章平面向量章末小结导学案(无答案)新人教A 版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省平邑县高中数学第二章平面向量章末小结导学案(无答案)新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省平邑县高中数学第二章平面向量章末小结导学案(无答案)新人教A版必修4的全部内容。
第二章平面向量章末小结【本章知识体系】【题型归纳】专题一、平面向量的概念及运算包含向量的有关概念、加法、减法、数乘。
向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。
利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.1、1.错误!+错误!-错误!+错误!化简后等于()A.3AB→ B。
错误!C。
错误! D。
错误!2、在平行四边形ABCD中,错误!=a,错误!=b,错误!=c,错误!=d,则下列运算正确的是( )A.a+b+c+d=0B.a-b+c-d=0C.a+b-c-d=0D.a-b-c+d=03、已知圆O的半径为3,直径AB上一点D使错误!=3错误!,E、F为另一直径的两个端点,则错误!·错误!=( )A.-3 B.-4C.-8 D.-64、如图,在正方形ABCD中,设错误!=a,错误!=b,错误!=c,则在以a,b为基底时,错误!可表示为________,在以a,c为基底时,错误!可表示为________.5、下列说法正确的是()A.两个单位向量的数量积为1B.若a·b=a·c,且a≠0,则b=cC.错误!=错误!-错误!D.若b⊥c,则(a+c)·b=a·b专题二、平面向量的坐标表示及坐标运算向量的坐标表示及运算强化了向量的代数意义。
第二章 平面向量2.4 平面向量的数量积第二课时 平面向量数量积的坐标表示、模、夹角1 教学目标[1] 掌握平面向量数量积的坐标表示[2] 会求向量的模[3] 会求两个向量的夹角[4] 会利用数量积的坐标表示求解各种向量问题2教学重点/难点重点:平面向量数量积的坐标表示难点:平面向量数量积的坐标表示的运用3 专家建议[1]在讲解过程中要注意添加零向量和单位向量进行加深理解,例如将某向量改成零向量或单位向量时情况会是如何[2]在课堂练习中加强公式的逆向运用4 教学方法互动探究,启发式教学,讲练结合5 教学过程5.1 引入【师】我们都学过向量的哪些坐标运算呢?【生】讨论,回答【板演/PPT 】平面向量加法的坐标运算平面向量减法的坐标运算平面向量数乘的坐标运算两个平行向量的坐标运算【师】坐标运算是如何的?【板演/PPT 】);,(),,(),,(21212211y y x x b a y x b y x a ++=+==则若);,(),,(),,(21212211y y x x b a y x b y x a --=-==则若),(),(),,(111111y x y x y x λλλλ===则若0//),,(),,(12212211=-⇒==y x y x y x y x 则若 【师】呢?的坐标表示与怎样用若两个非零向量b a b a y x b y x a ⋅==),,(),,(22115.2 新知介绍[1] 平面向量数量积的坐标表示【师】下面,我们来推导一下平面向量数量积的坐标表示【板演/PPT 】),(),,(2211y x y x ==若两个非零向量,,2211j y i x b j y i x a +=+=)()(2211j y i x j y i x b a +⋅+=⋅∴2211221221y y y x y x x x +++= ,1,1=⋅=⋅j j i i 又,0=⋅=⋅2121y y x x +=⋅∴【师】这就是说,两个向量的数量积等于它们对应坐标的乘积的和。
§ 2.4平面向量的数量积【学习目标】1.掌握平面向量的数量积及其几何意义; 2.掌握平面向量数量积的重要性质及运算律;3.了解用数量积可以处理有关长度角度和垂直的问题,掌握向量垂直的条件; 教学重点:平面向量的数量积定义;教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用. 【温故知新】1、已知两个非零向量a r 和b r ,作,OA a OA b ==u u u r r u u u r r,则___叫做向量a r 与b r 的夹角。
2、向量夹角θ的范围是 ,a r 与b r 同向时,夹角 ;a r 与b r反向时,夹角____。
3、如果向量a r 与b r 的夹角是 ,则a r 与b r垂直,记作______。
【知识梳理】 1.向量数量积的定义已知两个______向量a b r r 与,我们把 叫a b r r与的数量积(或 )记作即a b ⋅r r = 其中θ是a b r r 与的夹角, 叫做向量a b r r在方向上的 .规定零向量与任意向量的数量积为 . 2.向量数量积的几何意义b a ⋅的几何意义是:数量积b a ⋅等于 与b 在a 的方向上的投影 的乘积..平面向量数量积的性质:设a b r r与均为非零向量,θ为向量b a ⋅的夹角: ①a b ⊥⇔r r ②当a b r r 与同向时,b a ⋅ρ= ;当a b r r 与反向时,a b⋅r r = ,特别地,a a ⋅= 或a = .③cos =θ ④|a ϖ⋅b ρ| __ |a ϖ||b ρ|6.向量的数量积满足下列运算律:已知向量a b c r r r ,,与实数λ。
①a b ⋅r r= ( 律)②()a b λ⋅r r= = =③()a+b c ⋅r r r= .说明:①记法“a ·b ”中间的“· ”不可以省略,也不可以用“⨯ ”代替。
【合作探究】探究一、已知5||,4||==b a ,当(1)b a //;(2)b a ⊥;(3)b a 与的夹角为ο60,分别求b a 与的数量积.跟踪训练:已知已知6=a ρ,4b =r ,a r 和b r 的夹角为ο60,求)3)(2(b a b a ρρρρ-+探究二、求一个向量在另一个向量方向上的投影例 2 已知e a ,4||=为单位向量,它们的夹角为32π,则a 在e 方向上的投影是 ;e 在a 方向上的投影是 .第3页 第4页跟踪训练:已知a b ,3||=在方向上的投影是23,则⋅为 ( ) A.3 B.29 C.2 D.21探究三、求两个向量的夹角例3、已知5a =r ,4b =r,a b ⋅r r =-10,求a r 与b r 的夹角θ.跟踪训练: 已知b a 、是两个非零向量,同时满足||||||-==,求b a a +与的夹角.探究四、求向量的模例4、已知5||||==,向量与的夹角为3π,求|-||,|+的值.【课堂检测】1、已知5a =r ,4b =r若a b ⊥r r ,求a b ⋅r r .若//a b r r ,求a b ⋅r r .2.⑴在ABC ∆中,若0AB BC ⋅>u u u r u u u r ,或0AB BC ⋅=u u u r u u u r.试判断ABC ∆的形状 .(2)已知,,b AC a AB ABC ==∆中,若0<⋅b a ,则三角形ABC ∆的形状 ( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.任意三角形3.已知5||4,||==,且b a 与的夹角ο60,求b a ⋅)(1;(2)2)(b a +;(3)2)(b a -;(4)22-;(5))23(32-⋅+(。
第二章平面向量2.4 平面向量的数量积第一课时平面向量数量积的物理背景及其含义1 教学目标[1]掌握平面向量的数量积[2]掌握平面向量数量积的几何意义[3]掌握平面向量数量积的运算律2教学重点/难点重点:平面向量数量积的定义及几何意义难点:平面向量数量积的运算律的理解和运用3 专家建议[1]平面向量数量积满足数乘结合律,但不满足乘法结合律,应加以详细讲解[2]稍微向外扩展一下点乘与叉乘的区别,加深对数量积的理解4 教学方法互动探究,类比式教学,启发式教学5 教学过程5.1 引入【师】首先,请同学们回答我三个问题,请看:【板演/PPT】问题1:前面几节课,我们学习过向量的什么知识?问题2:我们是怎么探索和研究向量的加法运算和减法运算的?问题3:在物理学中,我们是如何求一个力所做功的多少的?【生】讨论,思考【师】我们来把问题一个一个地解决掉【板演/PPT】答问题1:平面向量的相关定义(零向量,单位向量,平行向量,共线向量)平面向量的线性运算和坐标运算(数乘运算,坐标的加减法运算)答问题2:从物理角度入手探索,再理解概念,再学习运算律,再到知识的运用答问题3:如果一个物体在力F 的作用下产生位移S ,那么力F 所做的功就可以用如下公式计算:θcos ||||S F W = (θ是F 和S 的夹角)【师】同学们,大家都知道力和位移是矢量,功是一个标量,它由力和位移两个向量来确定,这给我们一种启示,能否把“功”看成是这两个向量的一种运算的结果呢?5.2 新知介绍[1] 平面向量的数量积定义【师】从以上问题,我们知道,数学与物理知识之间存在着联系,那我们再从物理问题入手,思考下,物理中的人拉船模型中的数学知识【板演/PPT 】人的拉力(F )的方向与船前进(S )的方向往往是成一个夹角的,我们设为θ,那么这个力所做的功的大小与三个因素有关,(前提是忽略摩擦),力的大小、方向、船的位移。
其实,就两个矢量,力(F )和位移(S ),夹角是力和位移之间的一种关系,能够形成功,一是要有力,二是要有位移。
高中数学 2.4.1平面向量数量积的含义学案新人教A 版必修4【学习目标】1、 理解平面向量数量积的含义,2、 掌握数量积公式,理解几何意义及投影定义;3、 掌握平面向量数量积的重要性质及运算律,并能运用这些性质和运算律解决有关问题。
【重点难点】1、 掌握数量积公式,理解几何意义及投影定义;2、 掌握平面向量数量积的重要性质及运算律,并能运用这些性质和运算律解决有关问题。
【学习内容】问题情境导学一、向量数量积的定义【想一想】(1)你能用文字语言表述“功的计算公式”吗?(2)如果我们把上述公式中的力与位移推广到一般向量,其结果又如何表述?【填一填】(1)已知两个非零向量a 与b ,它们的夹角为θ,则把数量_____叫做a与b 数量积(或内积),记作b a ⋅即b a ⋅=________,(2)规定零向量与任一向量的数量积为______________.【思考】向量的数量积运算与向量的线性运算的结果有什么不同?影响数量积大小的因素有哪些?二、向量数量积的几何意义【想一想】 结合图形,你能作出θcos b 吗?【填一填】数量积的几何意义:数量积b a ⋅等于a 的长度a 与b 在a 的方向上的投影___________的乘积.【思考】b 在a 方向上的投影θcos b 是个什么量?三、向量数量积的性质【想一想】的夹角︒=0θ,︒90,︒180时,b a ⋅的结果怎样?当b a =时,b a ⋅的结果又怎样?【填一填】设a 与b 都是非零向量,θ为a 与b 的夹角.(1)a ⊥b ⇔__________________;(2)当a 与b 同向时,b a ⋅=________,当a 与b 反向时,b a ⋅=________;(3)a a ⋅=________或a a a ⋅=2a =;(4)ba b a ⋅=θcos ; (5) ||b a ⋅b a =.【思考】若b a ⋅0>,a 与b 的夹角是锐角吗?若b a ⋅0<,a 与b 的夹角是钝角吗?返过来呢?四、向量数量积的运算律 【想一想】若c b a ,,,λ是实数,则下列运算律成立:(1)a b b a ⋅=⋅;(2))()()(b a b a b a λλλ⋅=⋅=⋅;(3)c b c a c b a ⋅+⋅=⋅+)(;(4))()(c b a c b a ⋅⋅=⋅⋅. 若以上字母除λ外都是向量,以上运算律还成立吗?【填一填】(1)b a ⋅=________;(2)=⋅b a )(λ________________))((R b a ∈⋅=λλ ;(3)=⋅+c b a )(__________________.【思考】若c a b a ⋅=⋅,b 与c 一定相等吗?为什么?课堂互动探究【类型一】数量积的基本运算例1、已知4=a ,5=b ,当①a //b ;②b a ⊥;③a 与b 的夹角为︒135时,分别求a 与b 的数量积.【类型二】与向量的模有关的问题例2、已知向量a 、b 满足2=a ,3=b ,4=+b a 求 b a -.【类型三】两向量的垂直与夹角问题例3、已知3=a ,2=b ,向量a 、b 的夹角为︒60,=c b a 53+,b a m d 3-=,求当m 为何值时,d c 与垂直?【课后作业与练习】基础达标(1)若2=a ,21=b ,a 与b 的夹角为︒60,则b a ⋅为 (A)21 (B)41(C)1 (D)2(2)已知3=b ,a 在b 方向上的投影是32,则b a⋅为(A)31 (B)34 (C)3 (D)2 (3)已知10=a ,12=b ,且b a ⋅60-=,则a 与b 的夹角(A)︒60 (B)︒120 (C)︒135 (D)︒150(4)设a 与b 的模分别为4或3,夹角为︒60,则b a +等于(A)37 (B)13 (C)37 (D)13(5)已知a 、b 是非零向量,且满足a b a ⊥-)2(,b a b ⊥-)2(,则a 与b的夹角是 (A)6π (B)3π (C)32π (D)65π (6)若两个单位向量1e ,2e 夹角为32π,且向量2112e e b -=,21243e e b +=,则=⋅21b b ___________________.(7)已知向量a 、b 满足b a ⋅,且1=a ,2=b ,则a 与b 的夹角是___________________.(8) 已知非零向量a 与b 的夹角为︒120,若b a c +=,且a c ⊥,则b a的值为___________________. 能力提升(9)已知1=a ,b a ⋅21= ,21)()(=+⋅-b a b a . ①求a 与b 的夹角θ;②求b a +.(10)在边长为1的正三角形ABC 中,设BD BC 2=, CE CA 3=,求BE AD ⋅.(11)已知b a ⊥,且2=a ,1=b ,若对两个不同时为零的实数k ,t ,使得b t a )3(-+与b t a k +-垂直,试求k 的最小值.(12) 已知非零向量a 与b 的夹角为︒120,2=a ,4=b ,设)(R x b a x y ∈+= ,试求y 的最小值,并求出相应的x 值.。
第二章 平面向量学习目标.1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征.2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质.3.体会应用向量解决问题的基本思想和基本方法.4.进一步理解向量的“工具”性作用.1.向量的运算:设a =(x 1,y 1),b =(x 2,y 2).2.两个定理(1)平面向量基本定理①定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.②基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.(2)向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 3.向量的平行与垂直a ,b 为非零向量,设a =(x 1,y 1),b =(x 2,y 2),类型一.向量的线性运算例1.如图所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案.311解析.设BP →=λBN →,则BP →=BA →+AP →=-AB →+mAB →+211AC →=(m -1)AB →+211AC →.BN →=BA →+AN →=-AB →+14AC →.∵BP →与BN →共线,∴14(m -1)+211=0,∴m =311.反思与感悟.向量共线定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线、共点问题.跟踪训练1.在△ABC 中,E 为线段AC 的中点,试问在线段AC 上是否存在一点D ,使得BD →=13BC→+23BE →,若存在,说明D 点位置;若不存在,说明理由.解.假设存在D 点,使得BD →=13BC →+23BE →.BD →=13BC →+23BE →⇒BD →=13BC →+23(BC →+CE →)=BC →+23CE →⇒BD →-BC →=23CE →⇒CD →=23CE →⇒CD →=23×⎝ ⎛⎭⎪⎫12CA →⇒CD →=13CA →.所以当点D 为AC 的三等分点⎝⎛⎭⎪⎫CD →=13CA →时,BD →=13BC →+23BE →.类型二.向量的数量积运算例2.已知a =(cos α,sin α),b =(cos β,sin β),且|k a +b |=3|a -k b |(k >0). (1)用k 表示数量积a ·b ;(2)求a ·b 的最小值,并求出此时a 与b 的夹角θ的大小. 解.(1)由|k a +b |=3|a -k b |, 得(k a +b )2=3(a -k b )2,∴k 2a 2+2k a ·b +b 2=3a 2-6k a ·b +3k 2b 2. ∴(k 2-3)a 2+8k a ·b +(1-3k 2)b 2=0.∵|a |=cos 2α+sin 2α=1,|b |=cos 2β+sin 2β=1, ∴k 2-3+8k a ·b +1-3k 2=0, ∴a ·b =2k 2+28k =k 2+14k.(2)a ·b =k 2+14k =14(k +1k).由函数的单调性可知,f (k )=14(k +1k )在(0,1]上单调递减,在[1,+∞)上单调递增,∴当k =1时,f (k )min =f (1)=14×(1+1)=12,此时a 与b 的夹角θ的余弦值cos θ=a ·b |a ||b |=12,∴θ=60°.反思与感悟.数量积运算是向量运算的核心,利用向量数量积可以解决以下问题: (1)设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0, a ⊥b ⇔x 1x 2+y 1y 2=0.(2)求向量的夹角和模的问题 ①设a =(x 1,y 1),则|a |=x 21+y 21. ②两向量夹角的余弦(0≤θ≤π)cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 跟踪训练2.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )). (1)若点A ,B ,C 能构成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值. 解.(1)若点A ,B ,C 能构成三角形,则这三点不共线, ∵OA →=(3,-4),OB →=(6,-3), OC →=(5-m ,-(3+m )),∴AB →=(3,1),BC →=(-m -1,-m ), ∵AB →与BC →不平行,∴-3m ≠-m -1,解得m ≠12,∴当实数m ≠12时满足条件.(2)若△ABC 为直角三角形,且∠A 为直角,则AB →⊥AC →,而AB →=(3,1),AC →=(2-m ,1-m ), ∴3(2-m )+(1-m )=0,解得m =74.类型三.向量坐标法在平面几何中的应用例3.已知在等腰△ABC 中,BB ′,CC ′是两腰上的中线,且BB ′⊥CC ′,求顶角A 的余弦值的大小.解.建立如图所示的平面直角坐标系,设A (0,a ),C (c ,0),则B (-c ,0),OA →=(0,a ),BA →=(c ,a ),OC →=(c ,0),BC →=(2c ,0).因为BB ′,CC ′为AC ,AB 边上的中线, 所以BB ′—→=12(BC →+BA →)=⎝ ⎛⎭⎪⎫3c 2,a 2,同理CC ′—→=⎝ ⎛⎭⎪⎫-3c 2,a 2.因为BB ′—→⊥CC ′—→,所以BB ′—→·CC ′—→=0, 即-9c 24+a 24=0,化简得a 2=9c 2,又因为cos A =AB →·AC→|AB →||AC →|=a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45.即顶角A 的余弦值为45.反思与感悟.把几何图形放到适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题.这样的解题方法具有普遍性.跟踪训练3.如图,半径为3的扇形AOB 的圆心角为120°,点C 在AB 上,且∠COB =30°,若OC →=λOA →+μOB →,则λ+μ等于(..)A. 3B.33C.433D.2 3 答案.A解析.由题意,得∠AOC =90°,故以O 为坐标原点,OC ,OA 所在直线分别为x 轴,y 轴建立平面直角坐标系,则O (0,0),A (0,3),C (3,0),B (3×cos 30°,-3×sin 30°),因为OC →=λOA →+μOB →,所以(3,0)=λ(0,3)+μ(3×32,-3×12), 即⎩⎪⎨⎪⎧3=μ×3×32,0=3λ-3×12μ,则⎩⎪⎨⎪⎧μ=233,λ=33,所以λ+μ= 3.1.在菱形ABCD 中,若AC =2,则CA →·AB →等于(..) A.2 B.-2C.|AB →|cos A D.与菱形的边长有关答案.B解析.如图,设对角线AC 与BD 交于点O ,∴AB →=AO →+OB →.CA →·AB →=CA →·(AO →+OB →) =-2+0=-2.2.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于(..) A.20 B.15 C.9 D.6答案.C解析.▱ABCD 的图象如图所示,由题设知,AM →=AB →+BM →=AB →+34AD →,NM →=13AB →-14AD →,∴AM →·NM →=⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫13AB →-14AD →=13|AB →|2-316|AD →|2+14AB →·AD →-14AB →·AD →=13×36-316×16=9. 3.已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为(..) A.12 B.2 C.-12 D.-2 答案.D解析.m a +4b =(2m -4,3m +8),a -2b =(4,-1). ∵m a +4b 与a -2b 共线,∴(2m -4)×(-1)-(3m +8)×4=0,解得m =-2.4.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 答案.2 5解析.由题意可知,△AOB 是以O 为直角顶点的等腰直角三角形,且腰长|OA →|=|OB →|=10,由勾股定理得|AB →|=20=2 5.5.平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,若存在不同时为0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x⊥y ,试求函数关系式k =f (t ). 解.由a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,得a·b =0,|a |=2,|b |=1,由x ⊥y ,得[a +(t 2-3)b ]·(-k a +t b )=0, -k a 2+t a·b -k (t 2-3)a·b +t (t 2-3)b 2=0, 即-4k +t 3-3t =0,所以k =14(t 3-3t ),令f (t )=14(t 3-3t ),所以函数关系式为k =f (t )=14(t 3-3t ).1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径,即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题.2.向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断求解,这是研究平面向量最重要的方法与技巧.课时作业一、选择题1.下列命题中正确的是(..) A.OA →-OB →=AB → B.AB →+BA →=0 C.0·AB →=0 D.AB →+BC →+CD →=AD → 答案.D解析.OA →-OB →=BA →;AB →,BA 是一对相反向量,它们的和应该为零向量,即AB →+BA →=0;0·AB →=0.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →等于(..) A.5 B.4 C.3 D.2 答案.A解析.∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),∴AD →·AC →=2×3+(-1)×1=5.3.设向量a =(2,4)与向量b =(x ,6)共线,则实数x 等于(..) A.2 B.3 C.4 D.6 答案.B解析.∵a ∥b ,∴2×6-4x =0,∴x =3.4.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于(..) A.(-3,6) B.(3,-6) C.(6,-3) D.(-6,3)答案.A解析.设b =k a =(k ,-2k ),k <0,而|b |=35,则5k 2=35,∴k =-3,b =(-3,6).5.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于(..) A.-4 B.-3 C.-2 D.-1 答案.B6.在△ABC 中,若AB →2-AB →·AC →=BA →·BC →-CA →·BC →,则△ABC 是(..) A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形答案.C解析.由已知,得AB →·(AB →-AC →)-BC →·(BA →-CA →)=0, ∴AB →·CB →-BC →·BC →=0,∴BC →·(-AB →-BC →)=0,即-BC →·AC →=0,BC →⊥AC →, ∴BC ⊥AC ,∴△ABC 为直角三角形.故选C.7.若a ,b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角θ的大小为(..) A.π6 B.π3 C.2π3D.5π6答案.B解析.∵a 2-2a ·b =0,b 2-2a ·b =0, ∴a 2=b 2,|a |=|b |,又∵cos θ=a ·b |a ||b |=12a 2|a |2=12,θ∈[0,π],∴θ=π3.8.如图所示,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于点F .设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为(..)A.⎝ ⎛⎭⎪⎫12,12B.⎝ ⎛⎭⎪⎫23,23C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 答案.C解析.令BF →=λBE →.由题可知,AF →=AB →+BF →=AB →+λBE →=AB →+λ⎝ ⎛⎭⎪⎫12AC →-AB →=(1-λ)AB →+12λAC →.令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ⎝ ⎛⎭⎪⎫12AB →-AC →=12μAB →+(1-μ)AC →.由⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以AF →=13AB →+13AC →,故选C.二、填空题9.若|a |=1,|b |=2,a 与b 的夹角为60°,若(3a +5b )⊥(m a -b ),则m 的值为________. 答案.238解析.由题意知(3a +5b )·(m a -b )=3m a 2+(5m -3)a·b -5b 2=0,即3m +(5m -3)×2×cos 60°-5×4=0,解得m =238.10.已知向量a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 答案.711.在△ABC 中,点O 在线段BC 的延长线上,且|BO →|=3|CO →|,当AO →=xAB →+yAC →时,x -y =________. 答案.-2解析.由|BO →|=3|CO →|,得BO →=3CO →, 则BO →=32BC →,所以AO →=AB →+BO →=AB →+32BC →=AB →+32(AC →-AB →)=-12AB →+32AC →.所以x =-12,y =32,所以x -y =-12-32=-2.12.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________. 答案.1解析.∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.13.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案.712解析.∵AP →⊥BC →,∴AP →·BC →=(λAB →+AC →)·(AC →-AB →)=-λAB →2+(λ-1)AB →·AC →+AC →2=-9λ+(λ-1)×3×2×(-12)+4=0, ∴λ=712. 三、解答题14.若OA →=(sin θ,-1),OB →=(2sin θ,2cos θ),其中θ∈[0,π2],求|AB →|的最大值. 解.∵AB →=OB →-OA →=(sin θ,2cos θ+1)⇒|AB →|=sin 2θ+4cos 2θ+4cos θ+1=3cos 2θ+4cos θ+2= 3(cos θ+23)2+23, ∴当cos θ=1,即θ=0时,|AB →|取得最大值3.四、探究与拓展15.已知OA →=(1,0),OB →=(0,1),OM →=(t ,t )(t ∈R ),O 是坐标原点.(1)若A ,B ,M 三点共线,求t 的值;(2)当t 取何值时,MA →·MB →取到最小值?并求出最小值.解.(1)AB →=OB →-OA →=(-1,1),AM →=OM →-OA →=(t -1,t ).∵A ,B ,M 三点共线,∴AB →与AM →共线, ∴-(t -1)-t =0,∴t =12. (2)∵MA →=(1-t ,-t ),MB →=(-t ,1-t ),∴MA →·MB →=2t 2-2t =2⎝ ⎛⎭⎪⎫t -122-12,易知当t =1 2时,MA→·MB→取得最小值-12.。
2.4 向量的数量积课堂导学三点剖析1.平面向量数量积的概念及其运算律【例1】 已知|a |=4,|b |=3,若:(1)a ∥b ;(2)a ⊥b ;(3)a 与b 的夹角为60°,分别求a ·b .思路分析:本题运用数量积的定义求数量积.已知|a |与|b |,a 与b 的夹角,由定义可求a ·b . 解:(1)当a ∥b 时,若a 与b 同向,则它们的夹角θ=0°,a ·b =|a ||b |cos0°=4×3×1=12;若a 与b 反向,则a 与b 的夹角θ=180°,a ·b =|a ||b |cos180°=4×3×(-1)=-12.(2)当a ⊥b 时,a 与b 的夹角为90°,a ·b =|a |·|b |cos90°=0,(3)当a 与b 的夹角θ=60°时,a ·b =|a ||b |cos60°=4×3×21=6. 温馨提示利用定义计算a 与b 的数量积,关键是确定两向量的夹角.当a ∥b 时,a 与b 的夹角可能是0°,也可能为180°,解题时容易遗漏180°的情形.2.平面向量数量积的应用【例2】已知|a |=2,|b |=3,a 与b 的夹角为45°,求使向量a +λb 与λa +b 的夹角为锐角时,λ的取值范围.解:设a +λb 与λa +b 的夹角为θ.则cos θ=||||)()(b a b a b a b a +++∙+λλλλ>0, 即(a +λb )·(λa +b )>0,展开得,λa 2+(λ2+1)a ·b +λb 2>0.∵|a |=2,|b |=3,a ·b =|a ||b |cos45°=3,∴2λ+3(λ2+1)+9λ>0,即3λ2+11λ+3>0.λ<68511--或λ>68511+-. 另外θ=0°时,λ=1.故λ≠1.∴λ∈(-∞,68511--)∪(68511+-,1)∪(1,+∞). 温馨提示求夹角时,注意与三角函数、不等式等知识相结合,但要注意角的范围.3.平面向量数量积的运算律同实数的运算律的比较【例3】 已知|a |=5,|b |=4,a 与b 的夹角为120°,求:(1)a ·b ;(2)(a +b )2;(3)a 2-b 2;(4)(2a -b )·(a +3b ).思路分析:由于向量的数量积满足乘法对加法的分配律,因此向量的数量积运算可类似于多项式的乘法运算,如(a +b )2=(a +b )·(a +b )=(a +b )·a +(a +b )·b =a ·a +b ·a +a ·b +b ·b =a 2+2a ·b +b 2.解:(1)a ·b =|a ||b |cos120°=5×4×(-21)=-10; (2)(a +b )2=a 2+2a ·b +b 2=|a |2+2a ·b +|b |2=25-2×10+16=21;(3)a 2-b 2=|a |2-|b |2=25-16=9;(4)(2a -b )·(a +3b )=2a 2+5a ·b -3b 2=2|a |2+5a ·b -3|b |2=2×25+5×(-10)-3×16=-48.温馨提示(1)在进行向量数量积运算时,应严格按运算律进行;(2)由于向量数量积满足乘法对加法的分配律,故向量数量积中也有类似多项式乘法的公式:(a ±b )2=a 2±2a ·b +b 2,(a +b )·(a -b )=a 2-b 2,(a +b +c )=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c .因此,有的同学会相当然的用(a ·b )·c =a ·(b ·c ),这是错误的.各个击破类题演练1已知|a |=2,|b |=5,且<a ,b >=45°,求a ·b .解:由数量积的定义,a 、b =|a ||b |cos<a ,b > =2×5×cos45°=25.变式提升1已知△ABC 中,a =5,b =8,∠C=60°,求BC ·CA .解:因为||=a =5,||=b =8,<,>=180°-∠C=180°-60°=120°, 所以·=||||·cos<,>=5×8cos120°=-20.类题演练2已知a =(m+1,3),b =(1,m-1),且a 与b 的夹角为钝角.若(2a +b )与(a -3b )垂直,求a 与b 夹角的余弦.解析:∵(2a +b )⊥(a -3b ),∴2a 2-5a ·b -3b 2=0.即2[(m+1)2+9]-5[m+1+3(m-1)]-3[1+(m-1)2]=0,整理得m 2+10m-24=0,m=2或m=-12.∵a 与b 的夹角为钝角,∴m=2舍去.设a 与b 夹角为θ,则cos θ=2212215||||-=∙b a b a . 变式提升2(2006全国高考Ⅰ,文1)已知向量a 、b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为( ) A.6π B.4π C.3π D.2π 解析:cos<a ·b >=21412||||=⨯-=∙b a b a . ∴a 与b 的夹角为3π,故选C. 答案:C类题演练3 已知|a |=|b |=5,<a ,b >=3π,求|a +b |,|a -b |. 解:因为a 2=|a |2=25,b 2=|b |2=25,a ·b =|a ||b |cos<a ,b >=5×5cos3π=225. 所以|a +b |=(a +b )2=.352525252)(222=++=∙-+=+b a b a b a 同样可求|a -b |=.52525252)(222=-+=∙-+=-b a b a b a变式提升3 (1)若向量a 与b 夹角为30°,且|a |=3,|b |=1,则向量p=a +b 与q=a -b 的夹角的余弦为______________.思路分析:本题可利用cos θ=||||b a b a ∙,由两向量的数量积和模求夹角余弦值. 解:∵p ·q =(a +b )·(a -b )=a 2-b 2=3-1=2,又∵|p |=|a +b |=7130cos 323222=+︒+=+∙+b b a a , |q |=|a -b |=,1130cos 323222=+︒-=+-b ab a ∴cos θ=77272||||==∙q p q p . 答案:772(2)若非零向量α、β满足|α+β|=|α-β|,求α与β所成的角.思路分析:涉及模与夹角的问题,一般考虑向量的数量积,也可以从向量的线性运算入手,结合模的几何意义解答.解:∵|α+β|=|α-β|,∴|α2|+2α·β+|β|2=|α|2-2α·β+|β|2,即4α·β=0,∴α·β=0,∴α⊥β.∴α与β所成的角为90°.。
学习目标
1.掌握平面向量数量积的坐标表示,会进行平面向量数量积的运算。
2.能运用数量积表示两个向量的夹角,会用数量积判断两个向量的垂直关系。
复习引入
1.向量的数量积____________=⋅b a
.
2.j i
,分别表示与x 轴,y 轴同向的单位向量
(1)i 与i 的夹角为_________,i i
⋅=_______;同理j j ⋅=__________; (2)i 与j
的夹角为_________,i j j i ⋅=⋅=_______; (3)如果j y i x a +=,则a 的坐标表示为) (=a
.
学习探究
1.阅读课本第106页,完成下面的问题:
(1)若)(),(2211y x b y x a ,,== ,则_________=⋅b a
;
(2)若)(y x a ,= ,则____________2===⋅a a a
,_________||=a
;
(3)设)(),(2211y x b y x a ,,== ,若____________________⇔⇔⊥b a
;
(4)设)(),(2211y x b y x a ,,==
,则_________||=a
,_________||=b
,
_________________________________==⋅b a
,
_________________________________cos ==θ. 2.阅读课本第107页例6,完成练习1,2.
3.已知)2,1(),1,3(-=-=, 求:
(1)⋅; (2)与的夹角; (3)在方向上的投影.
4.阅读课本第106页例5,完成课本第108页A 组5,9,11. 技能提升
1.已知),3(m =,)1,2(-=,若b a
⊥,则实数m 的值是 .
2.已知),1( ),,4( ),1,2(n c m b a -==-=
,若c a ⊥,c b //,则实数m 的值是_______,实数n 的值是 .
3.已知()1,1a =,()2,3b =-,若2ka b -与a 垂直,则实数k = .
4.若)2,(λ=,)5,3(-=且a 与b 的夹角是钝角,则λ的取值范围是( ) A .),310(
+∞ B .),3
10
[+∞ C .)310,
(-∞ D .)3
10
,[-∞
5.已知A (3,2),B (-1,-1),若点P (x ,-2
1
)在线段AB 的中垂线上,则x = .
平面向量数量积
平面向量的数量积第一课时
学习目标
1.通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。
2.理解平面向量的数量积与向量投影的关系,体会类比的数学思想和方法。
一、复习回顾:
两个非零向量夹角的概念:
已知非零向量与,作=,=,则___________叫与的夹角.
说明:(1)当θ=0时,与方向_______;(2)当θ=π 时,与方向_______;
(3)当θ=
2
π
时,与垂直,记⊥; (4)注意在两向量的夹角定义中,两向量必须是________.范围是0︒≤θ≤180︒
二.学习探究
阅读课本103页完成下列任务
1.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是θ,
与的数量积⋅= ________________.(其中0≤θ≤π).
并规定:向量与任何向量的数量积为___.
2.阅读课本104页例1,完成106页练习1,2 108页习题A 组2,6
探究:(1)向量数量积是一个向量还是一个数量? 它的符号什么时候为正? 什么时候为负?
(2)两个向量的数量积与实数乘向量的积有什么区别?
(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;
但是在数量积中,若a ≠0,且a ⋅b =0,能不能推出b =0? (4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c
但是在数量积中.a ⋅b =b ⋅c 能不能推出a =c ?
(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )⋅c ≠ a ⋅ (b ⋅c )
显然,这是因为左端是与共线的向量,而右端是与共线的向量,而一般与不共线.
3.“投影”的概念:作图
定义:__________叫做向量b 在a 方向上的投影.向量a 在b 方向上的投影为_________投影是一个数量,不是向量;
当θ为锐角时投影为___值; 当θ为钝角时投影为___值; 当θ为直角时投影为0;
练习.(1)已知向量b a ,
2=
=1,与的夹角为0
60,则在上的投影是: _______
(2
=3
4=,12=⋅则向量在向量方向上的投影为_______________ 4.向量的数量积的几何意义: 数量积a ⋅b 等于________________________________ 5.两个向量的数量积的性质:设a 、b 为两个非零向量,
(1)⊥ ⇔ ⋅= ____________ ; (2)⋅= _________,cos θ= ____________(求夹角)
(3)当与同向时,θ= _____,cos θ= ____,⋅ =____________ =______ ;
特别的与方向_____,θ= _____,cos θ= ___,⋅=____ ____, 所以
= ______ (求模)
当与反向时,θ= _____,cos θ= ____,⋅ =____________ =______ ; (4)|a ⋅b |=__________≦_______ 6.平面向量数量积的运算律
(1)交换律:⋅ = ______(2)数乘结合律:(λ)⋅ =_______= _______(3)分配律:(+)⋅=_______+_______
7.认真阅读课本105页例2,例3,完成课本108页习题A 组1,3,7,8 8.认真阅读课本105页例4,完成下列各题 (1)|a |=3,|b |=4,向量a +
43b 与a -4
3
b 的位置关系为( ) A.平行 B .垂直 C.夹角为
3
π
D.不平行也不垂直 (2)已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是___________ (3)已知||=4,||=3,(2-3)·(2+)=61,求与的夹角θ.。