总复习圆
- 格式:doc
- 大小:98.00 KB
- 文档页数:3
高三总复习圆的知识点归纳总结圆是数学中的基本几何图形之一,它在几何学和数学分析中都具有重要的地位。
在高三数学的复习中,圆的知识点是一个必不可少的部分。
下面将对高三数学中与圆相关的重要知识点进行归纳总结。
一、圆的定义和性质圆是平面上的一组点,这些点到某一固定点的距离都相等。
这个固定点叫做圆心,到圆心距离相等的那个数值称为半径。
圆的性质包括以下几点:1. 圆心角:圆心角是半径所对的弧所对应的角,它的度数等于所对弧所对应的圆周长的比例。
2. 弧度制与度数制之间的转换:1弧度=180°/π。
3. 圆内接四边形:圆内接四边形的对角线互相垂直,且对角线交点到圆心的距离相等。
4. 弦长和弦心角的关系:弦长等于半径乘以弦心角对应的圆心角的弧度。
5. 圆的切线:过圆上任一点A,可以作出与圆相切且以A为切点的直线。
切线与半径的关系是切线垂直于半径。
二、圆的常见定理1. 切线定理:切线和半径垂直。
2. 弦切角定理:弦切角等于弦上其余弧所对的圆心角的一半。
3. 弧切角定理:弧切角等于弧所对的圆心角。
三、圆锥曲线1. 椭圆:椭圆是平面上一个点到两个定点的距离之和等于常数的点集。
常数为两个定点间的距离的一半。
2. 双曲线:双曲线是平面上一个点到两个定点的距离之差等于常数的点集。
常数为两个定点间的距离的一半。
3. 抛物线:抛物线是平面上一个点到一个定点的距离等于该点到一条直线的垂直距离的点集。
四、圆与其他几何图形的关系1. 圆与直线的交点:圆与直线的交点可能是0个、1个、2个或无穷多个。
2. 圆与圆的关系:两个圆可以相交于两个交点、相切于一个交点或者不相交。
3. 圆与多边形的关系:圆可以内切于多边形、外切于多边形,或者同时内切和外切于多边形。
五、圆的应用1. 圆的面积和周长:圆的面积等于半径平方乘以π,周长等于直径乘以π。
2. 圆的旋转和平移:通过圆的旋转和平移可以构造出各种复杂的图形。
3. 圆锥曲线的应用:椭圆、双曲线和抛物线在物理、工程等领域有广泛的应用。
小学圆知识总复习圆的和面积一、考点1:圆的基本概念,圆心、半径、直径。
判断:1、通过圆心的线段是半径。
()2、通过圆心的线段是直径。
()3、两端都在圆上的线段是直径。
()4、两端都在圆上并且经过圆心的线段是直径。
()5、所有的直径都相等,所有的半径都相等。
()6、旋转式水龙喷头的射程是8m,8m就是指圆的直径。
()二、考点2:圆心决定圆的位置,半径(直径)决定圆的大小。
填空:1、()确定圆的位置,()确定圆的大小。
2、圆内最长的线段是(),圆规两脚之间的距离是()。
3、圆有()条半径,圆有()条直径。
判断:1、圆心决定圆的位置,半径决定圆的大小。
()2、直径3厘米的圆大于半径2厘米的圆。
()3、半径3分米的圆大于直径5分米的圆。
()三、考点3:半径与直径的关系。
1、在同一个圆中,直径的长度是半径的(),半径的长度是直径的()。
2、一个圆的半径是3厘米,它的直径是()。
3、圆规两脚间的距离是10厘米,画成的圆的直径是()。
4、直径是5厘米的圆,它的半径是()。
5、画一个直径为8厘米的圆,圆规两脚间是距离应是()。
四、考点4:正方形、长方形与圆的关系。
1、在边长为17cm的正方形中画一个最大的圆,这个圆的直径是()。
3、在边长为8厘米的正方形中画一个最大的圆,这个圆的半是()厘米。
5、在一张长16厘米,宽8厘米的长方形内画直径是4厘的圆,这样的圆最多可画()个。
6、在一张长50厘片中剪最大米,宽6厘米的长方形纸的圆,这样的圆最多可剪()个。
7、在长3分米,宽2分米的长方形上剪出直径是4厘米的圆,至少可以剪()个。
A、7B、47C、358、在长28cm,宽26cm的长方形纸板上剪出一个最大的圆,这个圆的半径是()。
9、在长6cm,宽4cm的长方形纸板上剪出一个最大的半圆,这个半圆的半径是()。
10、在长9cm,宽4cm的长方形纸板上剪出一个最大的半圆,这个半圆的半径是()。
五、考点5:常见的轴对称图形与它们的对称轴。
初三数学总复习圆的有关概念和性质【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.④三角形的内心和外心ⓐ:确定圆的条件:不在同一直线上的三个点确定一个圆.ⓑ:三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.ⓒ:三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.(4)圆内接四边形:顶点都在国上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角.【课前练习】1.如图,A、B、C是⊙O上的三点,∠BAC=30°则∠BOC的大小是()A.60○B.45○ C.30○D.15○2.如图,C是⊙O上一点,O是圆心.若∠AOB=50°,则∠C的度数为()A.35○B.50○ C.105○D.150○3.如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是()A.180° B.15 0° C.135° D.120°4.如图,PA、PB是⊙O的切线,切点分别为A 、B,点C在⊙O上.如果∠P=50○,那么∠ACB等于()A.40○ B.50○ C.65○D.130○5.如图,在⊙O中,已知∠ACB=∠CDB=60○,AC=3,则△ABC的周长是_______6.“圆材埋壁”是我国古代《九章算术》中的问题:“今有圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何”.用数学语言可表述为如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD的长为()A.12.5寸 B.13寸 C.25寸 D.26寸7.如图,在⊙O中,弦AB=1.8m,圆周角∠ACB=30○,则⊙O的直径等于_________cm.8.在半径为1的圆中,弦AB、AC分别是3和2,则∠BAC的度数为9.如图,弦AB的长等于⊙O的半径,点C在AMB上,则∠C的度数是_______.10.如图,四边形 ABCD内接于⊙O,若∠BOD=100°,则∠DAB的度数为()A.50° B.80° C.100° D.130°11.如图,四边形ABCD为⊙O的内接四边形,点E在CD的延长线上,如果∠BOD=120°,那么∠BCE等于()A.30° B.60° C.90° D.120°平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4,求这个圆形截面的半径.点与圆、直线与圆、圆与圆的位置关系【知识梳理】1.点与圆的位置关系:有三种:点在圆外,点在圆上,点在圆内.设圆的半径为r,点到圆心的距离为d,则点在圆外⇔d>r.点在圆上⇔d=r.点在圆内⇔d<r.2.直线和圆的位置关系有三种:相交、相切、相离.设圆的半径为r,圆心到直线的距离为d,则直线与圆相交⇔d<r,直线与圆相切⇔d=r,直线与圆相离⇔d>r3.圆与圆的位置关系(1)同一平面内两圆的位置关系:①相离:如果两个圆没有公共点,那么就说这两个圆相离.②若两个圆心重合,半径不同观两圆是同心圆.③相切:如果两个圆只有一个公共点,那么就说这两个圆相切.④相交:如果两个圆有两个公共点,那么就说这两个圆相交.(2)圆心距:两圆圆心的距离叫圆心距.(3)设两圆的圆心距为d,两圆的半径分别为R和r,则①两圆外离⇔d>R+r;有4条公切线;②两圆外切⇔d=R+r;有3条公切线;③两圆相交⇔R-r<d<R+r(R>r)有2条公切线;④两圆内切⇔d=R-r(R>r)有1条公切线;⑤两圆内含⇔d<R—r(R>r)有0条公切线.(注意:两圆内含时,如果d为0,则两圆为同心圆)4.切线的性质和判定(1)切线的定义:直线和圆有唯一公共点的直线和圆相切时,这条直线叫做圆的切线.(2)切线的性质:圆的切线垂直于过切点的直径.(3)切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.1.两个同心圆的半径分别为1cm和2cm,大圆的弦AB与小圆相切,那么AB=()A..3 D.42.已知⊙O1和⊙O2相外切,且圆心距为10cm,若⊙O1的半径为3cm,则⊙O2的半径 cm.BA.d>8 B.0<d≤2C.2<d<8 D.0≤d<2或d>84.已知半径为3cm,4cm的两圆外切,那么半径为6cm且与这两圆都外切的圆共有___个.5.已知⊙O1和⊙O2的半径分别为3crn和5 cm,两圆的圆心距是6 cm,则这两圆的位置关系是()A.内含 B.外离 C.内切 D.相交6.如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=4,OA=3,则cos∠APO的值为()3344A B C D....45537.如图,已知PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC度数是()A.70° B.40° C.50° D.20°8.在△ABC中,∠C=90°,AC=3cm,BC=4cm,CM是中线,以C为圆心,以3cm长为半径画圆,则对A、B、C、M四点,在圆外的有_________,在圆上的有________,在圆内的有________.9.已知半径为3 cm,4cm的两圆外切,那么半径为6 cm且与这两圆都外切的圆共有_________个.10.已知两圆的半径分别为3 cm和4 cm,圆心距为1cm,那么两圆的位置关系是()A.相离 B.相交 C.内切 D.外切11.如图,A、B是⊙上的两点,AC是⊙O的切线,∠B=65○,则∠BAC等于()A.35○B.25○C.50○D.65○12.已知两圆的圆心距是3,两圆的半径分别是方程x2-3x+2=0的两个根,那么这两个圆的位置关系是()A.外离 B.外切 C.相交 D.内切13.如图,已知两同心圆,大圆的弦AB切小圆于M,若环形的面积为9π,求AB的长.14.如图,PA切⊙O于A,PB切⊙O于B,∠APB=90°,OP=4,求⊙O的半径.ACBO(1)求证:AB 是⊙O 切线;(2)若△ABO 腰上的高等于底边的一半,且AB=4 3 ,求ECF 的长16.如图,CB 、CD 是⊙O 的切线,切点分别为B 、D ,CD 的延长线与⊙O 的直径BE 的延长线交于A 点,连OC ,ED .(1)探索OC 与ED 的位置关系,并加以证明; (2)若OD =4,CD=6,求tan ∠ADE 的值.17.如图,⊙O 的半径为1,过点A(2,0)的直线切⊙O 于点B,交y 轴于点C (1)求线段AB 的长(2)求以直线AC 为图象的一次函数的解析式18.如图,经过原点O 的⊙P 与、轴分别交于A 、B 两点,点C 是劣弧上一点,则∠ACB=( )A. 80°B. 90°C. 100°D. 无法确定 19.如图,AB 是⊙O 的弦,AC 是⊙Or 切线,A 为切点,BC 经过圆心. 若∠B=20°,则∠C 的大小等于( ) A .20° B .25° C . 40° D .50°20.如图,正六边形ABCDEF 内接于⊙O ,若直线PA 与⊙O 相切于点A ,则∠PAB =( )C OAB xyA .30°B .35°C .45°D .60°21.如图A ,B ,C 是⊙O 上的三个点,若,则等于( )(A) 50°(B) 80°(C) 100° (D) 130°22.如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边 形OACB 为菱形,还需要添加一个条件,这个条件可以是( ) A 、AD =BD B 、OD =CD C 、∠CAD =∠CBD D 、∠OCA =∠OCB23.如图,AB 为⊙O 直径,已知为∠DCB=20o,则∠DBA 为( ) A 、 B 、 C 、 D 、渾颦涧24.如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不成立...的是( )择峴A .∠A ﹦∠D B .CE ﹦DE C .∠ACB ﹦90°D .CE ﹦BD 25. 如图,中,AB=5,BC=3,AC=4,以点C 为圆心的圆与AB 相切,则☉C 的半径为( )(A )2.3 (B )2.4 (C )2.5 (D )2.626. 已知,是⊙O 的一条直径 ,延长至点,使,与⊙O 相切于点,若,则劣弧的长为 .27. 如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA , CD 是⊙O 的切线,A ,D 为切点,连接BD ,AD.若∠ACD=30°, 则∠DBA 的大小是( )A .15°B .30°C .60°D .75°第10题DOBA C①已知Rt ⊿ABC 中,∠C=90°,AB=3,BC=4,⊿ABC 内切圆半径为 ②已知⊿ABC 中,°,AB=2,BC=3,AC=2,⊿ABC 内切圆半径为 28.已知圆锥的侧面积等于cm 2,母线长10cm ,则圆锥的高是 cm .29.一个圆锥的底面半径为1厘米,母线长为2厘米, 则该圆锥的侧面积是(结果保留π)。
九年级数学第二十四章
一、选择题1.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( )
A .2b a +
B .2b a -
C .2
2b a b a -+或 D .b a b a -+或 2.如图⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,
则弦AB 的长是( )A .4 B .6 C .7 D .8
3.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( )
A .40°
B .80°
C .160°
D .120°
4.如图24—A —2,△ABC 内接于⊙O ,若∠A=40°,则∠OBC 的度数为( )
A .20°
B .40°
C .50°
D .70°
5.如图24—A —3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )
A .12个单位
B .10个单位
C .1个单位
D .15个单位
6.如图24—A —4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( ) A .80° B .50° C .40° D .30°
7.如图24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )
A .5
B .7
C .8
D .10
8.已知⊙O 的半径为4cm ,A 为线段OP 的中点,当OP=7cm 时,点A 与⊙O 的位置关系是( ) A .点A 在⊙O 内 B .点A 在⊙O 上
C .点A 在⊙O 外
D .不能确定
9.已知圆锥的侧面展开图的面积是15πcm 2,母线长是5cm ,则圆锥的底面半径为( )
A .cm 2
3 B .3cm C .4cm D .6cm 10.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( )
图24—A —
5 图24—A —
3
图24—A —4
A .26m
B .26m π
C .212m
D .212m π
11.在△ABC 中,I 是内心,∠ BIC=130°,则∠A 的度数为( )
A .40°
B .50°
C .65°
D .80°
二、填空题
12.如图24—A —8,在⊙O 中,弦AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点C ,则∠AOC= 。
13.如图24—A —9,AB 、AC 与⊙O 相切于点B 、C ,∠A=50゜,P 为⊙O 上异于
B 、
C 的一个动点,则∠BPC 的度数为 。
14.已知⊙O 的半径为2,点P 为⊙O 外一点,OP 长为3,那么以P 为圆心且与⊙O 相切的圆的半径为 。
15.一个圆锥的底面半径为3,高为4,则圆锥的侧面积是 。
16.扇形的弧长为20πcm ,面积为240πcm 2,则扇形的半径为 cm 。
17.如图24—A —10,半径为2的圆形纸片,沿半径OA 、OB 裁成1:3两部分,用得到的扇形围成圆锥的侧面,则圆锥的底面半径分别为 。
18.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( )
A .9cm
B .6cm
C .3cm
D .cm 4115.
19.在Rt △ABC 中,∠C=90゜,AC=5,BC=12,以C 为圆心,R 为半径作圆与斜边AB 相切,则R 的值为 。
三、作图题
20.如图24—A —12,扇形OAB 的圆心角为120°,半径为6cm.
⑴请用尺规作出扇形的对称轴(不写做法,保留作图痕迹).
⑵若将此扇形围成一个圆锥的侧面(不计接缝),求圆锥的底面
积.
图24—A —
8 图24—A —
10 图24—A —
12
21.如图24—B —16,已知在△⊙ABC 中,∠ A=90°,请用圆规和直尺作⊙P ,使圆心P 在AC 上,且与AB 、BC 两边都相切。
(要求保留作图痕迹,不必写出作法和证明)
四.22.如图24—A —13,AD 、BC 是⊙O 的两条弦,且AD=BC ,
求证:AB=CD 。
23.如图24—A —14,已知⊙O 的半径为8cm ,点A 为半径OB
的延长线上一点,射线AC 切⊙O 于点C ,BC 的长为cm 3
8,求线段AB 的长。
24.如图24—B —17,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC=BD 。
求证:OC=OD 。
⌒
图24—A —
13 图24—A —
14 图24—B —
17 图24—B —16。