手机锂离子电池保护电路原理分析
- 格式:doc
- 大小:43.00 KB
- 文档页数:3
深入剖析锂电池保护电路工作原理1. 锂离子电池介绍锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。
在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌,充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。
锂离子电池电压范围2.8V~4.2V,典型电压3.7V,低于2.8V或者高于4.2V,电池都会有损坏风险。
2. 1C和0.1C的概念电池容量的单位是mAh,C指的是电池充放电的倍率,比如一个2000mAh的电池,以1C放电指的是放电电流大小为2000mA,0.1C为200mA,充电也是同样的道理。
3. 锂离子电池的优缺点锂离子电池的主要优点:锂离子电池电压高,能量密度高;循环寿命长,一般可循环500,甚至达到1000次以上;自放电小,室温下充满电的Li-ion储存1个月后的自放电率为10%左右;可快速充电,1C充电时容量可以达到标称的80%;工作温度范围宽,一般为-25~45°C,后面有望突破-40-70°C;没有Ni-Cd、Ni-Mh一样的记忆效应,在充电前不必将剩余电量用完;相比较Ni-Cd、Ni-Mh来说环保无污染(不含镉,汞等重金属);锂离子电池的主要缺点:成本高;需要加保护电路板,包括过充和过放保护;不能大电流放电,一般放电电流在0.5C以下,过大的电流导致电池内部发热;安全性差,容易爆炸、起火。
4. 锂电池和锂离子电池的区别锂电池和锂离子电池是两个不同的概念,主要有如下的区别:锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂;锂离子电池是以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子;锂电池也称一次锂电池,可以连续放电,也可以间歇放电,一旦电能耗尽便不能再用,不能进行充电;锂离子电池也称二次锂电池,可以充放电;5. 锂离子电池充电模式锂离子电池理想充电模式被称为CC CV模式,即恒流恒压模式。
手机锂电池保护板原理
手机锂电池保护板是保护手机电池免受过充、过放、短路和过热等问题的关键组件。
其原理主要包括以下几个方面:
1. 过充保护:锂电池在充电时,当电压超过一定阈值时,保护板会自动切断电流,防止电池过充,避免损坏电池和可能的安全隐患。
2. 过放保护:锂电池在放电时,当电压低于一定阈值时,保护板会自动切断电流,防止电池过放,避免损坏电池和可能的安全隐患。
3. 过流保护:保护板会监测电池充放电过程中的电流,一旦电流超过一定限制,保护板将立即切断电路,防止过大的电流损坏电池或引发危险。
4. 短路保护:当电池正负极短路时,保护板会迅速切断电路,防止电池短路过流,避免火灾等安全事故。
5. 温度保护:保护板会监测电池温度,一旦温度超过安全范围,保护板将切断电路,防止过热导致电池损坏或安全风险。
以上是手机锂电池保护板的基本工作原理,通过这些保护措施可以确保锂电池的安全运行,延长电池寿命,并提高使用者的安全性。
3.7v锂电池充放电保护电路3.7V锂电池充放电保护电路是一个重要的电子电路,主要用于保护锂电池在充放电过程中的安全使用。
这种电路可以防止电池过度充电、过度放电和短路等情况,从而延长电池的使用寿命和防止电池热失控导致的安全问题。
一、电路组成3.7V锂电池充放电保护电路主要由锂电池、充电电路、放电电路和保护电路四部分组成。
其中,保护电路是核心部分,它由充电保护芯片、放电保护芯片和电压检测芯片等组成。
二、工作原理1.充电工作原理:当锂电池连接到充电电路时,充电保护芯片会检测电池的电压和电流。
如果电池电压或电流超过设定值,充电保护芯片会自动切断充电电路,以避免电池过度充电。
同时,电压检测芯片会检测电池的电压,当电池电压达到设定值时,充电保护芯片会自动关闭充电电路,以避免电池过充。
2.放电工作原理:当锂电池需要放电时,放电保护芯片会检测电池的电压和电流。
如果电池电压或电流超过设定值,放电保护芯片会自动切断放电电路,以避免电池过度放电。
同时,电压检测芯片会检测电池的电压,当电池电压低于设定值时,放电保护芯片会自动关闭放电电路,以避免电池过放。
3.短路保护:如果锂电池发生短路,电流会迅速增加,这时,放电保护芯片会自动切断放电电路,以避免电流过大损坏电池。
同时,充电保护芯片也会自动关闭充电电路,以避免电池过充而损坏。
三、电路特点1.具有充电、放电和短路保护功能:该电路具有全面的保护功能,可以有效地防止锂电池在充放电过程中出现过度充电、过度放电和短路等问题。
2.高精度控制:该电路采用先进的控制技术,可以实现对电池电压和电流的高精度检测和控制,确保电池在安全范围内使用。
3.可靠性高:该电路采用高品质的电子元件和先进的生产工艺,具有高可靠性和长寿命等特点,可以满足各种应用场景的需求。
4.体积小、重量轻:该电路体积小、重量轻,方便携带和使用,适用于各种移动设备和其他小型电子产品中。
5.安全可靠:该电路采用多重保护机制,确保电池在任何情况下都不会出现过充、过放和短路等现象,从而保证了电池的安全可靠。
手机的电池工作原理手机的电池工作原理手机的电池是为了提供动力给手机的使用,是手机正常工作必不可少的一个组件。
手机电池通常由可充电锂离子电池组成,下面将详细介绍手机电池的工作原理。
手机电池的基本构造由正极、负极、隔膜和电解液组成。
正极一般由氧化物制成,负极由碳或锂合金制成。
隔膜则起到隔离正负极之间的作用,防止短路。
电解液则是通过正负载流子来连接正负极,使电池闭合电路。
当我们使用手机时,电池会开始工作。
手机内部会有一个控制芯片,它会监测电池的电量和温度,并根据需要调整电流。
手机电源通过正极、电解液、负极之间的化学反应来产生电流。
电解液中的锂离子会在电池闭合电路的作用下从负极移动到正极,同时电子则从负极通过外部电路移动到正极,达到平衡。
这种过程呈现了一种化学反应和电流的转化。
当锂离子从负极移动到正极时,正极会吸收锂离子并释放出电子。
这个过程是可逆的,所以电池可以重复使用。
当手机电池储存的锂离子和电子流向负极时,手机就会失去动力,电量变空。
当我们需要给手机充电时,正好反过来,通过电源连接到手机,电流从电源流向电池。
这时,锂离子会从正极移动到负极,同时电子流也会反向。
为了保证电池的工作稳定和延长电池寿命,手机电池还有一些保护机制。
例如,为了防止过充电和过放电,手机电池内部一般会有保护措施。
当电池充电到一定电量时,充电会停止,以防止充电过度导致电池损坏。
同样,当电池电量过低时,手机会自动关闭以保护电池。
此外,手机电池的寿命也会受到一些因素的影响。
例如,充电次数过多、高温环境、过度放电等都会缩短电池寿命。
因此,我们在日常使用手机时,应尽量保持电池的正常使用,勿放电过度或长时间处于高温环境中。
总结起来,手机电池的工作原理就是通过正负极间的化学反应和电流的转化来提供电力。
锂离子在充电时从正极移动到负极,放电时则反向移动。
手机电池不仅需要可靠稳定的工作,还需要有一些保护机制来延长电池寿命。
因此,在日常使用手机时,我们需要注意合理充电和使用,以保证手机电池的正常工作。
锂电池保护板儿的工作原理锂电池保护板是一种起到过充保护、过放保护、短路保护、温度保护等功能的安全控制器,它主要用于对锂电池进行保护,并延长锂电池的使用寿命。
下面将详细介绍锂电池保护板的工作原理。
首先,锂电池保护板的工作原理可以分为两个方面:电路保护与信息传输。
1. 电路保护:锂电池保护板内部包含多个功能电路模块,包括过充保护、过放保护、短路保护、温度保护等。
这些电路模块通过检测锂电池的状态来控制充放电过程,并保护锂电池免受不良因素的损害。
- 过充保护:当锂电池的电压超过一定阈值时,锂电池保护板会通过电路检测到电压超过阈值,并立即切断充电电路,防止过充电给锂电池造成损伤。
具体来说,过充保护功能是通过一个比较电路实现的,当电压超过设定的过充电压阈值时,比较电路会驱动开关管断开充电回路,从而停止充电。
- 过放保护:类似过充保护,过放保护是通过电路检测锂电池电压低于一定阈值时触发,切断放电回路,以防止过度放电导致锂电池失效。
过放保护的电压阈值通常略高于锂电池的保护电压,以避免频繁触发保护。
- 短路保护:当锂电池输出短路时,锂电池保护板会快速检测到短路信号,并切断输出回路,以避免电流过大引发事故。
短路保护通常通过电流传感器进行检测,一旦检测到过大的电流,保护板将立即切断输出。
- 温度保护:锂电池在过高温度下易发生热失控、爆炸等危险情况,锂电池保护板通过温度传感器实时检测锂电池的温度,当温度超出预设范围时,保护板会采取措施,如切断充放电回路或进行温度报警。
2. 信息传输:除了电路保护外,锂电池保护板还通过信息传输与主控芯片或充电管理控制器进行通信,以实现智能化管理和控制。
- voltage sense电路:通过电压传感器感知锂电池的电压,经过A/D转换后将电压信号传递给主控芯片或充电管理控制器。
- current sense电路:通过电流传感器感知锂电池的放电电流或充电电流,并进行A/D转换后传输给主控芯片或充电管理控制器,以实现对电流的实时监测和控制。
锂离子电池的工作原理
锂离子电池是一种常见的可充电电池,其工作原理基于锂离子在正负极材料之间的转移。
锂离子电池的主要组成部分有正极、负极、电解质和隔膜。
正极材料通常是锂金属氧化物(如LiCoO2),负极材料是石墨,电解质一般是有机液态电解质,隔膜则用于隔离正负极。
在充电过程中,锂离子电池的正极材料会失去锂离子,锂离子经电解质导体移动到负极材料中并存储。
同时,负极材料会通过电解质导体吸收和嵌入锂离子,形成碳锂化物。
这个过程是可逆的,因此锂离子电池可以反复充放电。
当需要使用电池的储存能量时,电池会通过电路供应给负载。
在放电过程中,负极材料会释放嵌入的锂离子,这些锂离子通过电解质导体移动到正极材料,发生氧化还原反应,释放出电子供给负载。
总之,锂离子电池的工作原理是通过锂离子在正负极之间的转移实现充放电过程,并借助电解质导体和隔膜的作用来防止正负极的直接接触。
这种工作原理使得锂离子电池具有高能量密度、较高的电压和较长的循环寿命。
锂离子电池的原理锂离子电池是一种常见的电池类型,广泛应用于手机、笔记本电脑、电动汽车等领域。
它的原理是利用锂离子在正负极之间的迁移来实现电荷的存储和释放。
在充电时,锂离子从正极(通常是氧化物)迁移到负极(通常是石墨),在放电时则相反。
这种迁移过程是通过电解质中的离子传导实现的。
锂离子电池的正极通常是由锂离子化合物构成,如三氧化二锂(Li2O3)、钴酸锂(LiCoO2)等。
而负极则通常是由碳材料构成,如石墨。
电解质一般采用有机溶剂和锂盐组成的液体或固体。
在充电时,正极材料中的锂离子被氧化,氧化物中的锂离子释放出电子,然后通过外部电路流向负极,同时负极材料中的碳结构吸附这些锂离子。
在放电时,这些锂离子又会从负极释放出来,回到正极的氧化物中,同时释放出储存在其中的电子,从而产生电流。
锂离子电池的工作原理可以用下面的化学方程式来表示:在充电时:正极,LiCoO2 → Li1-xCoO2 + xLi+ + xe-。
负极,C + xLi+ + xe→ LixC。
在放电时:正极,Li1-xCoO2 + xLi+ + xe→ LiCoO2。
负极,LixC → C + xLi+ + xe-。
其中,LiCoO2代表正极的材料,C代表负极的材料,Li+代表锂离子,e-代表电子。
在充放电过程中,锂离子在正负极之间来回迁移,而电子则通过外部电路流动,从而实现了电荷的储存和释放。
锂离子电池具有高能量密度、长循环寿命、低自放电率等优点,因此得到了广泛的应用。
但是,锂离子电池也存在着安全性、成本和资源等方面的挑战,如过充、过放、高温等情况可能导致电池的短路、爆炸等问题,同时锂资源的有限性也制约了其大规模应用。
因此,未来锂离子电池仍需要不断的技术创新和改进,以满足人们对于高能量密度、安全性和可持续发展的需求。
总之,锂离子电池的原理是通过锂离子在正负极之间的迁移来实现电荷的存储和释放,其工作原理可以用化学方程式来表示。
锂离子电池具有许多优点,但也面临着一些挑战,未来仍需要不断改进和创新。
手机锂离子电池的保护电路与充电器 上世纪90年代市面上自推出可充锂离子电池以来,由于其价格低廉,容量大,无记忆等特性而深受广大群众的喜爱,特别是在携带式的电器通讯设备中(例手机,MPG 随身听,便携式DV 摄录机,数码相机,笔记本电脑等), 锂离子电池己成为主流或首选品种,故当前了解锂离子电池的简单原理和充放电知识,己成为推行现代教育技术,不可忽略的内容。
手机使用的锂离子电池,阳极通常是铜片或石墨电极组成,阴极通常是二氧化锂组成,电池充电时,阴极中锂原子电离成锂离子和电子,锂离子向阳极移动并与电子合成锂原子,放电时,阳极表面锂原子又电离成锂离子和电子,锂离子移动到阴极处重新结合成锂原子,由于电池内锂总是以离子形态出现,故称锂离子电池。
锂离子电池每一个单体电压约为3.6V ,工作时电压会随时间增大而徐徐下降,所以手机上能通过电路检测出电池的即时电压,从而显示剩余电量,以便及时充电。
常用手机锂离子电池单体的充电电压最好保持在4.1V 左右,充电电流通常限制在500mA 以下,放电电流不应超过1500mA 。
放电电压不应低于2.2V ,否则会造成锂离子电池永久性损坏,故一般锂离子电池内部都按置保护电路,由于锂离子电池,对环境温度敏感,正常工作温度应为-200 C —600C,所以有一些锂离子电池壳内除通常配有完善的过流过压保护电路外还配有温度保护电路。
保护电路一般由3-6片小型贴片集成电路和大量贴片三极管,电阻,电容等组成,双面焊接在一小块印刷线路板上,性能一般都很优异.检测锂离子电池内部的电压电流保护电路最简单的方法是用多用表的直流电流档,将其量程拨在2.5A以上,然后短时间将两个表笔分别接电池,+,- ,两极,测定电池的短路电流, 如表针只抖动一下就显示没电了, 表明电池内部有保护电路,该电路已处于保护状态, 电池自动暂时失去了供电能力, 此时需要将电池放入充电器中, 充电一两秒, 解除短路保护状态后又能正常使用了, 否则说明电池内部根本没有保护电路或电路已损坏。
锂电池保护电路板原理引言锂电池在现代生活中得到了广泛应用,如手机、平板电脑、电动车等。
然而,由于其特殊的化学性质,若不加以保护和管理,可能会导致过充、过放、短路等危险情况,甚至引发火灾或爆炸。
为了确保锂电池的安全使用,我们需要在电池上加装锂电池保护电路板(以下简称BMS)。
本文将详细解释与锂电池保护电路板原理相关的基本原理,并确保解释清楚、易于理解。
锂电池基本原理我们需要了解锂电池的基本工作原理。
锂电池是一种化学能转换为电能的装置。
它由正极、负极和隔膜组成。
正极通常采用氧化物材料(如LiCoO2),负极则采用碳材料(如石墨)。
当锂离子从负极通过隔膜进入正极时,化学反应释放出电子,并产生正极材料的还原物。
当外部负载连接到正负极之间时,电子会流动,从而实现了电能的转换和传输。
然而,锂电池在使用过程中存在一些问题。
当锂离子在充放电过程中反复嵌入和脱嵌时,正负极材料可能会发生结构变化,导致容量衰减。
由于锂电池的特殊性质,若不加以保护和管理,可能会出现过充、过放、短路等危险情况。
锂电池保护需求为了确保锂电池的安全使用,我们需要满足以下几个基本需求:1.过充保护:防止充电时电压超过安全范围。
2.过放保护:防止放电时电压低于安全范围。
3.短路保护:防止正负极直接短路。
4.温度保护:防止温度过高引发危险。
5.均衡充放电:使每个单体电池都能得到均衡充放电。
锂电池保护电路板原理为了满足上述需求,我们需要在锂电池上加装BMS。
BMS是一种集成了多种功能的电路板,它可以监测和控制电池的状态,并采取相应的措施保护电池。
下面将详细介绍BMS的工作原理。
1. 过充保护过充保护是指防止锂电池在充电时电压超过安全范围。
当电压超过设定的阈值时,BMS会采取以下措施:•切断充电:BMS会通过控制充电管理芯片或继电器,切断充电源与锂电池之间的连接,停止充电过程。
•发出警报:BMS会触发警报装置(如蜂鸣器),发出警报提示用户。
2. 过放保护过放保护是指防止锂电池在放电时电压低于安全范围。
锂离子电池保护电路包括过度充电保护、过电流/短路保护和过放电保护,要求过充电保护高精度、保护IC功耗低、高耐压以及零伏可充电等特性.本文详细介绍了这三种保护电路的原理、新功能和特性要求.近年来,PDA、数字相机、手机、便携式音频设备和蓝牙设备等越来越多的产品采用锂电池作为主要电源.锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,与镍镉、镍氢电池不太一样,锂电池必须考虑充电、放电时的安全性,以防止特性劣化.针对锂电池的过充、过度放电、过电流及短路保护很重要,所以通常都会在电池包内设计保护线路用以保护锂电池.由于锂离子电池能量密度高,因此难以确保电池的安全性.在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而发生自燃或破裂的危险;反之,在过度放电状态下,电解液因分解导致电池特性及耐久性劣化,从而降低可充电次数.保护电路图该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。
充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。
在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。
放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。
锂离子电池的保护电路就是要确保这样的过度充电及放电状态时的安全性,并防止特性劣化.锂离子电池的保护电路是由保护IC及两颗功率MOSFET所构成,其中保护IC监视电池电压,当有过度充电及放电状态时切换到以外挂的功率MOSFET来保护电池,保护IC的功能有过度充电保护、过度放电保护和过电流/短路保护.过度充电保护过度充电保护IC的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态.此时,保护IC需检测电池电压,当到达4.25V时(假设电池过充点为4.25V)即激活过度充电保护,将功率MOS由开转为关断,进而截止充电.另外, 还必须注意因噪声所产生的过度充电检出误动作,以免判定为过充保护.因此,需要设定延迟时间,并且延迟时间不能短于噪声的持续时间.过度放电保护在过度放电的情况下,电解液因分解而导致电池特性劣化,并造成充电次数的降低.采用锂电池保护IC可以避免过度放电现象发生,实现电池保护功能.过度放电保护IC原理:为了防止锂电池的过度放电状态,假设锂电池接上负载,当锂电池电压低于其过度放电电压检测点(假定为2.3V)时将激活过度放电保护,使功率MOSFET由开转变为关断而截止放电,以避免电池过度放电现象发生,并将电池保持在低静态电流的待机模式,此时的电流仅0.1uA.当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除.另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免发生误动作.过电流及短路电流因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路,为确保安全,必须使其立即停止放电.过电流保护IC原理为,当放电电流过大或短路情况发生时,保护IC将激活过(短路)电流保护,此时过电流的检测是将功率MOSFET的Rds(on)当成感应阻抗用以监测其电压的下降情形,如果比所定的过电流检测电压还高则停止放电,计算公式为: V-=I×Rds(on)×2(V-为过电流检测电压,I为放电电流).假设V-=0.2V,Rds(on)=25mΩ,则保护电流的大小为I=4A.同样地,过电流检测也必须设有延迟时间以防有突发电流流入时发生误动作.通常在过电流发生后,若能去除过电流因素(例如马上与负载脱离),将会恢复其正常状态,可以再进行正常的充放电动作.锂电池保护IC的新功能除了上述的锂电池保护IC功能之外,下面这些新的功能同样值得关注:1. 充电时的过电流保护当连接充电器进行充电时突然发生过电流(如充电器损坏),电路立即进行过电流检测,此时Cout将由高转为低,功率MOSFET由开转为关断,实现保护功能.V-(Vdet4过电流检测电压,Vdet4为-0.1V)=I(充电电流)×Rds(on)×22. 过度充电时的锁定模式通常保护IC在过度充电保护时将经过一段延迟时间,然后就会将功率MOSFET关断以达到保护的目的,当锂电池电压一直下降到解除点(过度充电滞后电压)时就会恢复,此时又会继续充电-保护-放电-充电-放电.这种状态的安全性问题将无法获得有效解决,锂电池将一直重复着充电-放电-充电-放电的动作,功率MOSFET的栅极将反复地处于高低电压交替状态,这样可能会使MOSFET变热,还会降低电池寿命,因此锁定模式很重要.假如锂电保护电路在检测到过度充电保护时有锁定模式,MOSFET将不会变热,且安全性相对提高很多.在过度充电保护之后,只要充电器连接在电池包上,此时将进入过充锁定模式.此时,即使锂电池电压下降也不会发生再充电的情形,将充电器移除并连接负载即可恢复充放电的状态.3. 减小保护电路组件尺寸将过度充电和短路保护用的延迟电容集成到到保护IC里面,以减小保护电路组件尺寸.对保护IC性能的要求1. 过度充电保护的高精度化当锂离子电池有过度充电状态时,为防止因温度上升所导致的内压上升,须截止充电状态.保护IC将检测电池电压,当检测到过度充电时,则过度充电检测的功率MOSFET使之关断而截止充电.此时应注意的是过度充电的检测电压的高精度化,在电池充电时,使电池充电到饱满的状态是使用者很关心的问题,同时兼顾到安全性问题,因此需要在达到容许电压时截止充电状态.要同时符合这两个条件,必须有高精度的检测器,目前检测器的精度为25mV,该精度将有待于进一步提高.2. 降低保护IC的耗电随着使用时间的增加,已充过电的锂离子电池电压会逐渐降低,最后低到规格标准值以下,此时就需要再度充电.若未充电而继续使用,可能造成由于过度放电而使电池不能继续使用.为防止过度放电,保护IC 必须检测电池电压,一旦达到过度放电检测电压以下,就得使放电一方的功率MOSFET 关断而截止放电.但此时电池本身仍有自然放电及保护IC的消耗电流存在,因此需要使保护IC消耗的电流降到最低程度.3. 过电流/短路保护需有低检测电压及高精度的要求因不明原因导致短路时必须立即停止放电.过电流的检测是以功率MOSFET的Rds(on)为感应阻抗,以监视其电压的下降,此时的电压若比过电流检测电压还高时即停止放电.为了使功率MOSFET的Rds(on)在充电电流与放电电流时有效应用,需使该阻抗值尽量低,目前该阻抗约为20mΩ~30mΩ,这样过电流检测电压就可较低.4. 耐高电压电池包与充电器连接时瞬间会有高压产生,因此保护IC应满足耐高压的要求.5. 低电池功耗在保护状态时,其静态耗电流必须要小0.1uA.6. 零伏可充电有些电池在存放的过程中可能因为放太久或不正常的原因导致电压低到0V,故保护IC需要在0V时也可以实现充电.保护IC发展展望如前所述,未来保护IC将进一步提高检测电压的精度、降低保护IC 的耗电流和提高误动作防止功能等,同时充电器连接端子的高耐压也是研发的重点.在封装方面,目前已由SOT23-6逐渐转向SON6封装,将来还有CSP 封装,甚至出现COB产品用以满足现在所强调的轻薄短小要求.在功能方面,保护IC不需要集成所有的功能,可根据不同的锂电池材料开发出单一保护IC,如只有过充保护或过放保护功能,这样可以大大减少成本及尺寸.当然,功能组件单晶体化是不变的目标,如目前手机制造商都朝向将保护IC、充电电路以及电源管理IC等外围电路与逻辑IC构成双芯片的芯片组,但目前要使功率MOSFET的开路阻抗降低,难以与其它IC 集成,即使以特殊技术制成单芯片,恐怕成本将会过高.因此,保护IC的单晶体化将需一段时间来解决.看了不少资料和文章,自己也在研究,但是在锂电池保护电路方面,很难找到不错的探讨专题。
手机锂离子电池保护电路原理分析
由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解(有些人可能还不知道锂电里有保护电路),下面将对锂离子电池的特点及其保护电路工作原理进行阐述。
锂电池分为一次电池和二次电池两类,目前在手机里的备用电池因耗电小主要使用不可充电的一次锂电池,而在手机主电池因耗电量较大则使用可充电的二次电池,即锂离子电池。
与镍镉和镍氢电池相比,锂离子电池具备以下几个优点:
1、电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V电压。
2、容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5倍。
3、荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。
4、寿命长,正常使用其循环寿命可达到500次以上。
5、没有记忆效应,在充电前不必将剩余电量放空,使用方便。
由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。
下图为一个典型的锂离子电池保护电路原理图。
如上图所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。
控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下:
1、正常状态
在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。
此状态下保护电路的消耗电流为μA级,通常小于7μA。
2、过充电保护
锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。
电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。
在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。
而此时由于V2自带的体二极管VD2的存在,电池可以通过该二极管对外部负载进行放电。
在控制IC 检测到电池电压超过4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。
3、过放电保护
电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V 时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的永久性损坏。
在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。
而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二极管对电池进行充电。
由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于0.1μA。
在控制IC检测到电池电压低于2.3V至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常设为100毫秒左右,以避免因干扰而造成误判断。
4、过电流保护
由于锂离子电池的化学特性,电池生产厂家规定了其放电电流最大不能超过2C(C=电池容量/小时),当电池超过2C电流放电时,将会导致电池的永久性损坏或出现安全问题。
电池在对负载正常放电过程中,放电电流在经过串联的2个MOSFET时,由于MOSFET 的导通阻抗,会在其两端产生一个电压,该电压值U=I*RDS*2, RDS为单个MOSFET导通阻抗,控制IC上的“V-”脚对该电压值进行检测,若负载因某种原因导致异常,使回路电流增大,当回路电流大到使U>0.1V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路,使回路中电流为零,起到过电流保护作用。
在控制IC检测到过电流发生至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常为13毫秒左右,以避免因干扰而造成误判断。
在上述控制过程中可知,其过电流检测值大小不仅取决于控制IC的控制值,还取决于MOSFET的导通阻抗,当MOSFET导通阻抗越大时,对同样的控制IC,其过电流保护值越小。
5、短路保护
电池在对负载放电过程中,若回路电流大到使U>0.9V(该值由控制IC决定,不同的IC有不同的值)时,控制IC则判断为负载短路,其“DO”脚将迅速由高电压转变为零电压,使V1由导通转为关断,从而切断放电回路,起到短路保护作用。
短路保护的延时时间极短,通常小于7微秒。
其工作原理与过电流保护类似,只是判断方法不同,保护延时时间也不一样。
以上详细阐述了单节锂离子电池保护电路的工作原理,上面电路中所用的控制IC为日本理光公司的R5421系列,在实际的电池保护电路中,还有许多其它类型的控制IC,如日本精工的S-8241系列、日本MITSUMI的MM3061系列、富晶的FS312和FS313系列、类比科技的AAT8632系列等等,其工作原理大同小异,只是在具体参数上有所差别,有些控制IC为了节省外围电路,将滤波电容和延时电容做到了芯片内部,其外围电路可以很少,如日本精工的S-8241系列。
除了控制IC外,电路中还有一个重要元件,就是MOSFET,它在电路中起着开关的作用,由于它直接串接在电池与外部负载之间,因此它的导通阻抗对电池的性能有影响,当选用的MOSFET较好时,其导通阻抗很小,电池包的内阻就小,带载能力也强,在放电时其消耗的电能也少。
随着科技的发展,手机的体积越做越小,而随着这种趋势,对锂离子电池的保护电路体积的要求也越来越小,在这两年已出现了将控制IC和MOSFET整合成一颗保护IC的产品,如DIALOG公司的DA7112系列,有的厂家甚至将整个保护电路封装成一颗小尺寸的IC,如MITSUMI公司的产品。
手机的锂离子电池在损坏后,有些是保护电路出故障(尤其是进水机的电池),因此有些锂电可以拆开来修复,既环保又不浪费。