2017年全国初中数学竞赛冲刺试卷(4)2009年“数学周报杯”全国初中数学竞赛决赛试卷
- 格式:doc
- 大小:231.50 KB
- 文档页数:5
2017 年全国初中数学联合竞赛试题2017年3月26日(星期日)上午8:30-11:30第一试(A)一、选择题(本题满分42分,每小题7分)(本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.)1.已知实数a,b,c 满足213390a b c ++=,3972a b c ++=,则32b ca b+=+ ( )A. 2B. 1C. 0D. -2.已知△ABC 的三边长分别是a,b,c ,有以下三个结论:(1 (2)以222,,a b c 为边长的三角形一定存在;(3)以为1,1,1a b b c c a -+-+-+为边长的三角形一定存在. 其中正确结论的个数为 ( ) A .0 B .1 C .2 D .33.若正整数a,b,c 满足a b c ≤≤且=2()abc a b c ++,则称()a b c ,,为好数组.那么,好数组的个数为 ( )A. 1 B .2 C .3 D .44.设O 是四边形ABCD 的对角线AC 、BD 的交点,若0180BAD ACB ∠+∠=,且BC=3,AD=4,AC=5 ,AB=6 ,则DOOB= ( ) A. 10/9 B .8/7 C .6/5 D .4/3第4题图第5题图5.设A是以BC为直径的圆上的一点,AD⊥BC于点D,点E在线段DC上,点F在CB的延长线上,满足BAF CAE∠=∠.已知BC=15,BF=6,BD=3,则AE=()A.B.C.D.6.对于正整数n,设a n的整数,则1232001111...a a a a++++=()A. 191/7 B.192/7 C.193/7 D.194/7二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1=a的值为______ _.2.如图,平行四边形ABCD中,072ABC∠=,AF BC⊥于点F,AF交BD于点E,若DE=2AB,则AED∠=______.3.设m,n是正整数,且m>n. 若9m与9n的末两位数字相同,则m-n的最小值为.4.若实数x,y满足3331+的最小值为.x y++=,则22x y xy第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y ax2bx c(c 的图象与x轴有唯一交点,则二次函数y a3 x2b3x c3的图象与x 轴的交点个数为()A.0 B.1 C.2 D.不确定.2.题目与(A)卷第1 题相同.3. 题目与(A)卷第3 题相同.4.已知正整数a,b,c满足a2 b c , a b2 c ,则a2 b2c2=()A. 424B. 430C. 441D. 460.5.设O是四边形ABCD的对角线AC、BD的交点,若BAD ACB ,且BC ,AD ,AC ,AB ,则DO/OB=()A. 4/3B. 6/5C. 8/7D. 10/96.题目与(A)卷第5 题相同.二、填空题:(本题满分28 分,每小题7 分)1.题目与(A)卷第1 题相同.2.设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠=∠,则OED∠=_________.ABC OED∠=∠,57ACB OED3. 题目与(A )卷第3 题相同.4. 题目与(A )卷第4 题相同第二试 (A )一、(本题满分20 分)已知实数x,y 满足x+y=3,221112x y x y +=++ ,求55x y +的值. 二、(本题满分25分)如图,△ABC 中,AB AC ,BAC ,E 是BAC的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF AB .已知AF,BF ,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a, b),使得34938b a =⨯+第二试 (B )一、(本题满分20分)已知实数a,b,c 满足a b c ≤≤,++=16a b c ,2221+++=1284a b c abc , 求c 的值.二、(本题满分25 分)求所有的正整数m ,使得212-2+1m m -是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,OAD OCB ,OA OD ,OB OC .求证: AB 2 CD 2 AD 2 BC 2 .。
中国教育学会中学数学教学专业委员会“《数学周报》杯”2007年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填得零分)1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).(A )1 (B ) 2 (C ) 3 (D )4答:(A ).解:若x ≥0,则12,6,x y x y +=⎧⎪⎨+=⎪⎩于是6y y -=-,显然不可能. 若0x <,则 12,6,x y x y -+=⎧⎪⎨+=⎪⎩于是18y y +=,解得9y =,进而求得3x =-.所以,原方程组的解为⎩⎨⎧=-=,9,3y x 只有1个解.故选(A ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ).(A ) 14 (B ) 16 (C )18 (D )20答:(B ).解:用枚举法:红球个数 白球个数 黑球个数 种 数5 2,3,4,5 3,2,1,0 44 3,4,5,6 3,2,1,0 43 4,5,6,7 3,2,1,0 42 5,6,7,8 3,2,1,0 4所以,共16种.故选(B ).3.已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相交于点D ,E . 若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经过△ABC 的( ).(A )内心 (B )外心 (C )重心 (D )垂心答:(B ).解: 如图,连接BE ,因为△ABC 为锐角三角形,所以BAC ∠,ABE ∠均为锐角.又因为⊙O 的半径与△ADE 的外接圆的半径相等,且DE 为两圆的公共弦,所以BAC ABE ∠=∠.于是,2BEC BAC ABE BAC ∠=∠+∠=∠.若△ABC 的外心为1O ,则12BO C BAC ∠=∠,所以,⊙O一定过△ABC 的外心.故选(B ).4.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx 恰有一个公共实数根,则222a b c bc ca ab++的值为( ). (A ) 0 (B )1 (C )2 (D )3答:(D ).解:设0x 是它们的一个公共实数根,则0020=++c bx ax ,0020=++a cx bx ,0020=++b ax cx .把上面三个式子相加,并整理得200()(1)0a b c x x ++++=. 因为22000131()024x x x ++=++>,所以0a b c ++=. 于是222333333()a b c a b c a b a b bc ca ab abc abc+++-+++== 3()3ab a b abc-+==. 故选(D ).5.方程323652x x x y y ++=-+的整数解(x ,y )的个数是( ).(A )0 (B )1 (C )3 (D )无穷多答:(A ).解:原方程可化为(第3题答案图)2(1)(2)3(1)(1)2x x x x x y y y ++++=-++(),因为三个连续整数的乘积是3的倍数,所以上式左边是3的倍数,而右边除以3余2,这是不可能的.所以,原方程无整数解.故选(A).二、填空题(共5小题,每小题6分,满分30分)6.如图,在直角三角形ABC 中,90ACB ∠=︒,CA =4.点P 是半圆弧AC 的中点,连接BP ,线段BP 把图形APCB 分成两部分,则这两部分面积之差的绝对值是 .答:4.解:如图,设AC 与BP 相交于点D ,点D 关于圆心O 的对称点记为点E ,线段BP 把图形APCB 分成两部分,这两部分面积之差的绝对值是△BEP 的面积,即△BOP 面积的两倍.而1122222BPO S PO CO ∆=⋅=⨯⨯=. 因此,这两部分面积之差的绝对值是4.7.如图, 点A ,C 都在函数33(0)y x =>的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为 .答:(26,0).解:如图,分别过点A ,C 作x 轴的垂线,垂足分别为E ,F .设OE =a ,BF =b , 则AE =3a ,CF =3b ,所以,点A ,C 的坐标为(a ,3a ),(2a +b ,3b ),所以 2333,3(2)33,a b a b ⎧=⎪⎨+=⎪⎩解得3,63,a b ⎧=⎪⎨=-⎪⎩ 因此,点D 的坐标为(26,0).(第6题答案图) (第7题答案图)8.已知点A ,B 的坐标分别为(1,0),(2,0). 若二次函数()233y x a x =+-+的图象与线段AB 恰有一个交点,则a 的取值范围是 .答:1-≤12a <-,或者323a =-. 解:分两种情况:(Ⅰ)因为二次函数()233y x a x =+-+的图象与线段AB 只有一个交点,且点A ,B 的坐标分别为(1,0),(2,0),所以[][]032)3(231)3(122<+⨯-+⨯+⨯-+a a , 得112a -<<-. 由031)3(12=+⨯-+a ,得1a =-,此时11=x ,32=x ,符合题意;由032)3(22=+⨯-+a ,得12a =-,此时21=x ,232=x ,不符合题意. (Ⅱ)令()2330x a x +-+=,由判别式0∆=,得323a =±.当323a =+时,123x x ==-,不合题意;当323a =-时,123x x ==,符合题意.综上所述,a 的取值范围是1-≤12a <-,或者323a =-. 9.如图,90A B C D E F G n ∠+∠+∠+∠+∠+∠+∠=⋅︒,则n = . 答:6.解:如图,设AF 与BG 相交于点Q ,则AQG A D G ∠=∠+∠+∠,于是A B C D E F G ∠+∠+∠+∠+∠+∠+∠B C E F AQG =∠+∠+∠+∠+∠B C E F BQF =∠+∠+∠+∠+∠540690=︒=⨯︒.所以,n =6.10.已知对于任意正整数n ,都有312n a a a n +++=L , 则 23100111111a a a +++=---L . (第9题答案图)答:33100. 解:当n ≥2时,有 3121n a a a a n n =++++-Λ,3121(1)n a a a n -+++=-L ,两式相减,得 2331n a n n =-+,所以 ),111(31)1(3111nn n n a n --=-=- Λ,4,3,2=n 因此23100111111a a a +++---L 11111111(1)()()32323399100=-+-++-L 1133(1)3100100=-=. 三、解答题(共4题,每小题15分,满分60分)11(A ).已知点M ,N 的坐标分别为(0,1),(0,-1),点P 是抛物线214y x =上的一个动点.(1)判断以点P 为圆心,PM 为半径的圆与直线1y =-的位置关系;(2)设直线PM 与抛物线214y x =的另一个交点为点Q ,连接NP ,NQ ,求证:PNM QNM ∠=∠.解:(1)设点P 的坐标为2001(,)4x x ,则 PM =2222220000111(1)(1)1444x x x x +-=+=+; 又因为点P 到直线1y =-的距离为220011(1)144x x --=+, 所以,以点P 为圆心,PM 为半径的圆与直线1y =-相切.…………5分(2)如图,分别过点P ,Q 作直线1y =-的垂线,垂足分别为H ,R .由(1)知,PH =PM ,同理可得,QM=QR .(第11A 题答案图)因为PH ,MN ,QR 都垂直于直线1y =-,所以,PH ∥MN ∥QR ,于是QM MP RN NH=, 所以 QR PH RN HN =, 因此,Rt △PHN ∽Rt △QRN .于是HNP RNQ ∠=∠,从而PNM QNM ∠=∠.…………15分12(A ).已知a ,b 都是正整数,试问关于x 的方程21()02x abx a b -++=是 否有两个整数解?如果有,请把它们求出来;如果没有,请给出证明.解:不妨设a ≤b ,且方程的两个整数根为12,x x (1x ≤2x ),则有1212,1(),2x x ab x x a b +=⎧⎪⎨=+⎪⎩所以 12121122x x x x a b ab --=+-,124(1)(1)(21)(21)5x x a b --+--=. …………5分因为a ,b 都是正整数,所以x 1,x 2均是正整数,于是,11x -≥0,21x -≥0,21a -≥1,21b -≥1,所以12(1)(1)0,(21)(21)5,x x a b --=⎧⎨--=⎩ 或 ⎩⎨⎧=--=--.1)12)(12(,1)1)(121b a x x ( (1)当12(1)(1)0,(21)(21)5x x a b --=⎧⎨--=⎩时,由于a ,b 都是正整数,且a ≤b ,可得 a =1,b =3,此时,一元二次方程为2320x x -+=,它的两个根为11x =,22x =.(2)当12(1)(1)1,(21)(21)1x x a b --=⎧⎨--=⎩时,可得 a =1,b =1,此时,一元二次方程为210x x -+=,它无整数解.综上所述,当且仅当a =1,b =3时,题设方程有整数解,且它的两个整数解为11x =,22x =. ……………15分13(A ).已知AB 为半圆O 的直径,点P 为直径AB上的任意一点.以点A 为圆心,AP 为半径作⊙A ,⊙A 与半圆O 相交于点C ;以点B 为圆心,BP 为半径作⊙B ,⊙B 与半圆O 相交于点D ,且线段CD 的中点为M .求证:MP 分别与⊙A 和⊙B 相切.证明:如图,连接AC ,AD ,BC ,BD ,并且分别过点C ,D 作AB 的垂线,垂足分别为,EF ,则CE ∥DF .因为AB 是⊙O 的直径,所以90ACB ADB ∠=∠=︒.在Rt △ABC 和Rt △ABD 中,由射影定理得22PA AC AE AB ==⋅, 22PB BD BF AB ==⋅.……………5分两式相减可得()22PA PB AB AE BF -=-,又 ()22()()PA PB PA PB PA PB AB PA PB -=+-=-,于是有 AE BF PA PB -=-,即 PA AE PB BF -=-,所以PE PF =,也就是说,点P 是线段EF 的中点.因此,MP 是直角梯形CDFE 的中位线,于是有MP AB ⊥,从而可得MP 分别与⊙A 和⊙B 相切.……………15分14(A ).(1)是否存在正整数m ,n ,使得(2)(1)m m n n +=+?(2)设k (k ≥3)是给定的正整数,是否存在正整数m ,n ,使得()(1)m m k n n +=+?解:(1)答案是否定的.若存在正整数m ,n ,使得(2)(1)m m n n +=+,则22(1)1m n n +=++,显然1n >,于是2221(1)n n n n <++<+,所以,21n n ++不是平方数,矛盾. ……………5分 (第13A 题答案图)(2)当3k =时,若存在正整数m ,n ,满足(3)(1)m m n n +=+,则2241244m m n n +=+,22(23)(21)8m n +=++,(2321)(2321)8m n m n +--+++=,(1)(2)2m n m n -+++=,而22m n ++>,故上式不可能成立.………………10分当k ≥4时,若2k t =(t 是不小于2的整数)为偶数,取22,1m t t n t =-=-,则 2242()()()m m k t t t t t t +=-+=-,2242(1)(1)n n t t t t +=-=-,因此这样的(m ,n )满足条件.若2k t =+1(t 是不小于2的整数)为奇数,取222,22t t t t m n -+-==, 则 224321()(21)(22)224t t t t m m k t t t t t --+=++=+--, 2243221(1)(22)224t t t t n n t t t t +-++=⋅=+--, 因此这样的(m ,n )满足条件.综上所述,当3k =时,答案是否定的;当k ≥4时,答案是肯定的.……………15分注:当k ≥4时,构造的例子不是唯一的.11(B ).已知抛物线1C :234y x x =--+和抛物线2C :234y x x =--相交 于A ,B 两点. 点P 在抛物线1C 上,且位于点A 和点B 之间;点Q 在抛物线2C 上,也位于点A 和点B 之间.(1)求线段AB 的长;(2)当PQ ∥y 轴时,求PQ 长度的最大值.解:(1)解方程组2234,34,y x x y x x ⎧=--+⎪⎨=--⎪⎩得 112,6,x y =-⎧⎨=⎩ 222,6,x y =⎧⎨=-⎩所以,点A ,B 的坐标分别是(-2,6),(2,-6).于是22(22)(66)410AB =++--=.…………5分(2)如图,当PQ ∥y 轴时,设点P ,Q 的坐标分别为)43,(2+--t t t , )43,(2--t t t , 22t -<<,因此 PQ 22(4)t =-≤8,当0t =时等号成立,所以,PQ 的长的最大值8.……………15分12(B ).实数a ,b ,c 满足a ≤b ≤c ,且0ab bc ca ++=,abc =1.求最大的实数k ,使得不等式a b +≥k c恒成立.解:当32a b ==-,32c =时,实数a ,b ,c 满足题设条件,此时k ≤4. ……………5分 下面证明:不等式a b +≥4c 对满足题设条件的实数a ,b ,c 恒成立. 由已知条件知,a ,b ,c 都不等于0,且0c >.因为2110,0ab a b c c=>+=-<, 所以a ≤b 0<.(第11B 题答案图)由一元二次方程根与系数的关系知,a ,b 是一元二次方程 22110x x c c ++= 的两个实数根,于是 414c c∆=-≥0, 所以 3c ≤14. ……………10分因此21()a b a b c+=-+=≥44c c =. ……………15分13(B ).如图,点E ,F 分别在四边形ABCD 的边AD ,BC 的延长线上,且满足DE AD CF BC=.若CD ,FE 的延长线相交于点G ,△DEG 的外接圆与△CFG 的外接圆的另一个交点为点P ,连接P A ,PB ,PC ,PD .求证: (1)AD PD BC PC =; (2)△PAB ∽△PDC .证明:(1)连接PE ,PF ,PG ,因为PDG PEG ∠=∠,所以PDC PEF ∠=∠.又因为PCG PFG ∠=∠,所以△PDC ∽△PEF ,于是有 ,PD PE CPD FPE PC PF=∠=∠, 从而 △PDE ∽△PCF ,所以 PD DE PC CF=. 又已知DE AD CF BC =,所以,AD PD BC PC =. ………………10分(2)由于PDA PGE PCB ∠=∠=∠,结合(1)知,△PDA ∽△PCB ,从而有,PA PD PB PC= DPA CPB ∠=∠, 所以APB DPC ∠=∠,因此△PAB ∽△PDC . ………………15分14(B ).证明:对任意三角形,一定存在两条边,它们的长u ,v 满足1≤152u v +<. (第13B 题答案图)证明:设任意△ABC 的三边长为a ,b ,c ,不妨设a b c >>.若结论不成立,则必有a b, ○1b c≥ ○2………………5分记,b c s a b t c s t =+=+=++,显然,0s t >,代入○1得c s t c s+++≥12+,11s tc c s c+++≥12+, 令,s tx y c c==,则11x y x+++. ○3由a b c <+,得c s t c s c ++<++,即t c <,于是1ty c=<. 由○2得1b c sx c c+==+, ○4 由○3,○4得y≥1(1)x ⎫-+⎪⎪⎝⎭1=, 此式与1<y 矛盾.从而命题得证.………………15分中国教育学会中学数学教学专业委员会“《数学周报》杯”2008年全国初中数学竞赛试题班级__________学号__________姓名______________得分______________一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的,请将正确选项的代号填入题后的括号里.不填、多填或错填都得0分)1.已知实数x ,y 满足:4x 4-2x 2=3,y 4+y 2=3,则4x4+y 4的值为( )(A )7 (B )1+132 (C )7+132(D )52.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数y =x 2+mx +n 的图象与x 轴有两个不同交点的概率是( )(A )512(B )49(C )1736(D )123.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可确定的不同直线最少有 ( )(A )6条(B )8条(C )10条(D )124.已知AB 是半径为1的圆O 的一条弦,且AB =a <1.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB =AB =a ,DC 的延长线交圆O 于点E ,则AE 的长为 ( )(A )52a (B )1(C )32(D )a5.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有 ( )(A )2种(B )3种(C )4种(D )5种二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u *v =uv +v .若关于x 的方程x *(a *x )=-14有两个不同的实数根,则满足条件的实数a 的取值范围是_______. 7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_____分钟. 8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为______. 9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为______.10.关于x ,y 的方程x 2+y 2=208(x -y )的所有正整数解为________.三、解答题(共4题,每题15分,满分60分)11.在直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴的正半轴分别交于A ,B 两点,且使得△OAB 的面积值等于|OA |+|OB |+3.(1)用b 表示k ;(2)求△OAB 面积的最小值.12.是否存在质数p ,q ,使得关于x 的一元二次方程px 2-qx +p =0有有理数根?13.是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC ?证明你的结论. 14.从1,2,…,9中任取n 个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n 的最小值.FMDBA简答:一.选择题 ACBBD ;二.填空题 6. a > 0 或 a <-1; 7. 4; 8. 9; 9.163; 10. x =48, x =160, y =32; y =32. 三.解答题:11. (1)k =2b -b 22(b +3),b > 2; (2)当 b =2+10, k =-1时,△OAB 面积的最小值为7+210; 12. 存在满足题设条件的质数p ,q . 当p =2,q =5时,方程2x 2-5x + 2=0 的两根为 x 1=12, x 2=2. 它们都是有理数; 13. 存在满足条件的三角形. △ABC 的边 a =6,b =4,c =5,且∠A =2∠B .14. n 的最小值是5,当n=4时,数1,3,5,8中没有若干个数的和能被10整除.(5分)当n=5时,设a 1,a 2,a 5是1,2,…,9中的5个不同的数.若其中任意若干个数,它们的和都不能被10整除,则a 1,a 2,a 5中不可能同时出现1和9;2和8;3和7;4和6.于是a 1,a 2,…,a 5中必定有一个数是5. 若a 1,a 2,…,a 5中含1,则不含9.于是不含4(4+1+5=10),故含6;于是不含3(3+6+1=10),故含7;于是不含2(2+1+7=10),故含8.但是5+7+8=20是10的倍数,矛盾. 若a 1,a 2,…,a 5中含9,则不含1.于是不含6(6+9+5=20),故含4;于是不含7(7+4+9=20),故含3;于是不含8(8+9+3=10),故含2.但是5+3+2=10是10的倍数,矛盾. 综上所述,n 的最小值为5.(15分)中国教育学会中学数学教学专业委员会“《数学周报》杯”2009年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.已知非零实数a ,b 满足 2242(3)42a b a b a -+++-=,则a b +等于( ).(A )-1 (B )0 (C )1 (D )2 【答】C .解:由题设知a ≥3,所以,题设的等式为22(3)0b a b +-=,于是32a b ==-,,从而a b +=1.2.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a 等于( ).(A )51+ (B 51- (C )1 (D )2 【答】A .解:因为△BOC ∽ △ABC ,所以BO BCAB AC=,即11aa a =+, 所以, 210a a --=.由0a >,解得15a +=3.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先 后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y的方程组322ax by x y +=⎧⎨+=⎩,只有正数解的概率为( ).(A )121 (B )92 (C )185 (D )3613 (第2题)【答】D.解:当20a b-=时,方程组无解.当02≠-ba时,方程组的解为62,223.2bxa baya b-⎧=⎪⎪-⎨-⎪=⎪-⎩由已知,得⎪⎪⎩⎪⎪⎨⎧>-->--,0232,0226baabab即⎪⎪⎩⎪⎪⎨⎧<>>-,3,23,02baba或⎪⎪⎩⎪⎪⎨⎧><<-.3,23,02baba由a,b的实际意义为1,2,3,4,5,6,可得2345612ab=⎧⎨=⎩,,,,,,,共有5×2=10种情况;或1456ab=⎧⎨=⎩,,,,共3种情况.又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为3613.4.如图1所示,在直角梯形ABCD中,AB∥DC,90B∠=︒. 动点P从点B出发,沿梯形的边由B→C→D→A运动. 设点P运动的路程为x,△ABP的面积为y. 把y看作x的函数,函数的图像如图2所示,则△ABC的面积为().(A)10 (B)16 (C)18 (D)32【答】B.解:根据图像可得BC=4,CD=5,DA=5,进而求得AB=8,故S△ABC=12×8×4=16.5.关于x,y的方程22229x xy y++=的整数解(x,y)的组数为().(A)2组(B)3组(C)4组(D)无穷多组【答】C.解:可将原方程视为关于x的二次方程,将其变形为(第4题)图1 图222(229)0x yx y ++-=.由于该方程有整数根,则判别式∆≥0,且是完全平方数. 由 2224(229)7116y y y ∆=--=-+≥0, 解得 2y ≤11616.57≈.于是 显然,只有216y =时,4∆=是完全平方数,符合要求. 当4y =时,原方程为2430x x ++=,此时121,3x x =-=-; 当y =-4时,原方程为2430x x -+=,此时341,3x x ==. 所以,原方程的整数解为111,4;x y =-⎧⎨=⎩ 223,4;x y =-⎧⎨=⎩ 331,4;x y =⎧⎨=-⎩ 443,4.x y =⎧⎨=-⎩ 二、填空题(共5小题,每小题7分,共35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶 3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .【答】3750.解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1 km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了x km ,交换位置后走了y km .分别以一个轮胎的总磨损量为等量关系列方程,有,50003000,50003000kxky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相加,得()()250003000k x y k x y k +++=,则 237501150003000x y +==+.7.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB 于点H ,则AHAB的值为 .解:如图,延长AD 与⊙D 交于点E ,连接AF ,EF . 由题设知13AC AD =,13AB AE =,在△FHA 和△EF A 中, 90EFA FHA ∠=∠=︒,FAH EAF ∠=∠所以 Rt △FHA ∽Rt △EF A ,AH AFAF AE=.而AF AB =,所以AH AB 13=. 8.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 . 【答】 10.解:因为()()()()()123452009b a b a b a b a b a -----=,且12345a a a a a ,,,,是五个不同的整数,所有12345b a b a b a b a b a -----,,,,也是五个不同的整数.又因为()()2009117741=⨯-⨯⨯-⨯,所以1234541b a b a b a b a b a -+-+-+-+-=.由123459a a a a a ++++=,可得10b =.9.如图,在△ABC 中,CD 是高,CE 为ACB ∠的平分线.若AC =15,BC =20,CD =12,则CE 的长等于 .【答】602. (第7题)解:如图,由勾股定理知AD =9,BD =16,所以AB =AD +BD =25 . 故由勾股定理逆定理知△ACB 为直角三角形,且90ACB ∠=︒.作EF ⊥BC ,垂足为F .设EF =x ,由1452ECF ACB ∠=∠=︒,得CF =x ,于是BF =20-x .由于EF ∥AC ,所以EF BFAC BC =, 即 201520x x-=, 解得607x =.所以60227CE x ==.10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 . 【答】2-.解:设报3的人心里想的数是x ,则报5的人心里想的数应是8x -.于是报7的人心里想的数是 12(8)4x x --=+,报9的人心里想的数是16(4)12x x -+=-,报1的人心里想的数是 20(12)8x x --=+,报3的人心里想的数是4(8)4x x -+=--.所以 4x x =--, 解得2x =-.三、解答题(共4题,每题20分,共80分)11.已知抛物线2y x =与动直线c x t y --=)12(有公共点),(11y x ,),(22y x ,且3222221-+=+t t x x . (1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值. 解:(1)联立2y x =与c x t y --=)12(,消去y 得二次方程(第9题)(第10题)2(21)0x t x c --+= ①有实数根1x ,2x ,则121221,x x t x x c +=-=.所以2221212121[()()]2c x x x x x x ==+-+=221[(21)(23)]2t t t --+-=21(364)2t t -+. ②………………5分把②式代入方程①得221(21)(364)02x t x t t --+-+=. ③………………10分t 的取值应满足2221223t t x x +-=+≥0, ④且使方程③有实数根,即22(21)2(364)t t t ∆=---+=2287t t -+-≥0, ⑤解不等式④得 t ≤-3或t ≥1,解不等式⑤得 2-t ≤2+所以,t 的取值范围为22-≤t ≤22+⑥ ………………15分(2) 由②式知22131(364)(1)222c t t t =-+=-+.由于231(1)22c t =-+在22-≤t ≤22+时是递增的,所以,当22t =-时,2min 3111(21)2224c -=--+=. ………………20分12.已知正整数a 满足3192191a +,且2009a <,求满足条件的所有可能的正整数a 的和.解:由3192191a +可得31921a -.619232=⨯,且()[]311(1)1(1)(1)(1)a a a a a a a a -=-++=-++-.………………5分因为()11a a ++是奇数,所以6321a -等价于621a -,又因为3(1)(1)a a a -+,所以331a -等价于31a -.因此有1921a -,于是可得1921a k =+.………………15分 又02009a <<,所以0110k =L ,,,.因此,满足条件的所有可能的正整数a 的和为11+192(1+2+…+10)=10571. ………………20分13.如图,给定锐角三角形ABC ,BC CA <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.解法1:结论是DF EG =.下面给出证明. ………………5分 因为FCD EAB ∠=∠,所以Rt △FCD ∽ Rt △EAB .于是可得CDDF BE AB =⋅. 同理可得 CEEG AD AB=⋅.………………10分又因为tan AD BEACB CD CE∠==,所以有BE CD AD CE ⋅=⋅,于是可得 DF EG=.………………20分解法2:结论是DF EG =.下面给出证明.……………… 5分连接DE ,因为90ADB AEB ∠=∠=︒,所以A ,B ,D ,E 四点共圆,故CED ABC ∠=∠. ………………10分又l 是⊙O 的过点C 的切线,所以ACG ABC ∠=∠. ………………15分 所以,CED ACG ∠=∠,于是DE ∥FG ,故DF =EG .………………20分(第13A 题)(第13A 题)14.n 个正整数12n a a a L ,,,满足如下条件:1212009n a a a =<<<=L ; 且12n a a a L ,,,中任意n -1个不同的数的算术平均数都是正整数.求n 的最大值.解:设12n a a a L ,,,中去掉i a 后剩下的n -1个数的算术平均数为正整数i b ,12i n =L ,,,.即 12()1n ii a a a a b n +++-=-L .于是,对于任意的1≤i j <≤n ,都有1j i i j a a b b n --=-,从而 1()j i n a a --. ………………5分由于 11200811n n a a b b n n --==--是正整数,故 312251n -⨯. ………………10分由于 ()()()112211n n n n n a a a a a a a ----=-+-++-L ≥()()()2111(1)n n n n -+-++-=-L , 所以,2(1)n -≤2008,于是n ≤45.结合312251n -⨯,所以,n ≤9. ………………15分另一方面,令123801,811,821a a a =⨯+=⨯+=⨯+,…,8871a =⨯+,982511a =⨯+,则这9个数满足题设要求.综上所述,n 的最大值为9. ………………20分中国教育学会中学数学教学专业委员会“《数学周报》杯”2010年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.若20 10a b b c==,,则a bb c ++的值为( ). (A )1121 (B )2111 (C )11021 (D )21011解:D 由题设得12012101111110a ab bc b c b +++===+++. 代数式变形,同除b2.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ).(A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤4 解.C因为b 是实数,所以关于b 的一元二次方程21202b ab a -++=的判别式 21()41(2)2a a ∆--⨯⨯+=≥0,解得a ≤2-或 a ≥4.方程思想,未达定理;要解一元二次不等式3.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =3BC =422-CD =2,则AD 边的长为( ).(A )6(B )64(C )64+ (D )622+ 解:D如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得BE =AE 6CF =22DF =6于是 EF =4+6.过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得AD 222(46)(6)(224)=++=+226+勾股定理、涉及双重二次根式的化简,补全图形法4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭(取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于( ).(A) 1 (B) 2 (C) 3 (D) 4 解:B由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得 (第3题)(第3题)11x =,22x =,33x =,44x =,51x =,62x =,73x =,84x =,……因为2010=4×502+2,所以2010x =2. 高斯函数;找规律。
2017年全国初中数学竞赛试题及参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b ac x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC(第3题)【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC =都是有理数,而AC =·AD AB 不一定是有理数. 4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). (A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.(第3题答题)(第4题答题)(第4题)二、填空题6.设33a =,b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故32292b a =-=-,因此333(2)(9)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413. 8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2017元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+, 所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC ∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25.因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
A A′B′C ′BC第7题图′2015年中考狮山镇第二次模拟考试数 学 试 卷说 明:本试卷分为第Ι卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分,考试时间100分钟.注意事项:1.试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上.2.要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签字笔描黑.3.其余注意事项,见答题卡.第Ι卷 (选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.点A 在数轴上距原点3各单位长度,且位于原点的左侧.此时点A 所表示的数是( ).A .3B .3-C .3±D .32.一次函数x y 23-=的图象不经过...的象限是( ). A .第一象限B .第二象限C .第三象限D .第四象3.下列运算中,结果正确的是( ).A . y x xy xy 22223=+-B . 332276y x xy y x =+C .)(b a b a +-=+-D .6)6(+-=--x x4.在直角坐标系中,如果a ,b 均为正数,那么点(b ,a )在( )象限.A .第一象限B .第二象限C .第三象限D .第四象限5.九(5)班有50名学生,体育考试后统计其体育测试成绩结果如下表:九(5)班学生体育测试成绩的中位数是( ). A .46分B .47分C .48分D .49分6.各角相等的圆内接正四边形一定是( ).A .平行四边形B .矩形C .菱形D .正方形7. 如图,ACB ∆≌'''B C A ∆,︒=∠25C ,︒=∠40'B ,6''=C A ,则'A ∠的度数和AC 的长分别为( ).A . 6115和︒B . 665和︒C . 12125和︒D .315和︒8.用配方法解方程09-82=+x x 时,原方程应变形为( ).A . 254-2=)(xB . 1342=+)(xC . 134-2=)(x D . 2542=+)(x9.如果一个三角形的两边分别为8cm 和12cm ,那么连接这个三角形三边中点 所得的三角形的周长可能是( ).A .14cmB .12cmC .10cmD .2cm10.如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几的 侧面积是( ).A . 60πcm 2B .65πcm 2C . 70πcm 2D .70πcm 2第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡中). 11.使分式121-+a a 的有意义的条件值是_______ __. 12.如图是20人的学习小组的一次数学测试满分4分的题目得分情况,该学习小组该题的平均得分和方差 为_______ __.13.如图,从八边形AGBFCHDE 的各顶点出发一共可以画出 条对角线(重合的算一条).14.已知点),2(1y ,),1(2y ,),,1(3y -),,2(3y -都在反比例函数xy 1=的图象上,则4321,,,y y y y 的大小关系 是_______ __.15.长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图),则梯子的顶端沿墙面升高了_ __m . 三、解答题(在答题卡上作答,写出必要的解题步骤.16~20题每小题6分,21~23题每小题8分,24题10分,25题11分,共75分).16.已知方程0652=-+kx x 的一根是2,求它的另一根及k 的值.第15题图第10题图俯视图左视图主视图人数第12题图17.如图,已知⊿ABC ,用直尺和圆规作它的内切圆.(不写画法,保留作图痕迹)18.一个口袋中装有2个白球,3个红球,这些球除颜色外完全相同.⑴充分搅匀后随机摸出一球,发现是白球.如果将这个白球不放回,再摸一球,那么它是白球的概率是多少? ⑵充分搅匀后随机摸出两球,两只球为一红一白的概率是多少?(请列表或画树状图说明).19.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN 进攻.当甲带球部到A 点时,乙随后冲到B 点,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?请你用所学的数学知识说明理由(不考虑其他因素).20.某酒店客房部有三人间普通客房、双人间普通客房,收费标准为:三人间为300/间,双人间为280/间.为吸引 游客,实行团体入住五折优惠措施。
2017年全国初中数学联合竞赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题(本题满分42分,每小题7分)1. 已知实数a b c ,,满足2133903972a b c a b c ++=++= ,,则32b ca b+=+ ( ) A .2 B .1 C .0 D .1− 2. 已知△ABC 的三边长分别是a ,b ,c ,有以下三个结论:(1) (2)以a 2,b 2,c 2为边长的三角形一定存在;(3)以|a -b |+1,|b -c |+1,|c -a |+1为边长的三角形一定存在. 其中正确结论的个数为( )A .0B .1C .2D .33. 若正整数a ,b ,c 满足a b c ≤≤且()2abc a b c =++,则称(a ,b ,c )为好数组.那么,好数组的个数为( )A .1B .2C .3D .44. 设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180︒,且BC =3,AD =4,AC =5,AB =6,则DOOB=( ) A .109 B .87 C .65 D .435. 设A 是以BC 为直径的圆上的一点,AD ⊥BC 于点D ,点E 在线段DC 上,点F 在CB的延长线上,满足∠BAF =∠CAE .已知BC =15,BF =6,BD =3,则AE =( ) A .43 B .213 C .214 D .2156. 对于正整数n ,设a n 是最接近n 的整数,则1a 1+1a 2+1a 3+…+1a 200=( )A .1917B .1927C .1937D .1947二、填空题(本题满分28分,每小题7分)7.成立的实数a 的值为______.8. 如图,平行四边形ABCD 中,∠ABC =72︒,AF ⊥BC 于点F ,AF 交BD 于点E ,若DE =2AB ,则∠AED =______.9. 设m ,n 是正整数,且m >n .若9m 与9n 的末两位数字相同,则m -n 的最小值为____.10. 若实数x ,y 满足x 3+y 3+3xy =1,则x 2+ y 2的最小值为______.第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y =ax 2+bx +c (c ≠0)的图象与x 轴有唯一交点,则二次函数y =a 3x 2+b 3x +c 3的图象与x 轴的交点个数为( )A .0B .1C .2D .不确定 2.题目与(A )卷第1题相同. 3.题目与(A )卷第3题相同.4.已知正整数a ,b ,c 满足a 2-6b -3c +9=0,-6a +b 2+c =0,则a 2+b 2+c 2=( ) A .424. B .430. C .441. D .460.5.设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180,且BC =3,AD =4,AC =5,AB =6,DOOB=( )A .43B .65C .87D .1096.题目与(A )卷第5题相同.二、填空题(本题满分28分,每小题7分) 1.题目与(A )卷第1题相同.2.设O 是锐角三角形ABC 的外心,D ,E 分别为线段BC ,OA 的中点,∠ACB =7∠OED ,∠ABC =5∠OED ,则∠OED =______. 3.题目与(A )卷第3题相同. 4.题目与(A )卷第4题相同.第二试(A)一、(本题满分20分)已知实数x ,y 满足x + y =3,1x +y 2+1x 2+y =12,求x 5+y 5的值.二、(本题满分25分)如图,△ABC 中,AB >AC ,∠BAC =45︒,E 是∠BAC 的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF ⊥AB .已知AF =1,BF =5,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a ,b ),使得a 3=49×3b +8.第二试(B)一、(本题满分20分)已知实数a ,b ,c 满足a ≤b ≤c ,a +b +c =16,a 2+b 2+c 2+14abc = ,求c 的值.二、(本题满分25分)求所有的正整数m ,使得22m -1-2m +1是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,∠OAD =∠OCB ,OA ⊥OD ,OB ⊥OC .求证:AB 2+CD 2=AD 2+BC 2.7。
2017年全国初中数学竞赛试题考试时间2017年3月20日9︰30-11︰30满分150答题时注意:1、用圆珠笔或钢笔作答2、解答书写时不要超过装订线3、草稿纸不上交。
一、选择题(共5小题,每小题7分,共35分。
每道小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1、设x =,则代数式(1)(2)(3)x x x x +++的值为( C ) A .0 B .1 C .-1 D .22、对于任意实数,,,a b c d ,定义有序实数对(,)a b 与(,)c d 之间的运算“△”为:(,)(,)(,)a b c d ac bd ad bc ∆=++。
如果对于任意实数,u v ,都有(,)(,)(,)u v x y u v ∆=,那么(,)x y 为( B )。
A .(0,1) B .(1,0) C .(1,0)- D .(0,1)-3、已知,A B 是两个锐角,且满足225sin cos 4A B t +=,2223cos sin 4A B t +=,则实数t 所有可能值的和为( C )A .83-B .53-C .1D .1134、如图,点,D E 分别在△ABC 的边AB ,AC 上,BE ,CD 相交于点F ,设1EADF S S 四边形=,BDF 2S S ∆=,BCF 3S S ∆=,CEF 4S S ∆=,则13S S 与24S S 的大小关系为( C ) A .13S S <24S SB .13S S =24S SC .13S S >24S SD .不能确定5、设33331111S 1232011=++++,则4S 的整数部分等于( A ) A .4 B .5 C .6 D .7二、填空题(共5小题,每小题7分,共35分)6、两条直角边长分别是整数,a b (其中2011b <),斜边长是1b +的直角三角形的个数为__31__。
2017年全国初中数学联赛(初三组)初赛试卷参考答案及评分细则详解2017年全国初中数学联赛(初三组)初赛试卷试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
选择题和填空题只设7分和分两档;解答题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
一、选择题(本题满分42分,每小题7分)1、设实数a、b满足a-b=-1,则a³-b³+3ab的值为(B)A、-3B、-1C、1D、3解析:a³-b³+3ab=(a-b)(a²+ab+b²)+3ab=-(a-b)=-12、若实数a为常数,关于x的不等式组{x+a²≤2a x≤-7}的整数解只有8个,则a的值为(C)A、-1B、0C、1D、2解析:{x+a²≤2a x≤-7}⇒-7≤x≤-a²+2a⇒1≤-a²+2a⇒(a-1)≤0⇒a≤1因为a是常数,所以a=13、在菱形ABCD中,AB=4,E为AB的中点,若在线段BD上取一点P,则PA+PE∠A=60°,的最小值是(D)A、23B、4C、25D、27解析:如图,连结AC,EC交BD于点P,则点P是所求的菱形ABCD中,AB=4,∠A=60°,E为AB的中点DE=√3×AB/2=2√3CE=DE+DC=2√3+4AE=√(CE²+AC²)=√(28²+16)=4√10PA+PE∠A=AE×sin(∠APE)=4√10×sin(60°+∠BPD)令∠BPD=θ,则∠APE=60°+θPA+PE∠A=4√10×(cosθ+√3sinθ)=4√10×(sinθ+√3cosθ+2)/24√10×(sin(θ-60°)+2)/2=2√10×(√3cosθ+sinθ+1)≥2√10所以最小值为2√10,即274、对于任意实数a,b,c,用M{a,b,c}表示三个数的平均数,用min{a,b,c}表示这三个数中最小的数,若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=(A)A、-4B、-2C、2D、4解析:不妨设a最小,则M{a,b,c}=aa+b+c=3ab-a)+(c-a)=ab-a≥0,c-a≥0b=a,c=a2x+y+2=x+2y=2x-yx=-3,y=-1x+y=-45、如图,RtΔABC的斜边AB与⊙O相切于点P,直角顶点C在⊙O上,若AC=22,BC=4,则⊙O的半径是(B)A、3B、23C、4D、26解析:如图,由射影定理得:BC²=AC×DCCD=4²/22BD²=CD²+BC²=48BO=BD/2=√48/2=2√3OP=OB-√AB²-AP²=2√3-√22²-4²=2√3-2r=OP=2√3-2=2(√3-1)=2∙236、不超过1142无明显问题的段落,不需修改)即有:x2kx5x 2x25x k x 2将两式相减,得:10x52x化XXX:2x210x50由于方程只有一个公共实根,所以判别式为0,即:24250解得:2或 5又因为x2kx k的实根为0或k,所以:当2时,实根为0,k,所以实根之和为k;当5时,实根为0,k,所以实根之和为k;综上所述,关于x的方程x2kx k所有的实根之和为k k0.题目一:已知方程组 $\begin{cases}\alpha^2-k\alpha+5=0 \\\alpha^2+5\alpha-k=0\end{cases}$,求所有实数根的和。
2017年全国初中数学联合竞赛试题 初二卷第一试一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1,1110135a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2的值为( ). A.125 B.120 C.100 D.813.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.14.已知正整数a,b,c 满足a 2-6b-3c+9=0,-6a+b 2+c=0,则a 2+b 2+c 2的值为( ). A.424 B.430 C.441 D.4605.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A.102 B.103C.32D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________.9.设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c 55a bb c++为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().A.102B.103C.32D.33答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得42AH =. 所以梯形ABCD 的面积为()142102142⨯+⨯=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i ki ka a a k k N ++==≤∈∑∑L ,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。
2017年全国初中数学联合竞赛试题 初二卷第一试一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1,1110135a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2的值为( ). A.125 B.120 C.100 D.813.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.14.已知正整数a,b,c 满足a 2-6b-3c+9=0,-6a+b 2+c=0,则a 2+b 2+c 2的值为( ). A.424 B.430 C.441 D.4605.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A.1023 B.1033C.32D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________.9.设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c 55a bb c++为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().A.1023B.1033C.32D.33答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得423AH =. 所以梯形ABCD 的面积为()14210214233⨯+⨯=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。
2017 年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分 42 分,每小题 7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则3b+c=()a +2bA. 2.B. 1.C. 0.D.-1.【答】B.已知等式可变形为 2( a+ 2b) + 3(3b+c ) = 90 , 3( a+ 2b) + (3b+c ) = 72 ,解得a+2b=18,3b+c=18 ,所以3b+c=1.a +2b2.已知△ABC的三边长分别是a,b,c,有以下三个结论:(1)以a,b,c为边长的三角形一定存在;(2)以 a 2, b 2, c2为边长的三角形一定存在;(3)以 | a-b | +1,| b-c | +1,| c-a | +1 为边长的三角形一定存在.其中正确结论的个数为()A.0.B.1.C.2.D.3.【答】C.不妨设 a ≥ b ≥ c ,则有 b + c > a .(1)因为 b + c > a ,所以 b + c +222b +c > a ,故以a,b,c为bc > a ,即( b + c ) >( a),即边长的三角形一定存在;(2)以 a =2, b =3, c =4为边长可以构成三角形,但以 a 2= 4, b2= 9, c2=16 为边长的三角形不存在;(3)因为 a ≥ b ≥ c ,所以| a - b |+1= a - b +1,| b - c |+1= b - c +1,| c - a |+1= a - c +1,故三条边中| c - a |+1大于或等于其余两边,而(| a-b | +1)+(| b-c | +1)=(a-b+ 1)+(b-c+1)=a-c+ 1 + 1 >a -c+ 1 =| c-a | +1 ,故以 | a-b | +1 , | b-c | +1 , | c-a | +1 为边长的三角形一定存在.3.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么,好数组的个数为()A. 1.B.2.C.3.D.4.【答】C.若( a, b, c) 为好数组,则abc= 2( a+b+c ) ≤ 6c,所以ab≤6.显然,a只能为1或2.若a =2,由ab≤6可得b=2或3,b=2时可得c=4,b=3时可得c=52(不是整数);若a =1,则bc=2(1+b+c),于是可得(b-2)(c-2)=6,可求得(a,b,c)=(1,3,8)或(1,4,5).综合可知:共有 3 个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).4.设 O 是四边形 ABCD 的对角线 AC 、BD 的交点,若 ∠BAD + ∠ACB = 180︒,且 BC = 3,AD = 4 ,AC = 5 , AB = 6 ,则 DO = ( )OB10 8 64A..B..C..D..D9 7 5 3E【答】A.C过 B 作 BE // AD ,交 AC 的延长线于点 E ,则 ∠ABE = 180︒ - ∠BAD= ∠ACB ,所以△ ABC ∽△ AEB ,所以AC = BC ,所以4O3AB EBAB ⋅ BC6 ⨯318BEB = = = .A6AC 5 5再由 BE // AD ,得 DO = AD = 4 = 10 .BEOB 18 955.设 A 是以 BC 为直径的圆上的一点,AD ⊥ BC 于点 D ,点 E 在线段 DC 上,点 F 在 CB 的延长线上,满足 ∠BAF = ∠CAE .已知 BC =15 , BF = 6 , BD = 3 ,则 AE = ( )AA. 4 3 .B. 2 13 .C. 2 14 .D. 2 15 .【答】B.FBDEC如图,因为 ∠BAF = ∠CAE ,所以 ∠BAF + ∠BAE = ∠CAE + ∠BAE ,即 6 3∠FAE = ∠BAC = 90︒ .又因为 AD ⊥ BC ,故 AD 2 = DE ⋅ DF = DB ⋅ DC .而 DF = BF + BD = 6 + 3 = 9 ,DC = BC - BD = 15 - 3 =12 ,所以 AD 2 = DE ⋅ 9 = 3 ⋅ 12 ,所以 AD = 6 ,DE= 4 . 从而 AE = AD 2 + DE 2 = 62 + 42 = 213 .6.对于正整数 n ,设 a 是最接近的整数,则 1 + 1 + 1 + +1 = ( n)na 1 a 2 a 3a200A. 191 .B. 192 .C. 193 .D. 194 .777 7 【答】A.对于任意自然数 k , ( k +1 )2 = k 2 + k + 1不是整数,所以,对于正整数 n ,- 1 一定不是整数.n24 2的整数,则| m - |< 1 , m ≥1.设 m 是最接近 nn2易知:当 m ≥1时,| m - |< 1 ⇔ ( m - 1 ) 2 < n < ( m + 1 )2⇔ m 2 - m + 1 < n < m 2 + m + 1 .n 2 2 24 4 于是可知:对确定的正整数 m ,当正整数 n 满足 m 2 - m + 1 ≤ n ≤ m 2+ m 时,m 是最接近的整数,n 即 a n = m .所以,使得 a n = m 的正整数 n 的个数为 2m .注意到132 + 13 = 182 < 200 < 14 2 + 14 = 210 ,因此, a , a , ,8 个 4,……,26 个 13,18 个 14.所以1+1+1+ +1= 2 ⨯1+ 4 ⨯1+ 6 ⨯1+ + 26 ⨯1+ 18⨯1=191.a a a a12313147 123200二、填空题:(本题满分 28 分,每小题 7 分)1.使得等式 1 + 1+a=3a 成立的实数 a 的值为_______.【答】 8 .由所给等式可得 (1 + 1 +a )3=a2.令 x =1+a,则 x ≥0,且a=x2-1,于是有(1+ x )3=( x2-1)2,整理后因式分解得x ( x -3)( x +1)2=0,解得 x= 0 ,x= 3 ,x= -1 (舍去),所以a= -1或a=8.123验证可知: a = -1是原方程的增根, a =8是原方程的根.所以, a =8.2.如图,平行四边形ABCD中,∠ABC=72︒,AF⊥BC于点F, AFM交 BD 于点 E ,若 DE =2AB ,则∠AED =_______.【答】 66︒.BE 取 DE 的中点 M ,在Rt△ ADE中,有 AM = EM =1DE = AB .2设∠AED =α,则∠AME =180︒ -2α,∠ABM =α-18︒.又∠ABM = ∠AMB ,所以180︒ -2α=α-18︒,解得α=66︒.3.设m,n是正整数,且m>n.若9m与9n的末两位数字相同,则m-n的最小值为.【答】10.由题意知,9m- 9n= 9n⋅ (9m-n-1) 是100的倍数,所以9m-n-1是100的倍数,所以9m-n的末两位数字是 01,显然,m-n是偶数,设m-n=2t(t是正整数),则9m-n=92t=81t .计算可知: 812的末两位数字是61, 813的末两位数字是41, 814的末两位数字是21, 815的末两位数字是 01.所以 t 的最小值为5,从而可得 m - n 的最小值为10.4.若实数 x, y 满足 x 3+ y 3+3 xy =1,则 x 2+ y2的最小值为.1【答】2 .因为0= x 3+ y 3+3 xy -1=( x + y )3+(-1)3-3 x 2 y -3 xy 2+3xy=( x+y- 1)( x2+y2-xy+x+y+1) =12(x+y-1)[(x-y)2+(x+1)2+(y+1)2],所以 x = y = -1或x+y=1.若x = y = -1,则 x 2+ y2=2.若x + y =1,则x2+y2=12[(x+y)2+(x-y)2]=12[1+(x-y)2]≥12,当且仅当x=y=12时等号成立.所以, x 2+ y2的最小值为12.第一试(B)一、选择题:(本题满分 42 分,每小题 7 分)1.已知二次函数y=ax2+bx+c(c≠0)的图象与x轴有唯一交点,则二次函数y=a3x2+b3x+c3的图象与 x 轴的交点个数为()A.0.B.1.C.2.D.不确定.【答】C.因为二次函数 y = ax 2+ bx + c 的图象与 x 轴有唯一交点,所以∆1=b2-4ac=0,所以b2=4ac≠0.故二次函数 y = a 3 x 2+ b3 x + c3的判别式∆2=(b3)2-4a3c3=b6-161(4ac)3=b6-161(b2)3=1615b6>0 ,所以,二次函数y=a3x2+b3x+c3的图象与x轴有两个交点.2.题目和解答与(A)卷第 1 题相同.3.题目和解答与(A)卷第 3 题相同.4.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2=()A. 424.B. 430.C. 441.D. 460.【答】C.由已知等式消去 c 整理得( a -9)2+3(b -1)2=75,所以3(b -1)2≤75,又b为正整数,所以1≤b≤6.若b =1,则( a -9)2=75,无正整数解;若b =2,则( a -9)2=72,无正整数解;若b =3,则( a -9)2=63,无正整数解;若b =4,则( a -9)2=48,无正整数解;若b =5,则( a -9)2=27,无正整数解;若b =6,则( a -9)2=0,解得a=9,此时c=18.因此, a =9,b=6, c =18,故a2+b2+c2==441.5.设O是四边形ABCD的对角线AC、BD的交点,若∠BAD+ ∠ACB=180︒,且BC=3,AD=4,AC =5, AB =6,则DO=()OBA.4.B.6.C.8.D.10.3579【答】D.解答过程与(A)卷第 4 题相同.6.题目和解答与(A)卷第 5 题相同.二、填空题:(本题满分 28 分,每小题 7 分)1.题目和解答与(A)卷第 1 题相同.2 .设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠ACB=7∠OED,∠ABC =5∠OED ,则∠OED =_________.A 【答】10︒.如图,设∠OED = x ,则∠A B =C5,x ∠ACB =7x ,∠DOC= ∠BAC =180︒ -12x ,∠AOC =10x ,所以∠AOD =180︒ -2x ,∠ODE =180︒ - x -(180︒ -2 x)= x ,所以OD=OE=1OA =1OC ,所22B 以∠DOC =60︒,从而可得 x =10︒.3.题目和解答与(A)卷第 3 题相同.4.题目和解答与(A)卷第 4 题相同.EODC第二试(A)一、(本题满分20分)已知实数 x, y 满足x+y=3,1+1=1,求 x 5+ y5的值. x+ y 2x 2+ y2解由1+1=1可得 2( x+y+x2+ y 2)= x 3+ y 3+ x 2 y 2+ xy . x + y 2x 2+ y2设xy = t ,则 x 2+ y 2=( x + y )2-2xy =9-2t , x 3+ y 3=( x + y )[( x + y )2-3 xy ]=3(9-3t ),代入上式可得 2(3 + 9 - 2t ) = 3(9 - 3t ) +t2+t,解得t=1或t=3.……………………10分当 t =3时,xy=3,又x+y=3,故x,y是一元二次方程m2-3m+3=0的两实数根,但易知此方程没有实数根,不合题意.……………………15分当 t =1时,xy=1,又x+y=3,故x,y是一元二次方程m2-3m+1=0的两实数根,符合题意.此时x 5+ y 5=( x 2+ y 2)( x 3+ y 3)-( x + y ) x 2 y 2=(9-2t )⋅[3(9-3t )]-3t 2=123.……………………20分二(、本题满分 25 分)如图,△ ABC 中,AB > AC ,∠BAC = 45︒ ,E 是 ∠BAC的外角平分线与 △ ABC 的外接圆的交点,点 F 在 AB 上且 EF ⊥ AB . 已知 AF =1, BF = 5,求△ ABC 的面积.解 在 FB 上取点 D ,使 FD =AF ,连接 ED 并延长,交△ ABC 的外接圆于点 G.由 EF ⊥AD ,AF =FD 知△AED 是等腰三角形,所以∠AED =180︒ - 2 ∠EAD =∠BAC , ……………………10 分EAFDCGB……………………15 分 所以 AG = BC ,所以 AC = BG ,所以 AC =BG. 又∠BGE =∠BAE =∠ADE =∠BDG ,所以 BG =BD ,所以 AC =BD =5-1=4, ……………………20 分△ ABC 的 AB 边上的高 h = AC sin 45︒ = 2 2 .所以,△ ABC 的面积 S = 1 ⋅ AB ⋅ h = 1 ⨯ 6 ⨯ 2 = 6 .2 2 ……………………25 分22三、(本题满分 25 分)求所有的正整数数对 ( a , b ) ,使得 a 3 = 49 ⨯ 3b +8 . 解 显然, 49 ⨯ 3b +8 为奇数,所以 a 为奇数.又因为 a 3 = 49 ⨯ 3b + 8 ≥ 49 ⨯ 3 + 8 > 53 ,所以 a > 5 .……………………5 分由 a 3 = 49 ⨯ 3b +8 可得 a 3 - 8 = 49 ⨯3b ,即 ( a - 2)( a 2 + 2a + 4) = 7 2 ⨯3b . ……………………10 分设 ( a - 2, a 2 + 2a + 4) = d ,则 d 为奇数.注意到 a 2 + 2a + 4 = ( a - 2)( a + 4) +12 ,所以 d | 12 ,所以 d=1 或 3. ……………………15 分⎧a - 2 = 7 2,⎧a - 2 = 3b,均无正整数解.……………………20 分若 d =1,则有 ⎨a 2 + 2 a + 4 或 ⎨a 2 + 2 a + 4 = 7 2 ⎪ = 3b ,⎪ , ⎩⎩⎧a - 2 = 3 ⨯7 2, ⎧a - 2 = 3b -1,解得 a =11, b = 3 . 若 d =3,则有 ⎨ 2 + 2 a + 4 b -1或 ⎨ 2 + 2 a + 4 = 3 ⨯7 2 ⎪ a = 3 , ⎪ a ,⎩⎩所以,满足条件的正整数对只有一个,为(11,3).……………………25 分第二试 (B )一、(本题满分 20 分)已知实数 a , b , c 满足 a ≤ b ≤ c , a + b + c =16 , a 2 + b 2 + c 2 +14 abc =128 ,求 c 的值.解 设 a + b = x , ab = y ,依题意有 x 2 - 2 y + (16 - x ) 2 +14 y (16 - x ) =128 ,整理得( x - 8) 2 = 1y ( x -8) ,8所以 x = 8 或 y = 8( x -8) .……………………10 分(1)若 x =8,则 a + b =8,此时 c =8.(2)若 y =8( x -8),即 ab =8( a + b -8),则( a -8)(b -8)=0,所以a=8或b=8.当a =8时,结合 a ≤ b ≤ c 可得 a + b + c ≥24,与 a + b + c =16矛盾.当b =8时,结合 a ≤ b ≤ c 及 a + b + c =16可得 a =0, c =8.综合可知: c =8.……………………20分二、(本题满分 25 分)求所有的正整数m,使得22m-1-2m+1是完全平方数.解当 m =1时,22m-1-2m+1=1是完全平方数.……………………5分当 m >1时,设22m-1-2m+1=n2( n 为正整数).注意到 22m-1- 2m+ 1 = 2 ⋅ (2m-1 ) 2- 2 ⋅ 2 m-1+ 1 = (2 m-1- 1) 2+ (2 m-1 )2,故可得(2 m-1- 1) 2+ (2 m-1 )2=n2,……………………10分所以 22m-2=n2- (2m-1- 1) 2= ( n+ 2 m-1- 1)( n- 2 m-1+1) .……………………15分设 x = n -2m-1+1, y = n +2m-1-1,则x<y, xy =22m-2,所以x,y均为2的方幂.……………………20分又 y - x =2m-2被4除余数为2,所以,只可能x=2, y =2m,故2⨯2m=22m-2,解得m=3.综上可知:满足条件的正整数 m 有两个,分别为1和3.……………………25分三、(本题满分 25 分)如图,O为四边形ABCD内一点,∠OAD= ∠OCB,DOA ⊥ OD , OB ⊥ OC .求证:AB2+CD2=AD2+BC2.AOP 证明由题设条件可知∠AOD = ∠BOC =90︒,又∠OAD =∠OCB,所以△ AOD ∽△ COB ,……………………5分OD AO OC AOB所以OB=CO,从而OB=OD .……………………10分C 又∠AOC = ∠AOB + ∠BOC = ∠AOB + ∠AOD = ∠DOB ,所以△ AOC ∽ △ DOB ,所以∠OAC = ∠ODB .……………………15分设AC 和BD交于点P,则∠APD = ∠AOD =90︒,所以 AC ⊥ DB ,……………………20分所以 AB 2+ CD 2=( AP 2+ PB 2)+( PD 2+ PC 2)=( AP 2+ PD 2)+( PB 2+ PC 2)= AD 2+ BC2.……………………25分。
班级: 姓名:____________座号:_____________ 准考证号:_______________密 封 线 2017年全国初中数学竞赛冲刺试卷(4)一、选择题(共5小题,每小题7分,满分35分) 1.已知非零实数a ,b 满足|2a ﹣4|+|b +2|++4=2a ,则a +b 等于( )A .﹣1B .0C .1D .22.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA=a ,OB=OC=OD=1,则a 等于( )A. B. C .1 D .23.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y的方程组只有正数解的概率为( )A.B. C .D .4.如图1,在直角梯形ABCD ,∠B=90°,DC ∥AB ,动点P 从B 点出发,由B ﹣﹣C ﹣﹣D ﹣﹣A 沿边运动,设点P 运动的路程为x ,△ABP 的面积为y ,如果关于x 的函数y 的图象如图2,则△ABC 的面积为( )A .10B .16C .18D .325.关于x ,y 的方程x 2+xy +2y 2=29的整数解(x ,y )的组数为( ) A .2组 B .3组 C .4组 D .无穷多组二、填空题(共5小题,每小题7分,满分35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废; 若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以 交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同 时报废,那么这辆车将能行驶 km .7.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD=AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB 于点H ,则的值为 .8.已知a 1,a 2,a 3,a 4,a 5是满足条件a 1+a 2+a 3+a 4+a 5=9的五个不同的整数,若b 是关于x 的方程(x ﹣a 1)(x ﹣a 2)(x ﹣a 3)(x ﹣a 4)(x ﹣a 5)=2009的整数根,则b 的值为 .9.如图,在△ABC 中,CD 是高,CE 为∠ACB 的平分线.若AC=15,BC=20,CD=12,则CE 的长等于 .10. 10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 .三、解答题(共4小题,满分80分)11.已知抛物线y=x2与动直线y=(2t﹣1)x﹣c有公共点(x1,y1),(x2,y2),且x12+x22=t2+2t﹣3.(1)求实数t的取值范围;(2)当t为何值时,c取到最小值,并求出c的最小值.12.已知正整数a满足192|a3+191,且a<2009,求满足条件的所有可能的正整数a 的和.13.如图,给定锐角三角形ABC,BC<CA,AD,BE是它的两条高,过点C作△ABC的外接圆的切线l,过点D,E分别作l的垂线,垂足分别为F,G.试比较线段DF和EG的大小,并证明你的结论.14.n个正整数a1,a2,…,a n满足如下条件:1=a1<a2<…<a n=2009;且a1,a2,…,a n中任意n﹣1个不同的数的算术平均数都是正整数.求n的最大值.班级: 姓名:____________座号:_____________ 准考证号:_______________密 封 线 2017年全国初中数学竞赛冲刺试卷(4)答案一、选择题(共5小题,每小题7分,满分35分) 1.已知非零实数a ,b 满足|2a ﹣4|+|b +2|++4=2a ,则a +b 等于( )A .﹣1B .0C .1D .2【解答】解:由题设知a ≥3,所以,题设的等式为,于是a=3,b=﹣2,从而a +b=1.故选C .2.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA=a ,OB=OC=OD=1,则a 等于( )A .B .C .1D .2【解答】解:∵∠BAC=∠BCA=∠OBC=∠OCB , ∴△BOC ∽△ABC ,所以,即, 所以,a 2﹣a ﹣1=0.由a >0,解得.故选A .3.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组只有正数解的概率为( )A .B .C .D .【解答】解:当2a ﹣b=0时,方程组无解;当2a ﹣b ≠0时,方程组的解为由a 、b 的实际意义为1,2,3,4,5,6可得. 易知a ,b 都为大于0的整数,则两式联合求解可得x=,y=,∵使x 、y 都大于0则有>0,>0,∴解得a <1.5,b >3或者a >1.5,b <3,而a ,b 都为1到6的整数,所以可知当a 为1时b 只能是4,5,6;或者a 为2,3,4,5,6时b 为1或2, 这两种情况的总出现可能有3+10=13种;又掷两次骰子出现的基本事件共6×6=36种情况,故所求概率为,故选D .4.如图1,在直角梯形ABCD ,∠B=90°,DC ∥AB ,动点P 从B 点出发,由B ﹣﹣C ﹣﹣D ﹣﹣A 沿边运动,设点P 运动的路程为x ,△ABP 的面积为y ,如果关于x 的函数y 的图象如图2,则△ABC 的面积为( ) A .10B .16C .18D .32【解答】解:根据图2可知当点P 在CD 上运动时,△ABP 的面积不变,与△ABC 面积相等;且不变的面积是在x=4,x=9之间;所以在直角梯形ABCD 中BC=4,CD=5,AD=5. 过点D 作DN ⊥AB 于点N ,则有DN=BC=4,BN=CD=5, 在Rt △ADN 中,AN===3,所以AB=BN +AN=5+3=8所以△ABC 的面积为AB•BC=×8×4=16.故选:B .5.关于x ,y 的方程x 2+xy +2y 2=29的整数解(x ,y )的组数为( ) A .2组 B .3组 C .4组 D .无穷多组【解答】解:可将原方程视为关于x 的二次方程,将其变形为x 2+yx +(2y 2﹣29)=0. 由于该方程有整数根,则判别式△≥0,且是完全平方数. 由△=y 2﹣4(2y 2﹣29)=﹣7y 2+116≥0,解得y 2≤.于是显然,只有y 2=16时,△=4是完全平方数,符合要求. 当y=4时,原方程为x 2+4x +3=0,此时x 1=﹣1,x 2=﹣3; 当y=﹣4时,原方程为x 2﹣4x +3=0,此时x 3=1,x 4=3.所以,原方程的整数解为故选C .二、填空题(共5小题,每小题7分,满分35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶3750km.【解答】解:设每个新轮胎报废时的总磨损量为k,则安装在前轮的轮胎每行驶1km 磨损量为,安装在后轮的轮胎每行驶1km 的磨损量为.又设一对新轮胎交换位置前走了xkm,交换位置后走了ykm.分别以一个轮胎的总磨损量为等量关系列方程,有两式相加,得,则(千米).故答案为:3750.7.已知线段AB的中点为C,以点A为圆心,AB的长为半径作圆,在线段AB的延长线上取点D,使得BD=AC;再以点D为圆心,DA的长为半径作圆,与⊙A分别相交于F,G两点,连接FG交AB于点H ,则的值为.【解答】解:如图,延长AD与⊙D交于点E,连接AF,EF.∵线段AB的中点为C,∴AC=BC,∵BD=AC,∴BD=AC=BC ,∴,∵AC=AB,AD=AE ,∴,在△FHA和△EFA中,∵∠EFA=∠FHA=90°,∠FAH=∠EAF,∴Rt△FHA∽Rt△EFA ,∴,∵AF=AB ,∴==.故答案为:.8.已知a1,a2,a3,a4,a5是满足条件a1+a2+a3+a4+a5=9的五个不同的整数,若b是关于x的方程(x﹣a1)(x﹣a2)(x﹣a3)(x﹣a4)(x﹣a5)=2009的整数根,则b的值为10.【解答】解:因为(b﹣a1)(b﹣a2)(b﹣a3)(b﹣a4)(b﹣a5)=2009,且a1,a2,a3,a4,a5是五个不同的整数,所有b﹣a1,b﹣a2,b﹣a3,b﹣a4,b﹣a5也是五个不同的整数.又因为2009=1×(﹣1)×7×(﹣7)×41,所以b﹣a1+b﹣a2+b﹣a3+b﹣a4+b﹣a5=41.由a1+a2+a3+a4+a5=9,可得b=10.故答案为:10.9.(7分)如图,在△ABC中,CD是高,CE为∠ACB的平分线.若AC=15,BC=20,CD=12,则CE的长等于.【解答】解:如图,由勾股定理知AD=9,BD=16,所以AB=AD+BD=25.故由勾股定理逆定理知△ACB为直角三角形,且∠ACB=90°.作EF⊥BC,垂足为F.设EF=x ,由,得CF=x,于是BF=20﹣x.由于EF∥AC ,所以,即,解得.所以.故答案为:.10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是﹣2.【解答】解:设报3的人心里想的数是x,因为报3与报5的两个人报的数的平均数是4,所以报5的人心里想的数应是8﹣x,于是报7的人心里想的数是12﹣(8﹣x)=4+x,报9的人心里想的数是16﹣(4+x)=12﹣x,报1的人心里想的数是20﹣(12﹣x)=8+x,报3的人心里想的数是4﹣(8+x)=﹣4﹣x,所以得x=﹣4﹣x,解得x=﹣2.故答案为:﹣2.三、解答题(共4小题,满分80分)班级: 姓名:____________座号:_____________ 准考证号:_______________密 封 线 11.已知抛物线y=x 2与动直线y=(2t ﹣1)x ﹣c 有公共点(x 1,y 1),(x 2,y 2),且x 12+x 22=t 2+2t ﹣3.(1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值.【解答】解:(1)联立y=x 2与y=(2t ﹣1)x ﹣c ,消去y 得二次方程x 2﹣(2t ﹣1)x +c=0① 有实数根x 1,x 2,则x 1+x 2=2t ﹣1,x 1x 2=c .所以==②把②式代入方程①得③t 的取值应满足t 2+2t ﹣3=x 12+x 22≥0,④且使方程③有实数根,即△=(2t ﹣1)2﹣2(3t 2﹣6t +4)=﹣2t 2+8t ﹣7≥0,⑤ 解不等式④得t ≤﹣3或t ≥1,解不等式⑤得≤t ≤.所以,t 的取值范围为≤t ≤(t ≠)⑥(2)由②式知.由于在≤t ≤时是递增的,所以,当时,.答:当时,c 有最小值:.12.已知正整数a 满足192|a 3+191,且a <2009,求满足条件的所有可能的正整数a 的和. 【解答】解:由192|a 3+191,可得192|a 3﹣1+192=3×26,且a 3﹣1=(a ﹣1)[a (a +1)+1]=(a ﹣1)a (a +1)+(a ﹣1). (5分)因为a (a +1)+1是奇数,所以3×26|a 3﹣1等价于26|a ﹣1,又因为3|(a ﹣1)a (a +1), 所以3|a 3﹣1等价于3|a ﹣1.因此有192|a ﹣1,于是可得a=192k +1. (15分) 又∵0<a <2009,所以k=0,1,10. 因此,满足条件的所有可能的正整数a 的和为 11+192(1+2+…+10)=10571. (20分)13.如图,给定锐角三角形ABC ,BC <CA ,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.【解答】解:结论是DF=EG .∵∠FCD=∠EAB ,∠DFC=∠BEA=90°, ∴Rt △FCD ∽Rt △EAB ,∴=,∴,同理可得,又∵,∴BE•CD=AD•CE ,∴DF=EG .14. n 个正整数a 1,a 2,…,a n 满足如下条件:1=a 1<a 2<…<a n =2009;且a 1,a 2,…,a n 中任意n ﹣1个不同的数的算术平均数都是正整数.求n 的最大值.【解答】解:设a 1,a 2,a n 中去掉a i 后剩下的n ﹣1个数的算术平均数为正整数b i ,i=1,2,n.即.于是,对于任意的1≤i <j ≤n ,都有,从而n ﹣1|(a j ﹣a i ),由于是正整数,故n ﹣1|23×251,由于a n ﹣1=(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)≥(n ﹣1)+(n ﹣1)+…+(n ﹣1)=(n ﹣1)2,所以,(n ﹣1)2≤2008,于是n ≤45,结合n ﹣1|23×251,所以,n ≤9; 另一方面,令a 1=8×0+1,a 2=8×1+1,a 3=8×2+1,a 8=8×7+1,a 9=8×251+1, 则这9个数满足题设要求.综上所述,n 的最大值为9.。