EMC测量不确定度评定
- 格式:ppt
- 大小:3.06 MB
- 文档页数:22
CNAS—GL07EMC检测领域不确定度的评估指南中国合格评定国家认可委员会二〇〇六年六月电磁干扰测量中不确定度的评定指南1目的与范围1.1本指南是采用国际电工委员会下属国际无线电干扰特别委员会(缩写为CISPR)的标准CISPR 16-4(First edition 2002-05)编制而成的,为EMC检测中电磁干扰测量时的不确定度评定提供指南。
1.2在EMC检测中,如需考虑所使用的仪器引入的不确定度对测量结果或符合性判断结论的影响时,可以参考本指南。
1.3本指南的附录A提供了为确定各测量不确定度分量而需要的有关数据信息。
附录A不是用户指南,不希望用户在进行不确定度评定时照搬照抄。
1.4本指南在文献目录中列出了部分不确定度评定的参考资料。
2引用文件JJF1059-1998 《测量不确定度的评定与表示》JJF1001-1998《通用计量术语及定义》JJF1049-2003《测量仪器特性的评定》3术语、定义和符号本指南采用下列术语、定义和符号。
3.1术语、定义关于不确定度的术语和定义见JJF1059-1998 《测量不确定度的评定及表示》;计量学通用名词术语和定义见JJF1001-1998 《通用计量术语及定义》。
3.2通用符号X i:输入量x i:X i的估计值u(x i):x i的标准不确定度c i:灵敏系数y:测量结果,被测量的估计值,对所有能识别的和明显的系统影响已修正的测量结果u c(y):y的合成标准不确定度k:包含因子U:y的扩展不确定度3.3被测量V:电压,dBμVP:骚扰功率,dB PWE:电场强度,dBμV/m3.4输入量V r:接收机电压读数,dBμVLc:接收机与人工电源网络、吸收钳或天线之间的连接网络的衰减量,dB 注:“阻抗稳定网络”-在CISPR 16-4原文中称为“人工电源网络”(Artificial Mains Network),所以采用的缩写符号为AMN。
Lamn:人工电源网络的电压分压系数,dBLac:吸收钳的插入损耗,dBAF:天线系数,dB(/m)δVsw:对接收机正弦波电压不准确的修正值,dBδVpa:对接收机脉冲幅度响应不理想的修正值,dBδVpr:对接收机脉冲重复频率响应不理想的修正值,dBδVnf:对接收机本底噪声影响的修正值,dBδM:对失配误差的修正值,dBδMD:对电源骚扰造成的误差的修正值,dBδZ:对人工电源网络阻抗不理想的修正值,dBδE:对环境条件影响的修正值,dBδ AFf:对天线系数内插误差的修正值,dBδ AF h :对天线系数随高度变化与标准偶极子天线的天线系数随高度变化之差别的修正值,dBδAdir:对天线方向性的修正值,dB δAph:对天线相位中心位置的修正值,dB δAcp:对天线交叉极化响应的修正值,dB δAbal :对天线不平衡的修正值,dB δ SA :对不完善的场地衰减的修正值,dB δ d : 对天线与被测件间距离测不准的修正值,dB δh: 对桌面离地面高度不适当的修正值,dB4测量仪器引入的不确定度4.1概述当要判定是否符合骚扰的允许极限要求时,必须考虑测量仪器引入的不确定度。
测量不确定度评定的方法以及实例1.标准不确定度方法:U =sqrt(∑(xi-x̅)^2/(n-1))其中,xi表示测量值,x̅表示测量值的平均值,n表示测量次数。
标准不确定度包含随机误差和系统误差等。
例如,对一组长度进行测量,测得的数据为10.2、10.3、10.1、10.2、10.3,计算平均值为10.22,标准差为0.069、则标准不确定度为0.069/√5≈0.031,即U=0.0312.扩展不确定度方法:扩展不确定度是在标准不确定度的基础上,考虑到误差的正态分布,对标准不确定度进行扩展得到的结果,通常以U'表示。
其计算公式如下:U'=kU其中,k表示不确定度的覆盖因子,代表了误差分布的概率密度曲线下的面积,一般取k=2例如,对上述例子中的长度进行测量,标准不确定度为0.031,取k=2,则扩展不确定度为0.031×2=0.062,即U'=0.0623.组合不确定度方法:4.直接测量法:直接测量法是通过多次测量同一物理量,统计测得值的离散程度来评估测量的不确定度。
该方法适用于一些简单的测量,如长度、质量等物理量的测量。
例如,对一些小球的直径进行测量,测得的数据为2.51 cm、2.49 cm、2.52 cm、2.50 cm,计算平均值为2.505 cm,标准差为0.013 cm。
则标准不确定度为0.013/√4≈0.007 cm,即U=0.0075.间接测量法:间接测量法是通过已知物理量之间的数学关系,求解未知物理量的方法来评估测量的不确定度。
该方法适用于一些复杂的测量,如测量速度、加速度等物理量的测量。
例如,测量物体的速度v,则有v=S/t,其中S为位移,t为时间。
若S的不确定度为U_S,t的不确定度为U_t,则根据误差传递法则,计算得到v的不确定度为U_v = sqrt(U_S^2 + (U_t * (∂v/∂t))^2 )。
总之,测量不确定度评定的方法包括标准不确定度方法、扩展不确定度方法、组合不确定度方法、直接测量法和间接测量法。
电磁兼容测量中不确定度的评定指南下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!电磁兼容测量中不确定度的评定指南概述电磁兼容(Electromagnetic Compatibility, EMC)测量是确保电子设备在电磁环境中正常运行且不会对其他设备造成干扰的重要环节。
测量不确定度的评定步骤
不确定度评定在原理上很简单。
为了获取测量结果不确定度估计值所要进行的工作,简要地说,包括下列步骤:
1.第一步规定被测量
清楚地写明需要测量什么,包括被测量和被测量所依赖输入量(例如被测数量、常数、校准标准值等)的关系。
只要可能,还应该包括对已知系统影响量的修正。
该技术规定资料应在有关的标准操作程序或其他方法描述中给出(即给出测量依据)。
2.第二步识别不确定度的来源
列出不确定度的可能来源的数学模型。
包括第一步所规定的关系式中所含参数的不确定度来源,但是也可以有其他的来源。
还应包括那些由化学假设所产生的不确定度来源。
不确定度来源应借助于使用结构图(又称鱼骨图)可能有助于因果关系的分析。
3.第三步不确定度分量的量化
测量或估计与所识别的每一个潜在的不确定度来源相关的不确定度分量的大小。
通常可能评估或确定与大量独立来源有关的不确定度的单个分量。
还有一点很重要的是要考虑数据是否足以反映所有的不确定度来源,计划其他的试验和研究来保证所有的不确定度来源都得到充分的考虑。
4.第四步计算合成不确定度
在第三步中得到的信息,是合成不确定度的一些量化分量,它们可能与单个来源有关,也可能与几个不确定度来源的共同影响有关。
这些
分量必须以标准差的形式表示,并根据有关规则进行合成,以得到合成标准不确定度。
应使用适当的包含因子来给出开展不确定度。
不确定度评定步骤图。
无损检测技术中的测量不确定度评估与控制方法无损检测技术是一种非接触、非破坏性的测试方法,广泛应用于工业领域中对材料、构件和设备的质量检测和评估。
然而,在无损检测中,每次测量结果都受到多种误差的影响,这些误差可能来自测量设备、被测材料、环境条件等方面。
为了提高无损检测的准确性和可靠性,评估和控制测量的不确定度是至关重要的。
首先,为了评估测量不确定度,我们需要对影响无损检测结果的各种误差源进行分析和量化。
常见的误差源包括设备误差、人为误差、材料本身的变异性、环境条件的变化等。
在评估这些误差源的贡献时,可以使用统计方法、实验方法和理论分析方法等。
统计方法可以通过对多次重复测量的结果进行统计分析,计算出测量值的标准差、方差等指标,从而评估测量的稳定性和精度。
实验方法可以通过人为操控各种因素,同时对测量结果进行多次测量,以获得不同误差源对测量结果的影响程度。
理论分析方法可以通过建立数学模型,考虑各种误差源的数学描述,从而计算出测量结果的理论不确定度。
其次,对于已经评估出的测量不确定度,我们需要采取控制措施来减小不确定度,提高测量的准确性。
一种常用的方法是通过仪器校准和验证来减小设备误差。
仪器校准可以通过与已知标准进行比较,校正设备的标度和灵敏度,从而减小设备本身带来的误差。
仪器验证可以通过对已知标准进行测量,比较实际测量值与标准值的差异,检验设备的准确性和可靠性。
此外,为了减小人为误差,需要进行培训和技能提高。
操作人员应接受系统的培训,掌握各种检测技术的原理和操作规程,熟悉设备的使用方法和注意事项。
同时,定期进行技术交流和经验分享,提高操作人员的技术水平和专业素养。
针对材料的变异性和环境条件的变化,我们可以采取措施来降低其对测量结果的影响。
一种常见的方法是通过标准参考物进行校准和验证。
标准参考物是具有已知特性和几何形状的材料样品,可以用来验证无损检测方法的准确性和灵敏度,减小材料本身的变异性对测量结果的影响。