2018年高考文科数学回扣突破练(10)平面向量的线性运算与坐标运算(含解析)
- 格式:pdf
- 大小:334.43 KB
- 文档页数:7
第五章平面向量与复数1.平面向量(1)平面向量的实际背景及基本概念①了解向量的实际背景.②理解平面向量的概念和两个向量相等的含义.③理解向量的几何表示.(2)向量的线性运算①掌握向量加法、减法的运算,理解其几何意义.②掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.③了解向量线性运算的性质及其几何意义.(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义.②掌握平面向量的正交分解及其坐标表示.③会用坐标表示平面向量的加法、减法与数乘运算.④理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积①理解平面向量数量积的含义及其物理意义.②了解平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(5)向量的应用①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决简单的力学问题与其他一些实际问题.2.数系的扩充和复数的引入(1)理解复数的基本概念,理解复数相等的充要条件.(2)了解复数的代数表示法及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对应的复数用代数形式表示.(3)能进行复数代数形式的四则运算,了解两个具体复数相加、相减的几何意义.5.1 平面向量的概念及线性运算1.向量的有关概念(1)向量:既有____________又有____________的量叫做向量,向量的大小,也就是向量的____________(或称模).AB →的模记作____________.(2)零向量:____________的向量叫做零向量,其方向是________的.(3)单位向量:长度等于__________________的向量叫做单位向量.a||a 是一个与a 同向的____________.-a|a |是一个与a ________的单位向量.(4)平行向量:方向________或________的________向量叫做平行向量.平行向量又叫____________,任一组平行向量都可以移到同一直线上.规定:0与任一向量____________. (5)相等向量:长度____________且方向____________的向量叫做相等向量.(6)相反向量:长度____________且方向____________的向量叫做相反向量.(7)向量的表示方法:用________表示;用____________表示;用________表示.2.向量的加法和减法 (1)向量的加法①三角形法则:以第一个向量a 的终点A 为起点作第二个向量b ,则以第一个向量a 的起点O 为________以第二个向量b 的终点B 为________的向量OB →就是a 与b 的________(如图1).推广:A 1A 2→+A 2A 3→+…+A n -1A n =____________.图1图2②平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作ABCD ,则以A 为起点的__________就是a 与b 的和(如图2).在图2中, BC →=AD →=b ,因此平行四边形法则是三角形法则的另一种形式.③加法的运算性质:a +b =____________(交换律);(a +b )+c =____________(结合律);a +0=____________=a .(2)向量的减法已知向量a ,b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=____________,即a -b 表示从向量b 的终点指向向量a (被减向量)的终点的向量(如图).3.向量的数乘及其几何意义(1)定义:实数λ与向量a 的积是一个向量,记作____________,它的长度与方向规定如下:①||λa =____________;②当λ>0时,λa 与a 的方向____________; 当λ<0时,λa 与a 的方向____________; 当λ=0时,λa =____________. (2)运算律:设λ,μ∈R ,则: ①λ(μa )=____________; ②(λ+μ)a =____________; ③λ(a +b )=____________. 4.两个向量共线定理向量a (a ≠0)与b 共线的充要条件是有且只有一个实数λ,使得____________.自查自纠:1.(1)大小 方向 长度 ||AB→(2)长度为0 任意(3)1个单位长度 单位向量 方向相反 (4)相同 相反 非零 共线向量 平行 (5)相等 相同 (6)相等 相反 (7)字母 有向线段 坐标2.(1)①起点 终点 和 A 1A n → ②对角线AC → ③b +a a +(b +c ) 0+a (2)a -b 3.(1)λa ①|λ||a | ②相同 相反 0 (2)①μ(λa ) ②λa +μa ③λa +λb 4.b =λa设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .3解:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则当a 为零向量时,a 的方向任意;当a 不为零向量时,a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.故选D.设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解:AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=-13AB →+43AC →.故选A.(2015·东北三省联考)在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形解:依题意得AC →=AB →+BC →=AB →+AD →,则BC →=AD →,因此BC ∥AD 且BC =AD ,故四边形ABCD 一定是平行四边形.故选D.在平行四边形ABCD 中,点E 为CD 的中点,AM →=mAB →,AN →=nAD →(mn ≠0),若MN →∥BE →,则n m=________.解:MN →=AN →-AM →=nAD →-mAB →,BE →=BC →+ CE →=AD→-12AB →,因为MN →∥BE →,且向量AD →和AB →不共线,所以n 1=-m -12,解得nm =2.故填2.直角三角形ABC 中,斜边BC 长为2,O 是平面ABC 内一点,点P 满足OP →=OA →+12(AB →+AC →),则|AP →|=________.解:如图,取BC 边中点D ,连接AD ,则12(AB →+AC →)=AD →,OP→=OA →+12(AB →+AC →)⇒OP →=OA →+AD →⇒OP →-OA →=AD →⇒AP→=AD →,因此|AP →|=|AD →|=1.故填1.类型一 向量的基本概念给出下列命题:①两个向量相等,则它们的起点相同,终点也相同;②若|a |=|b |,则a =b ;③若AB →=DC →,则四点A ,B ,C ,D 构成平行四边形;④在▱ABCD 中,一定有AB →=DC →; ⑤若m =n ,n =p ,则m =p . 其中不正确的个数是( ) A .2 B .3 C .4 D .5解:两个向量起点相同,终点也相同,则两个向量相等;但两个相等向量,不一定有相同的起点和终点,故①不正确.若|a |=|b |,由于a 与b 方向不确定,所以a ,b 不一定相等,故②不正确.若 AB →=DC →,可能有A ,B ,C ,D 在一条直线上的情况,所以③不正确.正确的是④⑤.故选B.点拨:从共线向量、单位向量、相反向量等的概念及特征逐一进行考察.(1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制.(3)相等向量的关键是方向相同且长度相等.(4)共线向量即为平行向量,它们均与起点无关.(5)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的移动混为一谈.下列命题中,正确的是________.(填序号)①有向线段就是向量,向量就是有向线段; ②向量a 与向量b 平行,则a 与b 的方向相同或相反;③向量AB →与向量CD →共线,则A ,B ,C ,D 四点共线;④如果a ∥b ,b ∥c ,那么a ∥c ;⑤两个向量不能比较大小,但它们的模能比较大小.解:①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a 与b 中有一个为零向量,零向量的方向是任意的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行;④不正确,如果b 为零向量,则a 与c 不一定平行;⑤正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.故填⑤.类型二 向量的线性运算在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.解法一:AG →=AB →+BG →=AB →+23BE →=AB →+23(AE →-AB →)=AB →+23⎝ ⎛⎭⎪⎫12AC →-AB →=13AB →+13AC →= 13a +13b.解法二:由于G 是△ABC 的中线BE 与CF 的交点,所以G 为△ABC 的重心.延长AG 交BC 于H ,由重心的性质知,AG →=23AH →=23×12(AB →+AC →)=13a +13b.点拨:(1)进行向量运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来解决.(2)除了充分利用相等向量、相反向量和线段的比例关系外,有时还需要利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.(3)在解答用已知向量线性表示未知向量的问题时,可以利用共线向量定理,将共线向量用参数表示,再利用平面向量基本定理,建立参数的方程(组)求解参数,最后得出结论.(1)设P 是△ABC 所在平面内一点,BC→+BA →=2BP →,则( )A.PA →+PB →=0B.PC →+PA →=0C.PB →+PC →=0D.PA →+PB →+PC →=0 解:如图,根据向量加法的几何意义有BC →+BA →=2BP →⇔P 是AC 的中点,故PC →+PA →=0.故选B.(2)(2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.AD →B.12AD →C.BC →D.12BC →解:EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →.故选A. 类型三 向量共线的充要条件及其应用已知A ,B ,C 是平面内三个不相同的点,O 是平面内任意一点,求证:向量OA →,OB →,OC →的终点A ,B ,C 共线的充要条件是存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1.证明:(1)先证必要性.若OA →,OB →,OC →的终点A ,B ,C 共线,则AB →∥BC →, 所以存在实数m 使得BC →=mAB →,即OC →-OB →=m (OB →-OA →),所以OC →=-mOA →+(1+m )OB →. 令λ=-m ,μ=1+m , 则λ+μ=-m +1+m =1,即存在实数λ,μ,使得OC →=λOA →+μOB →, 且λ+μ=1. (2)再证充分性.若OC →=λOA →+μOB →,且λ+μ=1, 则OC →=λOA →+(1-λ)OB →,所以OC →-OB →=λ(OA →-OB →),即BC →=λBA →, 所以BC →∥BA →,又BC 与BA 有公共点B , 所以A ,B ,C 三点共线. 综合(1)(2)可知,原命题成立. 点拨:证明三点A ,B ,C 共线,借助向量,只需证明由这三点A ,B ,C 所组成的向量中有两个向量共线,即证明存在一个实数λ,使AB →=λBC →.但证明两条直线AB ∥CD ,除了证明存在一个实数λ,使AB →=λCD →外,还要说明两直线不重合.注意:本例的结论可作定理使用.(1)已知向量a ,b ,且AB →=a +2b ,BC→=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D解:BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2(a +2b )=2AB →,所以A ,B ,D 三点共线.故选A.(2)设两个非零向量a 与b 不共线,若k a +b 和a +k b 共线,则实数k =________.解:因为k a +b 和a +k b 共线,所以存在实数λ,使k a +b =λ(a +k b ),即k a +b =λa +λk b .所以(k -λ)a =(λk -1)b .因为a ,b 是两个不共线的非零向量,所以k -λ=λk -1=0,所以k 2-1=0.所以 k =±1.故填±1.(3)如图,在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点.若AN →=λAB →+μAC →,则λ+μ的值为()A.12B.13C.14D .1 解:由N 为AM 的中点, 可得AN →=12AM →=λAB →+μAC →,整理得AM →=2λAB →+2μAC →,由B ,M ,C 三点共线可得2λ+2μ=1,即λ+μ=12.故选A.1.准确理解向量的概念,请特别注意以下几点:(1)a∥b,有a与b方向相同或相反两种情形;(2)向量的模与数的绝对值有所不同,如|a|=|b|⇒/a=±b;(3)零向量的方向是任意的,并不是没有,零向量与任意向量平行;(4)对于任意非零向量a,a||a是与a同向的单位向量,这也是求单位向量的方法;(5)向量平行,其所在直线不一定平行,两向量还可能在一条直线上;(6)只要不改变向量a的大小和方向,可以自由平移a,平移后的向量与a相等,所以线段共线与向量共线是有区别的,当两向量共线且有公共点时,才能得出线段共线,向量的共线与向量的平行是一致的.2.向量具有大小和方向两个要素,既能像实数一样进行某些运算,又有直观的几何意义,是数与形的完美结合.向量是一个几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析、判断,这是研究平面向量最重要的方法与技巧.3.向量加法的三角形法则可简记为“首尾相接,指向终点”;减法法则可简记为“起点重合,指向被减向量”;加法的平行四边形法则可简记“起点重合,指向对角顶点”.4.平面向量的三种线性运算的结果仍为向量,在三种线性运算中,加法是最基本、最重要的运算,减法运算与数乘运算都以加法运算为基础,都可以归结为加法运算.5.对于两个向量共线定理(a(a≠0)与b共线⇔存在唯一实数λ使得b=λa)中条件“a≠0”的理解:(1)当a=0时,a与任一向量b都是共线的;(2)当a=0且b≠0时,b=λa是不成立的,但a与b共线.因此,为了更具一般性,且使充分性和必要性都成立,我们要求a≠0.换句话说,如果不加条件“a≠0”,“a与b共线”是“存在唯一实数λ使得b=λa”的必要不充分条件.1.设a,b都是非零向量,下列四个条件中,使a|a|=b|b|成立的充分条件是( )A.a=-b B.a∥bC.a=2b D.a∥b且|a|=|b|解:由题意a|a|=b|b|表示与向量a和向量b同向的单位向量相等,故a与b同向共线.故选C.2.已知向量a,b不共线,c=k a+b(k∈R),d=a-b.如果c∥d,那么( )A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向解:因为c∥d,所以存在实数λ,使得c=λd,即k a+b=λ(a-b),所以⎩⎪⎨⎪⎧k=λ,1=-λ,解得⎩⎪⎨⎪⎧k=-1,λ=-1.此时c=-d.所以c与d反向.故选D.3.已知O,A,M,B为平面上四点,且OM→=λOB→+(1-λ)OA →,实数λ∈(1,2),则( )A .点M 在线段AB 上 B .点B 在线段AM 上C .点A 在线段BM 上D .O ,A ,M ,B 四点一定共线解:由题意得OM →-OA →=λ(OB →-OA →),即AM →=λAB →.又λ∈(1,2),所以点B 在线段AM 上.故选B .4.已知O 是△ABC 所在平面内一点,D 为BC 的中点,且2OA →+OB →+OC →=0,则( )A.AO →=2OD →B.AO →=OD →C.AO →=3OD → D .2AO →=OD →解:因为D 为BC 的中点,所以由2OA →+OB →+OC →=0得OB →+OC →=-2OA →=2AO →,即2OD →=2AO →,所以AO →=OD →.故选B.5.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若 AE →=AD →+μAB →,则μ的取值范围是( )A .B .C.⎣⎢⎡⎦⎥⎤0,12D.⎣⎢⎡⎦⎥⎤12,2 解:由题意可求得AD =1,CD =3, 所以AB →=2DC →.因为点E 在线段CD 上, 所以DE →=λDC →(0≤λ≤1). 且AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →,即DE →=2μDC →, 所以λ=2μ.因为0≤λ≤1,所以0≤μ≤12.故选C.6.如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且 AM →=xAB →,AN →=yAC →,x ,y ∈R ,则xy x +y的值为()A .3 B.13 C .2 D.12解法一:由点G 是△ABC 的重心,知AG →=23×12(AB→+AC →)=13(AB →+AC →).又M ,N ,G 三点共线(A 不在直线MN 上),于是存在λ,μ∈R ,使得 AG →=λAM →+μAN →(且λ+μ=1),则AG →=λxAB →+ μyAC →=13(AB →+AC →),所以⎩⎪⎨⎪⎧λ+μ=1,λx =μy =13,于是得1x +1y =3,所以xy x +y =11x +1y=13.解法二:特殊化法,取MN ∥BC ,易得xy x +y =13.故选B.7.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD →=12AB →,BE →=23BC →.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解:DE →=BE →-BD →=23BC →-12BA →=23(AC →- AB →)+12AB →=-16AB →+23AC →, 因为DE →=λ1AB →+λ2AC →,所以λ1=-16,λ2=23,从而λ1+λ2=12.故填12.8.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R +),则mn=________.解:如图,设mOA →=OF →,nOB →=OE →,则OC →=OF →+OE →,因为∠AOC =30°,所以|OC →|cos30°=|OF →|=m|OA →|=m , |OC→|sin30°=|OE →|=n|OB →|=3n ,两式相除得 m3n=|OC →|cos30°|OC →|sin30°=1tan30°=3,所以mn=3.另外此题也可用坐标求解.故填3.9.如图,在梯形ABCD 中,AB ∥CD ,且 AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b表示BC →和MN →.解:BC →=BA →+AD →+DC →=-a +b +12a =b -12a .MN →=MD →+DA →+AN →=-14a +(-b )+12a =14a -b .10.设两个非零向量e 1和e 2不共线. (1)如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →= -8e 1-2e 2,求证:A ,C ,D 三点共线;(2)如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →= 2e 1-k e 2,且A ,C ,D 三点共线,求k 的值.解:(1)证明:因为AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,所以AC →=AB →+BC →=4e 1+e 2= -12(-8e 1-2e 2)=-12CD →, 所以AC →与CD →共线.又因为AC →与CD →有公共点C ,所以A ,C ,D 三点共线.(2)AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2)= 3e 1-2e 2,因为A ,C ,D 三点共线,所以AC →与CD →共线,从而存在实数λ使得AC →=λCD →,即3e 1-2e 2=λ(2e 1-k e 2),得⎩⎪⎨⎪⎧3=2λ,-2=-λk ,解得λ=32,k =43.故k 的值为43. 11.如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a和b表示向量OM →.解:因为A ,M ,D 三点共线,所以OM →=λ1OD →+(1-λ1)OA →=12λ1b +(1-λ1)a ,① 因为C ,M ,B 三点共线,所以OM →=λ2OB →+(1-λ2)OC →=λ2b +1-λ24a ,②由①②可得⎩⎪⎨⎪⎧12λ1=λ2,1-λ1=1-λ24,解得⎩⎪⎨⎪⎧λ1=67,λ2=37.故OM →=17a +37b.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上解:若C ,D 调和分割点A ,B ,则AC →=λAB →(λ∈R ),AD →=μAB →(μ∈R ),且1λ+1μ=2.对于选项A ,若C 是线段AB 的中点,则AC →=12AB →⇒λ=12⇒1μ=0,故A 选项错误;同理B 选项错误;对于选项C ,若C ,D 同时在线段AB 上,则0<λ<1,0<μ<1⇒1λ+1μ>2,C 选项错误;对于选项D ,若C ,D 同时在线段AB 的延长线上,则λ>1,μ>1⇒1λ+1μ<2,故C ,D 不可能同时在线段AB 的延长线上,D 选项正确.故选D.5.2 平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使_________________________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组__________.2.向量的夹角(1)已知两个________向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图).(2)向量夹角θ的范围是_______________.a 与b 同向时,夹角θ=________;a 与b 反向时,夹角θ=____________.(3)如果向量a 与b 的夹角是____________,我们就说a 与b 垂直,记作____________.3.平面向量的正交分解及坐标表示 (1)平面向量的正交分解把一个向量分解为两个____________的向量,叫做向量的正交分解.(2)在平面直角坐标系内,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y ,使得a =x i +y j .则实数对__________叫做向量a 的(直角)坐标,记作a =__________,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,该式叫做向量的坐标表示.与a 相等的向量的坐标也为________.显然,i =_____________,j =_____________,0=_____________.4.平面向量的坐标运算(1)已知a =(x 1,y 1),b =(x 2,y 2),则a ±b =__________________________.(2)如果A (x 1,y 1),B (x 2,y 2),则AB →=_________________________.(3)若a =(x ,y ),则λa =____________. (4)如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b 的充要条件是____________________.自查自纠:1.a =λ1e 1+λ2e 2 基底 2.(1)非零(2)0°≤θ≤180° 0° 180° (3)90° a ⊥b 3.(1)互相垂直(2)(x ,y ) (x ,y ) (x ,y ) (1,0) (0,1) (0,0)4.(1)(x 1±x 2,y 1±y 2) (2)(x 2-x 1,y 2-y 1) (3)(λx ,λy ) (4)x 1y 2-x 2y 1=0(2015·全国Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)解:AB →=(3,1),BC →=AC →-AB →=(-4, -3)-(3,1)=(-7,-4).故选A.在下列向量组中,可以把向量a =(3,2)线性表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3)解:一个平面内任意不共线的两个向量都可以作为平面的一组基底,它能表示出平面内的其他向量.A 中,e 1=0,且e 2与a 不共线;C ,D 中的两个向量都是共线向量且不与a 共线,故表示不出a .B 中的两个向量不共线,可以作为平面的一组基底,故可以表示出a .故选B.已知向量a =(1,m ),b =(m ,2),若a ∥b ,则实数m 等于( )A .- 2B. 2C .-2或 2D .0解:由a ∥b 知1×2-m 2=0,所以m =± 2.故选C.(2015·江苏)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解:因为m a +n b =(2m +n ,m -2n )=(9, -8),所以⎩⎪⎨⎪⎧2m +n =9,m -2n =-8, 解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =-3.故填-3.已知两点A (1,0),B (1,1),O 为坐标原点,点C 在第二象限内,且∠AOC =135°,设 OC →=-OA →+λOB →(λ∈R ),则λ的值为________.解:由∠AOC =135°知,点C 在射线y = -x (x <0)上,设点C 的坐标为(a ,-a ),a <0,则有(a ,-a )=(-1+λ,λ),得⎩⎪⎨⎪⎧a =-1+λ,-a =λ, 消掉a得λ=12.故填12.类型一 向量共线充要条件的坐标表示平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k 的值; (3)若n ≠0,且m a +n b 与a -2b 共线,求mn的值.解:(1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2, 解得⎩⎪⎨⎪⎧m =59,n =89.(2)a +k c =(3+4k ,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0, 解得k =-1613.(3)m a +n b =(3m -n ,2m +2n ),a -2b =(5,-2),由题意得-2(3m -n )-5(2m +2n )=0,解得m n =-12.点拨:解决此类题目,我们只需要牢记:(1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b (b ≠0)的充要条件是x 1y 2- x 2y 1=0;②a ∥b (a ≠0),当且仅当唯一一个实数λ,使b =λa .(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(1)已知向量a =⎝ ⎛⎭⎪⎫8,12x ,b =(x ,1),其中x >0,若(a -2b )∥(2a +b ),则x 的值为________.解:a -2b =⎝ ⎛⎭⎪⎫8-2x ,12x -2,2a +b =(16+x ,x +1),因为(a -2b )∥(2a +b ),显然2a +b ≠0, 所以存在唯一的实数λ使得⎝ ⎛⎭⎪⎫8-2x ,12x -2=λ(16+x ,x +1),所以⎩⎪⎨⎪⎧8-2x =λ(16+x ),12x -2=λ(x +1),解得x =4(x >0).故填4.(2)已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则实数k =________.解:若点A ,B ,C 不能构成三角形,则向量AB →,AC →共线.AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1).因为AB →∥AC →,AC →≠0,所以1×(k +1)- 2k =0,解得k =1.故填1.类型二 平面向量基本定理及其应用在ABCD 中,AB =8,BC =6,AE →= 13EB →,BF →+2CF →=0,设AB →=a ,AD →=b.(1)设DB →=λDE →+μDF →(λ,μ∈R ),求λ+μ的值;(2)设AF 与DE 交于点G ,用a ,b 表示AG →. 解:(1)因为AE →=13EB →,AB →=AE →+EB →=a,所以AE →=14a ,所以DE →=AE →-AD →=14a -b .因为BF →+2CF →=0,BC →=AD →=b , 所以CF →=-13b ,所以DF →=DC →+CF →=a -13b ,DB →=DC →+DA →=a -b .因为DB →=λDE →+μDF →=λ⎝ ⎛⎭⎪⎫14a -b +μ⎝ ⎛⎭⎪⎫a -13b =⎝ ⎛⎭⎪⎫14λ+μa -⎝⎛⎭⎪⎫λ+13μb ,即a -b =⎝ ⎛⎭⎪⎫14λ+μa -⎝ ⎛⎭⎪⎫λ+13μb .由于a ,b 为不共线的非零向量,因此由平面向量基本定理知⎩⎪⎨⎪⎧14λ+μ=1,λ+13μ=1, 所以⎩⎪⎨⎪⎧λ=811,μ=911,则λ+μ=1711.(2)设DG →=mDE →,AG →=nAF →,m ,n ∈R ,则 DG →=m ⎝ ⎛⎭⎪⎫14a -b =14m a -m b ,AG →=n (AD →+DF →)= n (b +a -13b )=n a +2n 3b ,由于AG →=AD →+DG →=b + 14m a -m b =14m a +(1-m )b ,即n a +2n 3b =14m a + (1-m )b .由于a ,b 为不共线的非零向量,因此由平面向量基本定理知⎩⎪⎨⎪⎧n =14m ,2n 3=1-m , 所以⎩⎪⎨⎪⎧m =67,n =314.则AG →=14×67a +⎝ ⎛⎭⎪⎫1-67b =314a +17b .点拨:应用平面向量基本定理的关键点:(1)平面向量基本定理中的基底必须是两个不共线的向量.(2)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来.(3)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等.提醒:在基底未给出的情况下,合理地选取基底会给解题带来方便.(1)在△ABC 中,点D 在边AB 上,CD平分∠ACB .若CB →=a ,CA →=b ,|a |=1,|b |=2,则CD →=( )A.13a +23b B.23a +13b C.35a +45b D.45a +35b 解法一:因为CD 平分∠ACB ,由角平分线定理,得AD DB =AC BC =|b ||a |=2,所以AD →=2DB →=23AB →. 所以CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=23CB →+13CA →=23a +13b . 解法二:(特殊值法)构造直角三角形,令 CB =1,CA =2,AB =3,则∠DCB =30°,所以BD =33.故BD →=13BA →,CD →=CB →+BD →=a +13(b - a )=23a +13b .故选B.(2)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解:设i ,j 分别为水平向右和竖直向上的单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),即-i -3j =(-λ+6μ)i +(λ+2μ)j ,根据平面向量基本定理得⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ, 解得⎩⎪⎨⎪⎧λ=-2,μ=-12.所以λμ=4.故填4. 类型三求向量的坐标已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.解:如图所示,令A (-1,0),B (3,0),C (1,-5),D (x ,y ).(1)若四边形ABCD 1为平行四边形, 则AD 1→=BC →,且AD 1→=(x +1,y ),BC →=(-2,-5).所以⎩⎪⎨⎪⎧x +1=-2,y =-5,解得⎩⎪⎨⎪⎧x =-3,y =-5. 所以D 1(-3,-5).(2)若四边形ACD 2B 为平行四边形,则AB →=CD 2→,且AB →=(4,0),CD 2→=(x -1,y +5).所以⎩⎪⎨⎪⎧x -1=4,y +5=0, 解得⎩⎪⎨⎪⎧x =5,y =-5. 所以D 2(5,-5).(3)若四边形ACBD 3为平行四边形, 则AD 3→=CB →,且AD 3→=(x +1,y ),CB →=(2,5),所以⎩⎪⎨⎪⎧x +1=2,y =5, 解得⎩⎪⎨⎪⎧x =1,y =5. 所以D 3(1,5).综上所述,平行四边形第四个顶点的坐标为 (-3,-5)或(5,-5)或(1,5).点拨:平面向量坐标运算的技巧:(1)向量的坐标运算常建立在向量的线性运算的基础之上,若已知有向线段两端点的坐标,则应考虑坐标运算.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)进行求解.已知A ,B ,C 三点的坐标分别为(-1,0),(3,-1),(1,2),并且AE →=13AC →,BF →=13BC →.(1)求E ,F 的坐标; (2)求证:EF →∥AB →.解:(1)设E ,F 两点的坐标分别为(x 1,y 1),(x 2,y 2),则依题意得AC →=(2,2),BC →=(-2,3),AB →=(4,-1).所以AE →=13AC →=⎝ ⎛⎭⎪⎫23,23,BF →=13BC →=⎝ ⎛⎭⎪⎫-23,1.因为AE →=(x 1,y 1)-(-1,0)=(x 1+1,y 1), BF →=(x 2,y 2)-(3,-1)=(x 2-3,y 2+1).所以⎩⎪⎨⎪⎧x 1+1=23,y 1=23, 解得⎩⎪⎨⎪⎧x 1=-13,y 1=23.⎩⎪⎨⎪⎧x 2-3=-23,y 2+1=1, 解得⎩⎪⎨⎪⎧x 2=73,y 2=0.所以E 的坐标为⎝ ⎛⎭⎪⎫-13,23,F 的坐标为⎝ ⎛⎭⎪⎫73,0. (2)证明:由(1)知E ⎝ ⎛⎭⎪⎫-13,23,F ⎝ ⎛⎭⎪⎫73,0,所以EF →=⎝ ⎛⎭⎪⎫83,-23,且AB →=(4,-1),又4×⎝ ⎛⎭⎪⎫-23-(-1)×83=0,所以EF →∥AB →.1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量坐标表示的基础.(2)平面向量的一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将平面中任一向量分解成形如a =λ1e 1+λ2e 2(λ1,λ2∈R ,e 1,e 2为同一平面内不共线的两个向量)的形式,它是向量线性运算知识的延伸.(4)如果e 1,e 2是同一平面内的一组基底,且 λ1e 1+λ2e 2=0(λ1,λ2∈R ),那么λ1=λ2=0.2.对两向量夹角的理解两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角.若起点不同,则应通过平移,使其起点相同.3.向量的坐标表示向量用坐标表示后,向量的计算和证明都归结为数的运算,这使问题大大简化.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标,当且仅当向量的起点为原点时,向量的坐标才等于其终点的坐标.两个向量相等,当且仅当其坐标相同.1.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =⎝ ⎛⎭⎪⎫-34,12, b =(3,-2) 解:在平面内,根据向量基底的定义知,两个向量不共线即可作为基底.故选B.2.已知平面向量a =(2m +1,3),b =(2,m ),且a 与b 反向,则|b |等于( )A.1027 B .2 2 C.52 D.52或2 2 解:根据题意a ∥b 知m (2m +1)-3×2=0,解得m =-2或m =32.当m =32时,a =(4,3),b =⎝ ⎛⎭⎪⎫2,32,则a =2b ,此时两向量同向,与已知不符,故m =-2,此时b =(2,-2),故|b |=2 2.故选B.3.如图,e 1,e 2为互相垂直的单位向量,向量a ,b 如图,则向量a -b 可表示为( )A .3e 2-e 1B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解:由图易知a -b =-3e 2+e 1=e 1-3e 2.故选C.4.(2015·江西检测)已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解:由题意得a +b =(2,2+m ).由m =-6得a +b =(2,-4)=-12a ,所以a ∥(a +b );由a ∥ (a+b )得-1×(2+m )=2×2,所以m =-6.故 “m =-6”是“a ∥(a +b )”的充要条件.故选A.5.设向量a =(1,-3),b =(-2,4),若表示向量4a ,3b -2a ,c 的有向线段首尾相接能构成三角形,则向量c 为( )A .(1,-1)B .(-1,1)C .(-4,6)D .(4,-6)解:由题知4a =(4,-12),3b -2a =(-6,12)-(2,-6)=(-8,18),由4a +(3b -2a )+c =0,知c =(4,-6).故选D.6.如图,设向量OA →=(3,1),OB →=(1,3),若OC →=λOA →+μOB →,且λ≥μ≥1,则用阴影表示C 点所有可能的位置区域正确的是()解:设OC →=(x ,y ),则由OC →=λOA →+μOB →得(x ,y )=λ(3,1)+μ(1,3),即⎩⎪⎨⎪⎧x =3λ+μ,y =λ+3μ,可得⎩⎪⎨⎪⎧λ=3x -y 8,μ=3y -x 8.因为λ≥μ≥1,所以⎩⎪⎨⎪⎧3x -y 8≥3y -x 8,3y -x 8≥1,化简得⎩⎪⎨⎪⎧x -y ≥0,x -3y +8≤0.作出可行域知选项D 正确.故选D.7.(2015·全国)设向量a ,b 不平行,向量 λa +b 与a +2b 平行,则实数λ=________.解:由于λa +b 与a +2b 平行,且a +2b ≠0,所以存在唯一的实数μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0.因为a ,b 不平行,所以⎩⎪⎨⎪⎧λ-μ=0,1-2μ=0, 解得λ=μ=12.故填12.8.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ○×b =(a 1b 1,a 2b 2),已知向量m =⎝ ⎛⎭⎪⎫2,12,n =⎝ ⎛⎭⎪⎫π3,0,点P (x ,y )在y =sin x 的图象上运动.Q是函数y =f (x )图象上的点,且满足OQ →=m ○×OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.解:设Q (c ,d ),由新的运算可得OQ →=m ○×OP →+n =⎝⎛⎭⎪⎫2x ,12sin x +⎝⎛⎭⎪⎫π3,0=⎝⎛⎭⎪⎫2x +π3,12sin x ,所以⎩⎪⎨⎪⎧c =2x +π3,d =12sin x ,消去x 得d =12sin ⎝ ⎛⎭⎪⎫12c -π6.所以y =f (x )=12sin ⎝ ⎛⎭⎪⎫12x -π6,易知y =f (x )的值域是⎣⎢⎡⎦⎥⎤-12,12.故填⎣⎢⎡⎦⎥⎤-12,12.9.已知向量a =(1,0),b =(2,1). (1)当实数k 为何值时,k a -b 与a +2b 共线? (2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求实数m 的值.解:(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线, 所以2(k -2)-(-1)×5=0, 即2k -4+5=0,得k =-12.(2)解法一:因为A ,B ,C 三点共线, 所以存在实数λ使得AB →=λBC →, 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=m λ, 解得m =32.解法二:AB →=2a +3b =2(1,0)+3(2,1)=(8,3),BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ).因为A ,B ,C 三点共线,所以AB →∥BC →,又BC →≠0,所以8m -3(2m +1)=0, 即2m -3=0,得m =32.10.已知点O (0,0),A (1,2),B (4,5)及 OP→=OA →+tAB →,试问:(1)当t 为何值时,P 在x 轴上?P 在y 轴上?P 在第三象限内?(2)四边形OABP 能否成为平行四边形?若能,求出t 的值;若不能,请说明理由.解:(1)依题意,得AB →=(3,3), 所以OP →=OA →+tAB →=(1+3t ,2+3t ), 即P (1+3t ,2+3t ).若P 在x 轴上,则2+3t =0,所以t =-23;若P 在y 轴上,则1+3t =0,所以t =-13;若P 在第三象限内,则⎩⎪⎨⎪⎧1+3t <0,2+3t <0,所以t <-23.(2)因为OA →=(1,2),PB →=(3-3t ,3-3t ), 若OABP 是平行四边形,则OA →=PB →,所以⎩⎪⎨⎪⎧3-3t =1,3-3t =2. 此方程无解.故四边形OABP 不可能成为平行四边形. 11.如图所示,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 的值.解:设BM →=e 1,CN →=e 2,则AM →=AC →+CM →= -3e 2-e 1,BN →=BC →+CN →=2e 1+e 2.因为A ,P ,M 和B ,P ,N 分别共线, 所以存在λ,μ∈R ,使AP →=λAM →=-λe 1-3λe 2,BP →=μBN →=2μe 1+μe 2.故BA →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2, 而BA →=BC →+CA →=2e 1+3e 2,所以由平面向量基本定理得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,所以⎩⎪⎨⎪⎧λ=45,μ=35.所以AP →=45AM →,即AP ∶PM =4∶1.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.解:由题意得,OC →=kOD →(k <0),又|k|=|OC →||OD →|<1,所以-1<k <0.又因为B ,A ,D 三点共线,所以OD →=λOA →+(1-λ)OB →,mOA →+nOB →=k λOA →+k (1-λ)OB →,由平面向量的基本定理知m =k λ,n =k (1-λ),所以m +n =k ,从而m +n ∈(-1,0).故填(-1,0).5.3 平面向量的数量积1.数量积的概念已知两个非零向量a与b,我们把数量________________叫做a与b的数量积(或内积),记作____________,即a·b=________,其中θ是a与b的夹角,|a|cosθ(|b|cosθ)叫向量a在b方向上(b在a方向上)的____________.a·b的几何意义:数量积a·b等于_________________________________________.2.数量积的运算律及常用结论(1)数量积的运算律①交换律:___________________;②数乘结合律:_____________________;③分配律:__________________________.(2)常用结论①(a±b)2=________________________;②(a+b)·(a-b)=_________________;③a2+b2=0⇔______________________;④|||a-||b|________||a+||b.3.数量积的性质设a,b都是非零向量,e是与b方向相同的单位向量,θ是a与e的夹角,则①e·a=____________.②a⊥b⇔____________.③当a与b同向时,a·b=____________;当a与b反向时,a·b=____________.特别地,a·a=____________或||a=____________.④ cosθ=____________.⑤||a·b≤____________.4.数量积的坐标表示设a=(x1,y1),b=(x2,y2),则①a·b=________________;a2=________________;||a=________________.②a⊥b⇔____________________.③||x1x2+y1y2≤________________________.自查自纠:1.||a||b cosθa·b|a||b|cosθ投影a的长度||a与b在a的方向上的投影||b cosθ的乘积2.(1)①a·b=b·a②(λa)·b=λ(a·b)=a·(λb)③(a+b)·c=a·c+b·c(2)①a2±2a·b+b2②a2-b2③a=0且b=0④ ≤3.①|a|cosθ②a·b=0 ③|a||b|-|a||b||a|2a·a④a·b|a||b|⑤|a||b|4.①x1x2+y1y2x21+y21x21+y21②x1x2+y1y2=0 ③x21+y21x22+y22(2016·全国卷Ⅱ)已知向量a =(1,m ), b =(3,-2),且(a +b )⊥b ,则m =( )A .-8B .-6C .6D .8解:向量a +b =(4,m -2),由(a +b )⊥b 得4×3+(m -2)×(-2)=0,解得m =8.故选D.(2016·全国卷Ⅲ)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120° 解:cos ∠ABC =BA →·BC →|BA →||BC →|=32,所以∠ABC =30°.故选A.(2015·北京)设a ,b 是非零向量,“a ·b =|a ||b |”是“a ∥b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解:a ·b =|a ||b |cos 〈a ,b 〉.若a ·b =|a ||b |,则cos 〈a ,b 〉=1,即〈a ,b 〉=0,可得a ∥b ;若a ∥b ,则〈a ,b 〉=0或π,此时a ·b =|a ||b |或a ·b =-|a ||b |.故“a ·b =|a||b |”是“a ∥b ”的充分而不必要条件.故选A.已知|a |=1,|b |=2,a 与b 的夹角为60°,则a +b 在a 方向上的投影为________.解:由题意知a +b 在a 方向上的投影为(a +b )·a|a |=a 2+|a ||b |cos60°|a |=2.故填2.(2015·安徽)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________.(写出所有正确结论的编号)①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →.解:由AB →=2a ,AC →=2a +b 得a =12AB →,b = AC→-2a =BC →,④正确;|a |=12|AB →|=1,①正确;|b |=|BC →|=2,②错误;a 与b 的夹角为120°,③错误;(4a +b )·b =4a ·b +b2=-4+4=0,⑤正确.故填①④⑤.类型一 数量积的定义及几何意义(1)若a ,b ,c 均为非零向量,则下列说法正确的是____________.(填写序号即可)①a ·b =±||a ·||b ⇔a ∥b ; ②a ⊥b ⇔a ·b =0; ③a ·c =b ·c ⇔a =b ; ④(a ·b )·c =a ·(b ·c ).解:a ·b =||a ||b cos θ,θ为a ,b 的夹角,则cos θ=±1,①正确;②显然正确;③错误,如a =-b ,a ⊥c ,则a ·c =b ·c =0,但a ≠b ;④错误,因为数量积的运算结果是一个数,即等式左边为c 的倍数,等式右边为a 的倍数.故填①②.(2)△ABC 的外接圆的圆心为O ,半径为1,若AB →+AC →=2AO →,且|OA →|=|AC →|,则向量BA →在向量BC →方向上的投影为( )。
2018届高三数学30个黄金考点精析精训考点14 平面向量的运算(线性运算和坐标运算)【考点剖析】1.最新考试说明:(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解平面向量基本定理及其意义,会用平面向量基本定理解决简单问题.(4)掌握平面向量的正交分解及坐标表示.(5)会用坐标表示平面向量的加法、减法与数乘运算.(6)理解用坐标表示的平面向量共线的条件.2.命题方向预测:(1)平面向量的线性运算是考查重点.共线向量定理的理解和应用是重点,也是难点.题型以选择题、填空题为主,常与解析几何相联系.(2)平面向量基本定理的应用及坐标表示下向量共线条件的应用是重点.向量的坐标运算可能单独命题,更多的是与其他知识点交汇,其中以与三角和解析几何知识结合为常见.常以选择题、填空题的形式出现,难度为中、低档.3.课本结论总结:(1)向量的有关概念①向量:既有大小又有方向的量,两个向量不能比较大小.0a=0,0+a ②零向量:模为0的向量,记作0,其方向为任意的,所以0与任意向量平行,其性质有:=a.③单位向量:模为1个长度单位的向量,与a方向相同的单位向量为④相等向量:长度相等且方向相同的向量,记作a=b.⑤相反向量:长度相等且方向相反的两个向量,a的相反向量为-a,有-(- a)= a.(2)向量的线性运算三角形法则(3) 平面向量基本定理若a 、b 是平面内不共线的向量,向量c 是平面内任意一个向量,则存在唯一实数对,x y ,使x y c =a +b . (4) 共线向量①共线向量概念:若两个非零向量a 、b 的方向相同或相反,则称a 与b 共线,也叫a 与b 平行,规定零向量与任意向量共线.两个向量共线其所在的直线可能重合也可能平行. ① 共线向量定理:a ∥b (b ≠0)⇔存在唯一实数λ,使得a =λb . ② 若a =(1x ,1y ),b =(2x ,2y ),则a ∥b ⇔1x 2y -2x 1y =0. (5) 平面向量的基本运算①若a =(1x ,1y ),b =(2x ,2y ),则a ±b =(1x ±2x ,1y ±2y ),λa =(λ1x ,λ1y ),②若A (1x ,1y ),B (2x ,2y ),则AB =(2x -1x ,2y -1y ). 4.名师二级结论:(1)若A 、B 、C 三点共线且OA OB OC λμ=+,则λμ+=1. (2)若向量,a b 不共线,xa yb =,则0x y == (3)C 是线段AB 中点的充要条件是1()OC OA OB =+.(4)若1122(,),(,)A x y B x y ,则线段AB . (4)G 是△ABC 的重心的充要条件为0GA GB GC ++=.(5)若△ABC 的三个顶点坐标分别为112233(,),(,),(,)A x y B x y C x y ,则△ABC 重心坐标为(6)已知1122(,),(,)A x y B x y ,且AC CB λ=,则点C 5.课本经典习题:(1)新课标A 版第92页,习题A 组第12 题 在△ABC 中,14AD AB =,DE ∥BC ,且与边AC 相交于点E ,△ABC 的中线AM 与DE 相交于点N ,设AB a =,AC =b ,用a ,b 分别表示向量,,,,,,AE BC DE DB EC DN AN .【经典理由】本题考查了平面向量的加法、减法、实数与向量积等线性运算,具有代表性. (2) 新课标A 版第101页,练习第7 题已知A (2,3),B (4,-3),点P 在线段AB 3||||AP PB =,求点P 的坐标. 【经典理由】本题考查了平面向量实数与向量积的坐标运算及数形结合思想,是经典题型. 6.考点交汇展示: (1)三角函数交汇【2017江苏,16】 (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(12)0x =时, 取得最大值,为3;【解析】∵()sin 2,cos a θθ=,()cos ,1b θ=,a ∥b ,∴2sin 2cos θθ=,即22sin cos cos θθθ=,,∴2sin cos θθ=, (2)与平面几何交汇【2017浙江,10】如图,已知平面四边形ABCD ,AB ⊥BC , AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OAOB =,2·I OB OC =,3·I OC OD =,则A .321I I I <<B .231I I I <<C .213I I I <<D .312I I I <<【答案】C 【解析】【考点分类】热点1 平面向量的线性运算1.【2017河北唐山二模】平行四边形ABCD 中, M 为BC 的中点,若AB AM DB λμ=+,则λμ=__________.【解析】由图形可得: 12AM AB AD =+①,DB AB AD =-②, ①2⨯+②得: 23AM DB AB +=,即21AB AM DB =+,∴2.如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF 等于( )A 1123AB AD - B 1142AB AD + C 11AB DA + D 2AB AD -【答案】D【方法规律】1. 判定两向量的关系式时,特别注意以下两种情况: (1) 零向量的方向及与其他向量的关系. (2) 单位向量的长度与方向.2. 对任意向量可以自由移动,且任意一组平行向量都可平移到一条直线上.3. 向量不能比较大小,但它的模可以比较大小4. 在进行向量的线性运算要能的转化到三角形法、多边形或平行四边形中,运用三角形法则构成“首尾相连”回路,或平行四边形法则,利用三角形中的中位线,相似三角形对应边成比例等平面几何知识,结合实数与向量的积,逐步将未知向量转化为与已知向量有直接关系的斜率求解.5. 当M 是线段AB 的中点时,则OM =()OA OB +是中点公式的向量形式,应当做公式记忆. 6. 当已知向量的坐标或易建立坐标系时,常用向量的坐标运算解向量的线性运算问题. 【解题技巧】1.进行向量运算时,要尽可能地将它们转化到平行四边形或三角形中,充分利用相等向量、相反向量、三角形的中位线定理、相似多边形对应边成比例等性质,把未知向量用已知向量表示出来.2.向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在向量线性运算中同样适用.运用上述法则可简化运算.3. 用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用平面几何的一些性质定理.4. 解决向量的坐标运算问题,关键是掌握线性运算法则及坐标运算的特点.一般地,已知有向线段两端点的坐标,应先求出向量的坐标.解题时注意利用向量相等(横、纵坐标分别相等)建立方程(组)的思想. 【易错点睛】1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.3. 要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.例1 已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标. 【错解】 设A (-1,0),B (3,0),C (1,-5),D (x ,y ).[2分]因为四边形ABCD 为平行四边形,则AD =BC →,而AD =(x +1,y ),BC →=(-2,-5).由AD =BC →,得⎩⎪⎨⎪⎧x +1=-2,y =-5.∴⎩⎪⎨⎪⎧x =-3,y =-5.∴D (-3,-5),故第四个顶点坐标为(-3,-5).【错因分析】此题极易出现思维定势,认为平行四边形只有一种情形,在解题思路中出现漏解.实际上,题目条件中只给出平行四边形的三个顶点,并没有规定顺序,可能有三种情形.【预防措施】认真阅读试题,分析满足条件的各种情况,若满足条件的情况有多种,需要分类讨论,分类讨论时,要做到不重不漏.【正解】如图所示,设A (-1,0),B (3,0),C (1,-5),D (x ,y ).[2分]③若四边形ACBD 3为平行四边形,则AD 3→=CB →.而AD 3→=(x +1,y ),CB →=(2,5),∴⎩⎪⎨⎪⎧x +1=2,y =5,∴⎩⎪⎨⎪⎧x =1,y =5.∴D 3(1,5).综上所述,平行四边形第四个顶点的坐标为(-3,-5)或(5,-5)或(1,5).热点2 共线向量问题1.【2017山东,文11】已知向量a =(2,6),b =(1,)λ- ,若a ||b ,则λ= . 【答案】3-【解析】由a ||b 可得162 3.λλ-⨯=⇒=-2.【百强校】2017届广东珠海市高三9月摸底】已知向量(2,3),(1,2)a b ==-r r ,若ma nb +r r 与3a b -r r共线,则_______.,所以a r 与b r 不共线,那么当ma nb +r r 与3a b -r r 共线时,【方法规律】1. 向量共线的充要条件中,要注意当两个向量共线时,通常只有非零向量才可以表示与之共线的其它向量,要注意待定系数法和方程思想的应用.2. 对三点共线问题,可以用向量共线来解决,但要注意向量共线与三点共线的区别与联系,当两个向量共线且有公共点时,才能得出三点共线.3. 若A 、B 、C 三点共线且OA OB OC λμ=+,则λμ+=1. 【解题技巧】1.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.2.如果已知两向量共线,求某些参数的取值时,则利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便. 【易错点睛】若a =(11,x y ),b =(2x ,2y ),则a ∥b 的充要条件不能表示成,因为2x ,2y 有可能等于0,所以应表示为12210x y x y -=.例 已知(2,)a k =,(1,(1))b k k k =-+,且a b ,求实数x 的值.【错解】因为(2,)a k =,(1,(1))b k k k =-+,且a b ,所以,解得k =-3.【错因分析】已知a =(11,x y ),b =(2x ,2y )当做a ∥b 的充要条件,因为2x ,2y 有可能等于0.【预防措施】正确记忆和运用a ∥b 的充要条件,已知a =(11,x y ),b =(2x ,2y ),则a ∥b 的充要条件是12210x y x y -==0.【正解】因为(2,)a k =,(1,(1))b k k k =-+,且a b ,∴2(1)(1)0k K k k +--=,解得k =-3或k =0.【热点预测】1.若向量AB (2,4)=(),AC (1,3)=(),则C B =( ) A .(1,1) B .(1,1)-- C .(3,7) D .(3,7)-- 【答案】B【解析】由题意,向量(1,3)(2,4)(1,1)BC AC AB =-=-=--,故选B .2.1,3,0OA OB OA OB ===,点C 在线段AB 上,且30AOC ∠=︒,设(),OC mOA nOB m n R =+∈,则m n -等于( )A 1111【答案】B2故1OC OA AC OA AB =+=+ ()131OA OB OA OA OB =+-=+,m n -3.【百强校】2017届湖南益阳市高三9月调研】设22(2,cos )a λλα=+-,(,m b m =+其中λ、m 、α为实数,若2a b =,则)A .(,1]-∞ B.[-6,1] C .[-1,6] D .[4,8] 【答案】B4. 已知、,、、是共起点的向量,、不共线,,则、、的终点共线的充分必要条件是( ) A . B .C .D .【答案】A【解析】设,,a OA b OB c OC ===,即时,,,A B C 在同一直线上.由直线的向量式参数方程知,、、的终点共线的充分必要条件是,选A .5.已知向量,AD 和AB 在正方形网格中的位置如图所示,若AC AB AD λμ=+,则( )A.2B.C.3D.【答案】A【解析】以A 为坐标原点,AD 为x 轴,建立坐标系,则()()()1,2,1,0,2,2B D C -,由,得()()()2,21,21,0λμ-=+,即2λμ+=6.已知a (),2a =-,b ()1,1a =-,则 “a =2”是“a ∥b ”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件 D .既不充分也不必要条件 【答案】B【解析】由已知a ∥b (1)1(2)012a a a a ⇔--⨯-=⇔=-=或,故知“a =2”是“a ∥b ”的充分而不必要条件,故选B7.【2017宁夏中卫二模】已知向量(),2a x =, ()2,1b =, ()3,c x =,若//a b ,则向量a 在向量c 方向上的投影为__________.【答案】4 π 【解析】因为b a //,所以2sin 21cos 0θθ⨯-=,即2sin 2cos θθ=,所以22sin cos cosθθθ=.,所以cos 0θ≠,所以2sin cos θθ=,9.已知ABC ∆是边长为4的正三角形,D 、P 是ABC ∆内部两点,且满足11(),AD AB AC AP AD BC =+=+,则APD ∆的面积为 . 【解析】取BC 的中点E ,连接AE ,根据△ABC 是边长为4的正三角形1AP AD BC AD AF =+=+,10.已知向量,,且满足()//()a b a b λ+-,则实数_______.【答案】1- 【解析】由,,得,,因为()//()a b a b λ+-,所以(2)1(32)1λλ+⋅=+⋅,解得1λ=-.11.在中,点D 在线段BC 的延长线上,且CD BC 2=,点O 在线段CD 上(与点C,D 不重合)若AC x AB x AO )1(-+=则x 的取值范围是____________. 1212.在ABC ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若0cAC aPA bPB ++=,则ABC ∆的形状为 .【答案】等边三角形【解析】∵0cAC aPA bPB ++=,∴()02b cAC a PB BA CB +++=, 0a b cAC CB aBA CB +++=,∴0a b cAC CB aBA +++=, 13. 【百强校】2017届北京市高三入学定位考试】已知向量(2,1)a =-,(1,)b m =-,,若,则_____. 【答案】 【解析】由(2,1)a =-,(1,)b m =-,(1,2)c =-,得()m b a +-=+1,1,又由()//a b c +,得()m +-⨯-=⨯1121,解得1-=m ,故答案为1-.14.设a 是已知的平面向量,向量a ,b ,c 在同一平面内且两两不共线,有如下四个命题: ①给定向量b ,总存在向量c ,使=+a b c ; ②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ; ③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+a b c ;,存在单位向量b 、c 和正实数λ,μ,使λμ=+a b c ,则633≥+μλ 其中真命题是____________. 【答案】①②④。
课时跟踪检测 (二十五) 平面向量的基本定理及坐标表示一抓基础,多练小题做到眼疾手快1.在平行四边形ABCD 中,AC 为对角线,若AB ―→=(2,4),AC ―→=(1,3),则BD ―→=( ) A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析:选 B 由题意得BD ―→=AD ―→-AB ―→=BC ―→-AB ―→=(AC ―→-AB ―→)-AB ―→=AC ―→-2AB ―→=(1,3)-2(2,4)=(-3,-5).2.已知A (-1,-1),B (m ,m +2),C (2,5)三点共线,则m 的值为( ) A .1 B .2 C .3D .4解析:选A AB ―→=(m ,m +2)-(-1,-1)=(m +1,m +3), AC ―→=(2,5)-(-1,-1)=(3,6), ∵A ,B ,C 三点共线,∴AB ―→∥AC ―→, ∴3(m +3)-6(m +1)=0, ∴m =1.故选A .3.如图,在△OAB 中,P 为线段AB 上的一点,OP ―→=x OA ―→+y OB ―→,且BP ―→=2PA ―→,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP ―→=OB ―→+BP ―→,又BP ―→=2PA ―→,所以OP ―→=OB ―→+23BA ―→=OB―→+23(OA ―→-OB ―→)=23OA ―→+13OB ―→,所以x =23,y =13. 4.已知向量a =(1-sin θ,1),b =⎝ ⎛⎭⎪⎫12,1+sin θ,若a ∥b ,则锐角θ=________.解析:因为a ∥b ,所以(1-sin θ)×(1+sin θ)-1×12=0,得cos 2θ=12,所以cos θ=±22,又∵θ为锐角,∴θ=π4. 答案:π45.在△ABC 中,点P 在BC 上,且BP ―→=2PC ―→,点Q 是AC 的中点,若 PA ―→=(4,3),PQ ―→=(1,5),则BC ―→=________.解析:AQ ―→―→=PQ ―→-PA ―→=(-3,2), ∴AC ―→=2AQ ―→=(-6,4). PC ―→=PA ―→+AC ―→=(-2,7), ∴BC ―→=3PC ―→=(-6,21). 答案:(-6,21)二保高考,全练题型做到高考达标1.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)D .(-7,0)解析:选A 由题意可得3a -2b +c =(23+x,12+y )=(0,0),所以⎩⎪⎨⎪⎧23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12).2.已知向量a ,b 不共线,c =ka +b (k ∈R),d =a -b ,如果c ∥d ,那么( ) A .k =1且c 与d 同向 B .k =1且c 与d 反向 C .k =-1且c 与d 同向D .k =-1且c 与d 反向解析:选D 由题意可得c 与d 共线,则存在实数λ,使得c =λd ,即⎩⎪⎨⎪⎧k =λ,1=-λ,解得k =-1.c =-a +b =-(a -b )=-d ,故c 与d 反向.3.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x,3),若(2a +b )∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D ∵a -12b =(3,1),∴a -(3,1)=12b ,则b =(-4,2).∴2a +b =(-2,6).又(2a +b )∥c ,∴-6=6x ,x =-1.故选D .4.已知点A (2,3),B (4,5),C (7,10),若AP ―→=AB ―→+λAC ―→(λ∈R),且点P 在直线x -2y =0上,则λ的值为( )A .23B .-23C .32D .-32解析:选B 设P (x ,y ),则由AP ―→=AB ―→+λAC ―→,得(x -2,y -3)=(2,2)+λ(5,7)=(2+5λ,2+7λ),∴x =5λ+4,y =7λ+5.又点P 在直线x -2y =0上,故5λ+4-2(7λ+5)=0,解得λ=-23.故选B .5.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC ―→=a ,BD ―→=b ,则AF ―→=( )A .14a +12bB .12a +14b C .23a +13b D .13a +23b 解析:选C 如图,∵AC ―→=a ,BD ―→=b ,∴AD ―→=AO ―→+OD ―→=12AC ―→+12BD ―→=12a +12b .∵E 是OD 的中点, ∴|DE ||EB |=13, ∴|DF |=13|AB |.∴DF ―→=13AB ―→=13(OB ―→-OA ―→)=13×⎣⎢⎡⎦⎥⎤-12BD ―→-⎝ ⎛⎭⎪⎫-12AC ―→ =16AC ―→-16BD ―→=16a -16b ,∴AF ―→=AD ―→+DF ―→=12a +12b +16a -16b =23a +13b ,故选C .6.已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量ka +b 共线,则实数k =________.解析:ka +b =k (1,3)+(-2,1)=(k -2,3k +1),因为向量c 与向量ka +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1.答案:-17.已知向量OA ―→=(1,-3),OB ―→=(2,-1),OC ―→=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB ―→,AC ―→不共线. ∵AB ―→=OB ―→-OA ―→=(2,-1)-(1,-3)=(1,2), AC ―→=OC ―→-OA ―→=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1. 答案:k ≠18.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R),则λμ=________.解析:以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO ―→=(-1,1),b =OB ―→=(6,2),c =BC ―→=(-1,-3). ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2), 即-λ+6μ=-1,λ+2μ=-3, 解得λ=-2,μ=-12,∴λμ=4.答案:49.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =mb +nc 的实数m ,n ; (2)若(a +kc )∥(2b -a ),求实数k .解:(1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,解得⎩⎪⎨⎪⎧m =59,n =89.(2)a +kc =(3+4k,2+k ),2b -a =(-5,2),由题意得2×(3+4k )-(-5)×(2+k )=0,解得k =-1613.10.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA ―→=a ,BC ―→=b ,试用a ,b 为基底表示向量EF ―→,DF ―→,CD ―→.解:EF ―→=EA ―→+AB ―→+BF ―→=-16b -a +12b =13b -a ,DF ―→=DE ―→+EF ―→=-16b +⎝ ⎛⎭⎪⎫13b -a =16b -a ,CD ―→=CF ―→+FD ―→=-12b -⎝ ⎛⎭⎪⎫16b -a =a -23b . 三上台阶,自主选做志在冲刺名校1.如图,G 是△OAB 的重心,P ,Q 分别是边OA ,OB 上的动点,且P ,G ,Q 三点共线.设OP ―→=x OA ―→,OQ ―→=y OB ―→,则1x +1y=________.解析:∵点P ,G ,Q 在一条直线上,∴PG ―→=λPQ ―→. ∴OG ―→=OP ―→+PG ―→=OP ―→+λPQ ―→=OP ―→+λ(OQ ―→-OP ―→) =(1-λ)OP ―→+λOQ ―→=(1-λ)x OA ―→+λy OB ―→,① 又∵G 是△OAB 的重心, ∴OG ―→=23OM ―→=23×12(OA ―→+OB ―→)=13OA ―→+13OB ―→.② 而OA ―→,OB ―→不共线,∴由①②,得⎩⎪⎨⎪⎧-λx =13,λy =13.解得⎩⎪⎨⎪⎧1x =3-3λ,1y =3λ.∴1x +1y=3.答案:32.已知三点A (a,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值; (2)若A ,B ,C 三点共线,试求a +b 的最小值. 解:(1)因为四边形OACB 是平行四边形, 所以OA ―→=BC ―→,即(a,0)=(2,2-b ),⎩⎪⎨⎪⎧a =2,2-b =0,解得⎩⎪⎨⎪⎧a =2,b =2.故a =2,b =2.(2)因为AB ―→=(-a ,b ),BC ―→=(2,2-b ), 由A ,B ,C 三点共线,得AB ―→∥BC ―→, 所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0, 所以2(a +b )=ab ≤⎝⎛⎭⎪⎫a +b 22,即(a +b )2-8(a +b )≥0, 解得a +b ≥8或a +b ≤0. 因为a >0,b >0,所以a +b ≥8,即a +b 的最小值是8. 当且仅当a =b =4时,“=”成立.。
专题02 平面向量的基本定理、坐标运算及数量积一、考情分析二、题型分析(一) 平面向量的基本定理与坐标表示知识点1 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.例1.(1).(2019·四川雅安中学高一月考)以下四组向量能作为基底的是( )A .B .C .D .12(1,2),(2,4)e e ==12(3,1),(1,3)e e =-=-12(2,1),(2,1)e e ==--121(,0),(3,0)2e e ==【答案】B【解析】对于,与共线,不能作为基底;对于,与不共线,能作为基底;对于,与共线,不能作为基底;对于,与共线,不能作为基底,故选B. (2).(2019·江西高一期末)设是平面内的一组基底,则下面四组向量中,能作为基底的是( )A .与B .与C .与D .与 【答案】C【解析】由是平面内的一组基底,所以和不共线,对应选项A :,所以这2个向量共线,不能作为基底;对应选项B :,所以这2个向量共线,不能作为基底; 对应选项D :,所以这2个向量共线,不能作为基底; 对应选项C :与不共线,能作为基底.故选:C .A 114220,e ⨯-⨯=∴2eB ()()1331180,e ⨯--⨯-=≠∴2eC ()()121120,e ⨯--⨯-=∴2eD 110030,2e ⨯-⨯=∴2e 12,e e 21e e -12e e -1223e e +1246e e --12e e +12e e -121128e e -+1214e e -12,e e 1e 2e 21e e -()12e e =--1223e e +()121462e e =---121128e e -+121124e e ⎛⎫=-- ⎪⎝⎭12e e +12e e -(3).(2020·内蒙古高三月考)在正方形中,点为内切圆的圆心,若,则的值为( )A .B .C .D .【答案】D【解析】连并延长到与相交于点,设正方形的边长为1,则,设内切圆的半径为,则,可得. 设内切圆在边上的切点为,则,有,,故. 故选:DABCD O ABC ∆AO xAB yAD =+xy 1434-1412OB AC HABCD 122BH BD ==ABC ∆r)1BH OH OB r r =+=+==r =ABC ∆AB E ()1AO AE EO r AB r AD=+=-+22222112222AB AD AB AD ⎛⎛⎫-=-+=+- ⎪⎪⎝⎭⎝⎭x =1y =-11222xy ⎛⎫=-= ⎪ ⎪⎝⎭【变式训练1】.(2020·北京高三开学考试)在平行四边形ABCD 中,,,,则 .(用表示) 【答案】 【解析】如图:=-=+2=+=-+(-)=-+ =.故本题答案为. 【变式训练2】.(2020·辽宁高考模拟)在中,,,若,则( )A .B .C .D .【答案】D【解析】因为,所以点是的中点,又因为,所以点是的中点,所以有:,因此1AB e =2AC e =14NC AC =12BM MC =MN =12,e e 1225312e e -+MN CN CM CN BM CN 23BC 14AC 23AC AB 214e 212()3e e -1225312e e -+1225312e e -+ABC ∆2AB AC AD +=0AE DE +=EB xAB y AC =+3y x =3x y =3y x =-3x y =-2AB AC AD +=D BC 0AE DE +=E AD 11131()22244BE BA AE AB AD AB AB AC AB AC =+=-+=-+⨯+=-+,故本题选D. 31,344x y x y =-=⇒=-(二) 平面向量的坐标运算知识点2 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(2)若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). (3)若a =(x ,y ),λ∈R ,则λa =(λx ,λy ).(4)a ·b =x 1x 2+y 1y 2.(5)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.例2.(1).(2020·福建高三月考)已知,若,则的坐标为( )A .B .C .D . 【答案】D【解析】设,因为,所以.所以,所以, 解得: ,.所以.故选D. (2).(2019·湖南高一期末)已知,,则( ) A .2 BC .4 D.【答案】C 【解析】由题得=(0,4)所以.故选:C(5,2),(4,3)a b =-=--230a b c -+=c 8(1,)3138(,)33-134(,)33134(,)33--(,)c x y =230a b c -+=(5,2)2(4,3)3(,)(0,0)x y ----+=(583,263)(0,0)x y ++-++=1330,430x y +=+=133x 43y =-134(,)33c =--()0,1A -()0,3B ||AB =AB ||04AB =+=【变式训练1】.(2020·湖北高一期中)已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】(1)(2),∵与共线,∴∴【变式训练2】.(2018·上海市嘉定区封浜高级中学高二期中)已知,为坐标原点.(1) 求向量的坐标及;(2) 若,求与同向的单位向量的坐标. 【答案】(1) ,;(2).【解析】 (1),.(2),, 与同向的单位向量. ()1,2a =()3,2b =-2a b -k ka b +2a b -()7,2-12k =-()()()21,223,27,2a b -=--=-()()()1,23,23,22ka b k k k +=+-=-+()()()21,223,27,2a b -=--=-ka b +2a b -()()72223k k +=--12k =-(3,4),(5,10)A B ---O AB AB OC OA OB =+OC ()8,6AB =-10AB =21010OC n OC ⎛==- ⎝⎭()8,6AB =-2810AB ∴==()()()3,45,102,14OC OA OB =+=--+-=-22OC ==∴OC 21010OC n OC ⎛==- ⎝⎭(三) 平面向量的数量积知识点3.平面向量数量积1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA→=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ.规定:0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的模|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的性质设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则(1)e·a =a·e =|a|cos θ.(2)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|.特别地,a·a =|a|2或|a|=a ·a .(3)cos θ=a·b |a||b|.(4)|a·b|≤|a||b|.3.平面向量数量积的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ,b 的夹角为θ,则(1)a ·b =x 1x 2+y 1y 2.(2)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.(3)cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.(4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.例3.(1)(2020·浙江高一期末)已知向量,,则__________,与方向相反的单位向量__________.【解析】依题意,故与方向相反的单位向量为. (2).(2019·全国高考真题)已知=(2,3),=(3,t ),=1,则= A .-3B .-2C .2D .3 【答案】C 【解析】 由,,得,则,.故选C【变式训练1】.(2019·安徽高三月考(理))已知,,均为单位向量,与的夹角为,则的最大值为( ) ()3,4a =()1,2b =-2a b +=a c =34,55⎛⎫-- ⎪⎝⎭()21,8a b +=2218a b +=+=a c ()()()3,43,434,5553,4a a -----⎛⎫===-- ⎪---⎝⎭AB AC ||BC AB BC ⋅(1,3)BC AC AB t =-=-211BC ==3t =(1,0)BC =(2,3)(1,0)21302AB BC ==⨯+⨯=a b c a b 60()(2)c a c b +⋅-A .BC .2D . 3【答案】B 【解析】设与的夹角为,因为,,所以,所以,所以.故选:B .【变式训练2】.(2020·四川高一月考)已知,若,则实数=__________;=__________. 【答案】0 0【解析】∵,∴,∵,∴,解得. 故答案为.【变式训练3】.(2019·江苏高考真题)如图,在中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点.若,则的值是_____. 32c 2a b -θ222|2|443a b a a b b -=-⋅+=|2|3a b -=2()(2)(2)21|||2|cos 1c a c b cc a b a b c a b θ+⋅-=+⋅--⋅=+⋅--()(2)3cos c a c b θ+⋅-=max =cos 1θ=()()1,3,1,2a b ==-0a b λμ+=λμ()()1,3,1,2a b ==-()()()1,31,2,32a b λμλμλμλμ+=+-=+-0a b λμ+=0320λμλμ+=⎧⎨-=⎩0λμ=⎧⎨=⎩0,0λμ==ABC O 6AB AC AO EC ⋅=⋅ABAC. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD ., 得即故. 【变式训练4】.(2020·浙江高一期中)已知为单位向量,. (1)求;(2)求与的夹角的余弦值;()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭2213,22AB AC =3,AB AC =AB AC=,a b 12a b ⋅=2a b +2a b +b θ【答案】(1;(2).【解析】由题得; 由题得与的夹角的余弦值为故答案为:(1;(2.7222=4++4=5+4a b a b a b +⋅⋅2a b +b θ(2)2cos |2|||7a b b a b a b b θ+⋅⋅====+(四) 平面向量的应用(平行与垂直)知识点1 平面向量的平行与垂直若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(1)如果a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件为x 1y 2-x 2y 1=0.a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0.判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定.(2)如果a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.例4.(1)(2020·江西高一期末)已知向量,,若,则( )A .B .C .D .【答案】D 【解析】向量,,且,,解得. 故选:D.(2).(多选题)已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( )A .a 与b 的夹角为钝角()1,a m =()2,5b =//a b m =152-25-52()1,a m =()2,5b =//a b 25m ∴=52m =B .向量a 在bC .2m +n =4D .mn 的最大值为2 【答案】CD对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为22a b b⋅=,错误; 对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12= (2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD.【变式训练1】(2020·浙江高一期中)已知向量满足.若,则 _______; ______.【答案】【解析】因为,所以(1)×m 4=0,所以m= 4.所以故答案为:(1). (2).【变式训练2】.(2020广东高一期末)已知, ;(1) 若,求的值;,a b (1,2),(2,)a b m =-=//a b m =||b =4-//a b ---2||=2+b =(4-)cos ,1(),sin ,1(θθ==b aR ∈θ)0,2(=+b a θθθcos sin 2sin 2+(2)若,,求的值.【答案】(1)(2) 【解析】(1),∴, ……1分∴ ; ……3分∴. ……7分(2), ……8分∴,两边平方得, ……10分 ,且, ∴∴, ……12分 ∴. ……分)51,0(=-b a(,2)θππ∈θθcos sin +12-75-)cos ,1(),sin ,1(θθ==b a)0,2()cos sin ,2(=+=+θθb asin cos 0,tan 1θθθ+=∴=-1tan tan 2tan cos sin cos sin 2sin cos sin 2sin 222222++=++=+θθθθθθθθθθθ21-=)51,0()cos sin ,0(=-=-θθb a51cos sin =-θθ2512cos sin =θθ(,2)θππ∈02512cos sin >=θθ⎪⎭⎫⎝⎛∈ππθ23,0cos sin <+θθ57cos sin 21cos sin -=+-=+θθθθ14。
第2讲 平面向量基本定理及坐标运算考试要求 1.平面向量的基本定理及其意义,A 级要求;2.平面向量的正交分解及其坐标表示,B 级要求;3.用坐标表示平面向量的线性运算及平面向量共线的条件,B 级要求.知 识 梳 理1.平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 3.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)平面内的任何两个向量都可以作为一组基底.( ) (2)同一向量在不同基底下的表示是相同的.( )(3)设a ,b 是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a∥b 的充要条件可以表示成x 1x 2=y 1y 2.( ) (5)在△ABC 中,设AB →=a ,BC →=b ,则向量a 与b 的夹角为∠ABC .( ) 解析 (1)共线向量不可以作为基底. (2)同一向量在不同基底下的表示不相同. (4)若b =(0,0),则x 1x 2=y 1y 2无意义. (5)向量a 与b 的夹角为∠ABC 的补角.答案 (1)× (2)× (3)√ (4)× (5)×2.(2017·苏州期末)已知向量a =(2,4),b =(-1,1),则2a +b =________. 解析 2a +b =2(2,4)+(-1,1)=(3,9). 答案 (3,9)3.(2015·全国Ⅰ卷改编)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=________.解析 根据题意得AB →=(3,1),∴BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 答案 (-7,-4)4.(2016·全国Ⅱ卷)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析 因为a ∥b ,所以由(-2)×m -4×3=0,解得m =-6. 答案 -65.(必修4P82习题6改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.答案 (1,5)考点一 平面向量基本定理及其应用【例1】 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________. (2)(2017·南通调研)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB→=85AN →-45AM →,所以λ+μ=45. (2)设BP →=kBN →,k ∈R .因为AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →) =AB →+k ⎝ ⎛⎭⎪⎫14AC →-AB →=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.答案 (1)45 (2)311规律方法 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【训练1】 (1)(2017·南京、盐城模拟)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ=________.(2)如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=________.解析 (1)由题意可得BE →=12BA →+12BO →=12BA →+14BD →,由平面向量基本定理可得λ=12,μ=14,所以λ+μ=34.(2)AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b .答案 (1)34 (2)14a +34b考点二 平面向量的坐标运算【例2】 (1)已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =________. (2)(2017·北京西城模拟)向量a ,b ,c 在正方形网格中,如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.解析 (1)3a -2b +c =(23+x,12+y )=0,故x =-23,y =-12.(2)以向量a ,b 的交点为坐标原点,建立如图直角坐标系(设每个小正方形边长为1),A (1,-1),B (6,2),C (5,-1),所以a =(-1,1),b =(6,2),c =(-1,-3),∵c =λa +μb ,∴⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ,解之得λ=-2且μ=-12,因此,λμ=-2-12=4.答案 (1)(-23,-12) (2)4规律方法 (1)巧借方程思想求坐标:若已知向量两端点的坐标,则应先求出向量的坐标,解题过程中注意方程思想的应用.(2)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算的代数化,将数与形结合起来,使几何问题转化为数量运算问题.【训练2】 (1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为________. (2)(2015·江苏卷)已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)由向量a =(2,1),b =(1,-2),得m a +n b =(2m +n ,m -2n )=(9,-8),则⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =-3.答案 (1)(5,14) (2)-3 考点三 平面向量共线的坐标表示【例3】 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________. (2)(必修4P82习题6)已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且AP =32BP ,则点P 的坐标为________.解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m -2×(-2)=0,即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)设P (x ,y ),由点P 在线段AB 的延长线上, 则AP →=32BP →,得(x -2,y -3)=32(x -4,y +3),即⎩⎪⎨⎪⎧x -2=32x -,y -3=32y +解得⎩⎪⎨⎪⎧x =8,y =-15.所以点P 的坐标为(8,-15). 答案 (1)(-4,-8) (2)(8,-15)规律方法 (1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②若a ∥b (b ≠0),则a =λb .(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【训练3】 (1)(2017·苏北四市联考)已知点A (1,3),B (4,-1),则与AB →同方向的单位向量是________.(2)若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 解析 (1)AB →=OB →-OA →=(4,-1)-(1,3)=(3,-4), ∴与AB →同方向的单位向量为AB →|AB →|=⎝ ⎛⎭⎪⎫35,-45.(2)AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →, ∴4(a -1)-3×(-3)=0,即4a =-5,∴a =-54.答案 (1)⎝ ⎛⎭⎪⎫35,-45 (2)-54[思想方法]1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量的坐标表示的基础.(2)平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组. (3)用平面向量基本定理可将平面中任一向量分解成形如a =λ1e 1+λ2e 2的形式. 2.向量共线的作用向量共线常常用来解决交点坐标问题和三点共线问题,向量共线的充要条件用坐标可表示为x 1y 2-x 2y 1=0.[易错防范]1.要注意点的坐标和向量的坐标之间的关系,向量的终点坐标减去起点坐标就是向量坐标,当向量的起点是原点时,其终点坐标就是向量坐标..2.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.基础巩固题组(建议用时:30分钟)1.(必修4P73习题1)下列各组向量中,可以作为基底的是________(填序号). ①e 1=(0,0),e 2=(1,-2); ②e 1=(-1,2),e 2=(5,7); ③e 1=(3,5),e 2=(6,10); ④e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎫12,-34.解析 两个不共线的非零向量构成一组基底. 答案 ②2.(2017·无锡期末)已知在▱ABCD 中,AD →=(2,8),AB →=(-3,4),则AC →=________. 解析 因为四边形ABCD 是平行四边形,所以AC →=AB →+AD →=(-1,12). 答案 (-1,12)3.如右图,向量e 1,e 2,a 的起点与终点均在正方形网格的格点上,则向量a 可用基底e 1,e 2表示为________.解析 以e 1的起点为坐标原点,e 1所在直线为x 轴建立平面直角坐标系,由题意可得e 1=(1,0),e 2=(-1,1),a =(-3,1),因为a =x e 1+y e 2=x (1,0)+y (-1,1),=(x -y ,y ),则⎩⎪⎨⎪⎧x -y =-3,y =1,解得⎩⎪⎨⎪⎧x =-2,y =1,故a =-2e 1+e 2.答案 -2e 1+e 24.(2017·广州综测)已知向量a =(x,1),b =(2,y ),若a +b =(1,-1),则x +y =________.解析 因为(x,1)+(2,y )=(1,-1),所以⎩⎪⎨⎪⎧x +2=1,y +1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-2,所以x +y=-3. 答案 -35.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值为________.解析 AB →=(a -2,-2),AC →=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12.答案 126.(2017·衡水中学月考)在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________.解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝ ⎛⎭⎪⎫-23=0.答案 07.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →=________.解析 AQ →=PQ →-PA →=(-3,2),∵Q 是AC 的中点, ∴AC →=2AQ →=(-6,4),PC →=PA →+AC →=(-2,7), ∵BP →=2PC →,∴BC →=3PC →=(-6,21). 答案 (-6,21)8.(2017·苏北四市期末)已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的________条件(从“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选填一个).解析 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,所以m =-6,则“m =-6”是“a ∥(a +b )”的充要条件. 答案 充要9.(2017·四川十校联考改编)与向量a =(12,5)平行的单位向量为________. 解析 设e 为所求的单位向量,则e =a |a |=⎝ ⎛⎭⎪⎫1213,513或e =-a |a |=⎝ ⎛⎭⎪⎫-1213,-513.答案 ⎝⎛⎭⎪⎫1213,513或⎝ ⎛⎭⎪⎫-1213,-51310.(2017·苏、锡、常、镇四市调研)已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则向量EM →=________(用AB →,AC →表示). 解析 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →.答案 16AC →+12AB →11.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________. 解析 因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,所以u =(1,2)+2(x,1)=(2x +1,4),v =2(1,2)-(x,1)=(2-x,3).又因为u ∥v ,所以3(2x +1)-4(2-x )=0,即10x =5,解得x =12.答案 1212.在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________(用e 1,e 2表示).解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.答案 -23e 1+512e 2能力提升题组 (建议用时:15分钟)13.(2017·南通调研)如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且B P →=2 P A →,则x =________,y =________.解析 由题意知O P →=O B →+B P →,又B P →=2P A →,所以O P →=O B →+23B A →=O B →+23(O A →-O B →)=23O A →+13O B →,所以x =23,y =13. 答案 23 1314.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC→=mOA →+nOB →(m ,n ∈R ),则m n的值为________.解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系, OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3nm=33, ∴m =3n ,即m n=3. 答案 315.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6).因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4). 答案 (-2,-4)16.(2016·四川卷改编)已知正三角形ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.解析 以A 为坐标原点,建立如图所示的平面直角坐标系,则A (0,0),C (23,0),B (3,3). 设P (x ,y ),∵|AP →|=1, ∴x 2+y 2=1,∵PM →=MC →, ∴M 为PC 的中点,∴M ⎝⎛⎭⎪⎫x +232,y 2, ∴|BM →|2=⎝ ⎛⎭⎪⎫x +232-32+⎝⎛⎭⎪⎫y 2-32=x 24+y 24-3y +9=14-3y +9=374-3y , 又∵-1≤y ≤1,∴当y =-1时,|BM →|2取得最大值,且最大值为494.答案494。
第4练 平面向量[明考情]向量是高考的必考考点,难度不大,一般以选择、填空题的形式考查,也会与三角函数、解析几何知识交汇命题. [知考向]1.平面向量的线性运算.2.平面向量的数量积.3.平面向量的综合应用.考点一 平面向量的线性运算要点重组 (1)平面向量的线性运算:加法、减法、数乘. (2)共线向量定理. (3)平面向量基本定理.方法技巧 (1)向量加法的平行四边形法则:共起点;三角形法则:首尾相连;向量减法的三角形法则:共起点连终点.(2)已知O 为平面上任意一点,则A ,B ,C 三点共线的充要条件是存在s ,t ,使得OC →=sOA →+tOB →,且s +t =1,s ,t ∈R .(3)证明三点共线问题,可转化为向量共线解决. 1.设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →, ∴AD →=-13AB →+43AC →.2.如图,在△ABC 中,N 是AC 边上一点,且AN →=12NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m 的值为( )A.19B.13 C.1 D.3 答案 B解析 ∵AN →=12NC →,∴AN →=13AC →,∴AP →=mAB →+29AC →=mAB →+23AN →.又B ,N ,P 三点共线, ∴m =13.3.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b )∥c ,则x 等于( )A.-2B.-4C.-3D.-1 答案 D解析 ∵a -12b =(3,1),∴a -(3,1)=12b ,则b =(-4,2),∴2a +b =(-2,6). 又(2a +b )∥c ,∴-6=6x ,解得x =-1.4.已知AB ,DC 为梯形ABCD 的两腰,若AD →=(-1,3),BC →=(1-x ,2x ),则x =______. 答案 3解析 由梯形的性质知,AD →∥BC →,且同向, 则-1·2x -3(1-x )=0,解得x =3.5.在△ABC 中,点M 是线段BC 延长线上一点,且满足|BM |=3|CM |,若AM →=xAB →+yAC →,则x -y =________. 答案 -2解析 因为AM →=AC →+CM →=AC →+12BC →,BC →=AC →-AB →,所以AM →=AC →+12(AC →-AB →)=32AC →-12AB →,所以x =-12,y =32,则x -y =-2.考点二 平面向量的数量积 要点重组 (1)a ·b =|a ||b |cos θ. (2)|a |2=a ·a ;cos θ=a ·b|a ||b |. 方法技巧 (1)向量数量积的求法:定义法,几何法(利用数量积的几何意义),坐标法. (2)向量运算的两种基本方法:基向量法,坐标法.6.已知三点A (-1,-1),B (3,1),C (1,4),则向量BC →在向量BA →方向上的投影为( ) A.55B.-55C.21313D.-21313答案 A解析 BC →=(-2,3),BA →=(-4,-2),向量BC →在向量BA →方向上的投影为BC →·BA →|BA →|=-2×(-4)+3×(-2)(-4)2+(-2)2=55,故选A. 7.(2017·全国Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A.a ⊥b B.|a |=|b | C.a ∥b D.|a |>|b |答案 A解析 方法一 ∵|a +b |=|a -b |, ∴|a +b |2=|a -b |2.∴a 2+b 2+2a·b =a 2+b 2-2a·b . ∴a·b =0.∴a ⊥b . 故选A.方法二 利用向量加法的平行四边形法则. 在▱ABCD 中,设AB →=a ,AD →=b , 由|a +b |=|a -b |知,|AC →|=|DB →|,从而四边形ABCD 为矩形,即AB ⊥AD ,故a ⊥b . 故选A.8.(2016·全国Ⅲ)已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC 等于( )A.30°B.45°C.60°D.120° 答案 A解析 |BA →|=1,|BC →|=1, cos ∠ABC =BA →·BC →|BA →||BC →|=32.又∵0°≤∠ABC ≤180°, ∴∠ABC =30°.9.已知在△ABC 中,|AB →+AC →|=|BC →|=2且|AC →|=1,则函数f (t )=|tAB →+(1-t )AC →|的最小值为( )A.12B.32C.233D. 3 答案 B解析 由|AB →+AC →|=|BC →|=|BA →+AC →|=2及|AC →|=1知,在△ABC 中,∠A =90°,|AB →|=3,则f 2(t )=t 2AB →2+2t (1-t )AB →·AC →+(1-t )2AC →2=4⎝⎛⎭⎫t -142+34, 故当t =14时,f (t )min =32.10.(2017·北京)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________. 答案 6解析 方法一 根据题意作出图象,如图所示,A (-2,0),P (x ,y ).由点P 向x 轴作垂线交x 轴于点Q ,则点Q 的坐标为(x ,0). AO →·AP →=|AO →||AP →|cos θ,|AO →|=2,|AP →|=(x +2)2+y 2, cos θ=AQAP =x +2(x +2)2+y 2,所以AO →·AP →=2(x +2)=2x +4.点P 在圆x 2+y 2=1上,所以x ∈[-1,1]. 所以AO →·AP →的最大值为2+4=6.方法二 如图所示,因为点P 在圆x 2+y 2=1上, 所以可设P (cos α,sin α)(0≤α<2π), 所以AO →=(2,0),AP →=(cos α+2,sin α), AO →·AP →=2cos α+4≤2+4=6,当且仅当cos α=1,即α=0,P (1,0)时“=”号成立. 考点三 平面向量的综合应用方法技巧 (1)以向量为载体的综合问题,要准确使用平面向量知识进行转化,最后归结为不含向量的问题.(2)平面向量常与三角函数、平面几何、解析几何等相结合,利用向量共线或数量积的知识解题.11.向量a =⎝⎛⎭⎫13,tan α,b =(cos α,1),且a ∥b ,则cos ⎝⎛⎭⎫π2+α等于( ) A.13 B.-13 C.-23 D.-223 答案 B 解析 ∵a ∥b , ∴tan α·cos α=13.∴sin α=13.又cos ⎝⎛⎭⎫π2+α=-sin α, ∴cos ⎝⎛⎭⎫π2+α=-13. 12.函数y =tan ⎝⎛⎭⎫π4x -π2的部分图象如图所示,则(OA →+OB →)·AB →等于( )A.6B.4C.-4D.-6 答案 A解析 由y =tan ⎝⎛⎭⎫π4x -π2=0,得π4x -π2=k π, 解得x =4k +2,由题图得A (2,0). 由y =tan ⎝⎛⎭⎫π4x -π2=1,得π4x -π2=k π+π4, 解得x =4k +3.由题图得B (3,1). 所以OA →+OB →=(5,1),AB →=(1,1). 所以(OA →+OB →)·AB →=5×1+1×1=6.13.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎝⎛⎭⎫12,4,n =⎝⎛⎭⎫π6,0,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎣⎡⎦⎤π6,π3上的最大值是( ) A.2 2 B.23 C.2 D.4答案 D解析 设点P (x 0,cos x 0),点Q (x ,y ),则OQ →=m ⊗OP →+n =⎝⎛⎭⎫12,4⊗(x 0,cos x 0)+⎝⎛⎭⎫π6,0 =⎝⎛⎭⎫12x 0,4cos x 0+⎝⎛⎭⎫π6,0=⎝⎛⎭⎫12x 0+π6,4cos x 0, 所以点Q 的坐标为⎝⎛⎭⎫12x 0+π6,4cos x 0. 由向量的坐标运算,可得⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,解得y =4cos ⎝⎛⎭⎫2x -π3,所以f (x )=4cos ⎝⎛⎭⎫2x -π3. 又因为x ∈⎣⎡⎦⎤π6,π3,所以⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤0,π3, 由余弦函数的单调性知,当2x -π3=0即x =π6时,函数f (x )取得最大值4.14.(2017·天津)在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________. 答案311解析 由题意知,|AB →|=3,|AC →|=2, AB →·AC →=3×2×cos 60°=3,AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,∴AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →) =λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22 =113λ-5=-4,解得λ=311. 15.(2016·上海)在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线y =1-x 2上一个动点,则BP →·BA →的取值范围是__________. 答案 [0,1+2]解析 由题意知y =1-x 2表示以原点为圆心,1为半径的上半圆. 设P (cos α,sin α),α∈[0,π],BA →=(1,1),BP →=(cos α,sin α+1), 所以BP →·BA →=cos α+sin α+1=2sin ⎝⎛⎭⎫α+π4+1∈[0,1+2], 所以BP →·BA →的取值范围是[0,1+2].1.对任意向量a ,b ,下列关系式中不恒成立的是( ) A.|a ·b |≤|a ||b | B.|a -b |≤||a |-|b || C.(a +b )2=|a +b |2 D.(a +b )(a -b )=a 2-b 2答案 B解析 选项B 中,当向量a ,b 反向及不共线时, 有|a -b |>|||a |-|b |,故B 中关系式不恒成立.2.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则实数k 应满足的条件是( ) A.k =-2 B.k =12C.k =1D.k =-1答案 C解析 若点A ,B ,C 不能构成三角形,则向量AB →,AC →共线, ∴AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2), AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1). ∴1×(k +1)-2k =0,解得k =1.3.已知向量a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,则实数λ的取值范围是__________.答案 ⎝⎛⎭⎫-53,0∪()0,+∞ 解析 a +λb =(1+λ,2+λ), 由a ·(a +λb )>0,可得λ>-53.又a 与a +λb 不共线,∴λ≠0. 故λ>-53且λ≠0.4.在△ABC 中,有如下命题,其中正确的是____________.(填序号) ①AB →-AC →=BC →; ②AB →+BC →+CA →=0;③若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形; ④若AB →·BC →>0,则△ABC 为锐角三角形. 答案 ②③解析 在△ABC 中,AB →-AC →=CB →,①错误;若AB →·BC →>0,则B 是钝角,△ABC 是钝角三角形,④错误.解题秘籍 (1)熟练掌握向量数量积的概念,并且要从几何意义理解数量积的性质. (2)注意向量夹角的定义和范围.在△ABC 中,AB →和BC →的夹角为π-B ;向量a ,b 的夹角为锐角要和a ·b >0区别开来(不要忽视向量共线情况,两向量夹角为钝角类似处理).1.已知向量a 和b 满足a =(2,5),|b |=1,且a +λb =0,则λ的值为( ) A.2 B.±2 C.±3 D.3 答案 C解析 由已知得a +λb =0, 得a =-λb ,故|λ|=|a||b |=3,故λ的值是±3,故选C.2.设向量a =(-2,1),a +b =(m ,-3),c =(3,1),若(a +b )⊥c ,则cos 〈a ,b 〉等于( ) A.-35 B.35 C.55 D.-255答案 D解析 由(a +b )⊥c ,可得m ×3+(-3)×1=0, 解得m =1,所以a +b =(1,-3), 故b =(a +b )-a =(3,-4).所以cos 〈a ,b 〉=a·b |a||b |=-2×3+1×(-4)(-2)2+12×32+(-4)2=-255,故选D.3.设点O 是面积为4的△ABC 内部一点,且有OA →+OB →+2OC →=0,则△AOC 的面积为( ) A.2 B.1 C.12 D.13答案 B解析 设AB 的中点为D ,∵OA →+OB →+2OC →=0,∴O 为中线CD 的中点, ∴△AOC ,△AOD ,△BOD 的面积相等, ∴△AOC 与△AOB 的面积之比为1∶2, 同理△BOC 与△AOB 的面积之比为1∶2, ∴△AOC 是△ABC 面积的14,∴△AOC 的面积为1.4.在平面直角坐标系内,OA →=(1,4),OB →=(-3,1),且OA →与OB →在直线l 的方向向量上的投影长度相等,则直线l 的斜率为( ) A.-14 B.25 C.25或-43 D.52答案 C解析 直线l 的一个方向向量可设为l =(1,k ), 由题意得⎪⎪⎪⎪⎪⎪OA →·l |l |=⎪⎪⎪⎪⎪⎪OB →·l |l |⇒|1+4k |=|-3+k |, 解得k =25或k =-43.5.已知AB →·BC →=0,|AB →|=1,|BC →|=2,AD →·DC →=0,则|BD →|的最大值为( ) A.25 5 B.2 C. 5 D.2 5 答案 C解析 由题意得AB →⊥BC →,AD →⊥DC →,故点B ,D 都在以AC 为直径的圆上.又|AC →|=5, ∴|BD →|的最大值为 5.6.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题: p 1:|a +b |>1⇔θ∈⎣⎡⎭⎫0,2π3; p 2:|a +b |>1⇔θ∈⎝⎛⎦⎤2π3,π; p 3:|a -b |>1⇔θ∈⎣⎡⎭⎫0,π3; p 4:|a -b |>1⇔θ∈⎝⎛⎦⎤π3,π, 其中的真命题是( )A.p 1,p 4B.p 1,p 3C.p 2,p 3D.p 2,p 4 答案 A解析 由||a +b >1,可得cos θ>-12,∴θ∈⎣⎡⎭⎫0,2π3. 由|a -b |>1,可得cos θ<12,∴θ∈⎝⎛⎦⎤π3,π. 故p 1,p 4正确.7.已知向量a =(sin θ,-2),b =(1,cos θ),且a ⊥b ,则2sin 2θ+cos 2θ的值为( ) A.1 B.2 C.95 D.3答案 C解析 由已知可得a ·b =sin θ-2cos θ=0,则tan θ=2,所以2sin 2θ+cos 2θ=4sin θcos θ+cos 2θ=4sin θcos θ+cos 2θsin 2θ+cos 2θ=4tan θ+1tan 2θ+1=8+14+1=95.8.已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC →|AC →|,则PB →·PC →的最大值等于( ) A.13 B.15 C.19 D.21 答案 A解析 以点A 为原点,AB →,AC →所在直线分别为x 轴,y 轴,建立如图所示的平面直角坐标系,则A (0,0),B ⎝⎛⎭⎫1t ,0,C (0,t ),AB →=⎝⎛⎭⎫1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →|AC →|=t ⎝⎛⎭⎫1t ,0+4t (0,t )=(1,4),∴P (1,4),PB →·PC →=⎝⎛⎭⎫1t -1,-4·(-1,t -4)=17-⎝⎛⎭⎫1t +4t ≤17-21t ·4t =13,当且仅当1t=4t ,即t =12时取“=”,∴PB →·PC →的最大值为13.故选A.9.在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →=________.(用e 1,e 2表示)答案 12(5e 1+3e 2)解析 在矩形ABCD 中,因为点O 是对角线的交点, 所以OC →=12AC →=12(AB →+AD →)=12(DC →+BC →)=12(5e 1+3e 2).10.已知平面向量α,β(α≠0,α≠β)满足|β|=1,且α与β-α的夹角为120°,则|α|的取值范围是________.答案 ⎝⎛⎦⎤0,233解析 如图,由正弦定理,得|β|sin 60°=|α|sin θ(0°<θ<120°), ∴|α|=233sin θ, ∴0<|α|≤233. 11.(2016·江苏)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.答案 78解析 设BD →=a ,DF →=b ,则由⎩⎪⎨⎪⎧(a +3b )·(-a +3b )=4,(a +b )·(-a +b )=-1,得b 2=58,a 2=138.∴BE →·CE →=(a +2b )·(-a +2b )=-a 2+4b 2=-138+4×58=78.12.如图,给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,点C 在以O 为圆心的劣弧AB 上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则xy 的取值范围是________.答案 ⎣⎡⎦⎤0,12 解析 若以OA →为x 轴正方向,OB →为y 轴正方向建立平面直角坐标系,则有A (1,0),B (0,1).因为OC →=xOA →+yOB →, 所以C (x ,y ),且x 2+y 2=1(x ,y ≥0). 又x 2+y 2=1≥2xy ,所以0≤xy ≤12.。
1.了解平面向量基本定理及其意义2.掌握平面向量的正交分解及其坐标表示3.会用坐标表示平面向量的加法、减法与数乘运算4.理解用坐标表示的平面向量共线的条件热点题型一 平面向量基本定理及其应用例1、如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点。
设BA →=a ,BC →=b ,试用a ,b 为基底表示向量EF →,DF →,CD →。
【提分秘籍】用平面向量基本定理解决问题的一般思路(1)合理地选取基底是解题必须具备的意识和能力。
用基底将条件和结论表示为向量的形式,再通过向量的运算来解决。
(2)要注意运用平面几何的一些性质、定理来解题。
【举一反三】如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为__________。
【答案】311【解析】因为AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →)=AB →+k 错误!=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311。
热点题型二 平面向量的坐标运算例2、已知A (-2,4),B (3,-1),C (-3,-4),设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b 。
(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标。
【提分秘籍】 向量坐标运算的方法技巧向量的坐标运算主要是利用加、减、数乘运算法则进行的。
若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及运算法则的正确使用。
【举一反三】已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2) 【解析】12a =⎝⎛⎭⎫12,12,32b =⎝⎛⎭⎫32,-32, 故12a -32b =(-1,2)。