最大公因数与最小公倍数的关系
- 格式:doc
- 大小:13.50 KB
- 文档页数:1
一、知识点整理:1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。
几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号(,)。
两个数的公因数也是有限的。
4、两个素数的积一定是合数。
举例:3×5=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。
举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
举例:15和5,[15,5]=15,(15,5)=5素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
举例:[3,7]=21,(3,7)=1一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。
[5,8]=40,(5,8)=1相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
[9,8]=72,(9,8)=1特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。
二、经典例题:例1,写出每组数的最大公因数7和9 5和25 10和4写出每组数的最小公倍数8和10 51和3 5和4例2:有一批地砖,每块长45厘米、宽30厘米,至少要用多少块这样的地砖才能铺成一个正方形?在一张长40厘米,宽32厘米的长方形红纸上裁出同样大小,面积最大的正方形,并且没有剩余。
一共可以裁出多少个这样的正方形?例3:五(1)班学生人数不超过50人,在分小组做游戏时,可以分为每组6人或者每组8人,两种分法都刚好分完。
公因数和公倍数知识点公因数和公倍数公因数是指两个或多个数公有的因数,而公倍数是指两个或多个数公有的倍数。
在数学中,我们常常需要求两个数的最大公因数和最小公倍数。
首先,我们需要了解一些基本知识。
两个自然数如果公因数只有1,那么它们就是互素数。
而分子、分母是互素数的分数则被称为简分数。
求最大公因数的方法有分解素因数法和短除法。
最小公倍数的求法有分解素因数和短除法,即用最大公因数乘以各自独有的因数。
对于两个数的最大公因数和最小公倍数,有三种基本情况:特殊互素、较大数是较小数的倍数、一般关系。
对于特殊情况,我们可以直接求解,而对于一般情况,我们可以使用列举法、单列举法、分解质因数法、短除法、除法算式法等方法来求解最大公因数。
对于最小公倍数的求解,我们可以使用列举法、单列举法、大数翻倍法、分解质因数法或短除法等方法。
最后,我们需要记住,当两个数是倍数关系时,最大公因数是较小的数,最小公倍数是较大的数;当两个数是互质关系时,最大公因数是1,最小公倍数是它们的乘积。
12的倍数为12、24、36、48.一种方法是单列举法,比如求18和12的最小公倍数,先找出18的倍数:18、36、54、72,再从小到大找这些倍数中哪个同时也是另一个数的倍数,最小公倍数为36.另一种方法是大数翻倍法,将较大的数翻倍,每次翻倍后检查结果是否也是另一个数的倍数,直到找到最小公倍数为止。
比如求18和12的最小公倍数,可以将18翻倍,得到36,而36又是12的倍数,因此36是18和12的最小公倍数。
还有一种方法是短除法,先用两个数同时除以一个质数(要能整除),再同时除以另一个质数,直到得到两个互质的商为止,最后将所有的除数和商相乘即可得到最小公倍数。
对于问题1,(1)既是30的因数又是45的因数的数共有4个,其中最大的是15;(2)既是30的倍数又是45的倍数的数最小是90.对于问题2,将168分解质因数得到2×2×2×3×7,其中一个因数必为7,因此这三个连续自然数只有6、7、8和7、8、9两种可能,而7、8、9这三个数任意两个数的公因数都是1,因此这三个连续自然数只能是6、7和8,它们的和为21.随堂练:1、既是30的倍数又是45的倍数还是75的倍数的数最小是450;2、三个连续自然数的最小公倍数是660,这三个连续自然数分别是220、221和222.最小公倍数和最大公因数在数学中有着广泛的应用。
因数与倍数的关系因数与倍数是初等数学中常见的概念,它们在数学运算中有着重要的作用。
本文将介绍因数与倍数的定义、性质以及它们之间的关系。
一、因数的定义与性质1. 定义:对于整数a和b,如果a能够整除b,即b可以被a整除,那么a称为b的因数;而b称为a的倍数。
2. 性质:a) 每个整数都有自身和1作为因数和倍数。
b) 如果a是b的因数,那么b是a的倍数;反之亦成立。
c) 如果a是b的因数,并且b是c的因数,那么a也是c的因数。
二、1. 关系一:如果a是b的因数,那么b一定是a的倍数。
示例:对于数对(a, b) = (3, 9),3是9的因数,所以9是3的倍数。
2. 关系二:如果a是b的倍数,那么b一定是a的因数。
示例:对于数对(a, b) = (6, 24),6是24的倍数,所以24是6的因数。
3. 关系三:如果a是b的因数,而b是c的因数,那么a一定是c的因数。
示例:对于数对(a, b, c) = (2, 6, 12),2是6的因数,6是12的因数,所以2也是12的因数。
三、最小公倍数与最大公因数最小公倍数(LCM)和最大公因数(GCD)是因数与倍数之间的重要概念。
1. 最小公倍数:对于整数a和b,它们的最小公倍数LCM(a, b)是能够同时整除a和b的最小整数。
示例:LCM(4, 6) = 12,4和6的最小公倍数是12,因为12能够同时被4和6整除。
2. 最大公因数:对于整数a和b,它们的最大公因数GCD(a, b)是能够同时整除a和b的最大整数。
示例:GCD(6, 9) = 3,6和9的最大公因数是3,因为3能够同时整除6和9。
最小公倍数和最大公因数之间有着重要的关系,即:a × b = LCM(a, b) × GCD(a, b)。
示例:对于数对(a, b) = (4, 6),LCM(4, 6) = 12,GCD(4, 6) = 2,那么4 × 6 = 12 × 2。
质数与合数的最大公因数与最小公倍数在数学中,质数是指大于1且只能被1和自身整除的数,而合数则是大于1且能够被其他数整除的数。
质数与合数之间存在着一种关系,即它们的最大公因数与最小公倍数。
本文将探讨质数与合数的最大公因数与最小公倍数之间的关系,并举例说明。
一、质数与合数的最大公因数最大公因数(Greatest Common Divisor,简称GCD)是指在给定一组数中,能够同时整除所有这些数的最大正整数。
在质数与合数中,最大公因数的大小有一定的特性。
1.1 质数之间的最大公因数对于两个质数而言,它们的最大公因数只能是1。
因为质数只能被1和自身整除,所以除非两个质数相等,否则它们的最大公因数无法大于1。
例如,取两个质数5和7,它们的最大公因数是1。
因为5除以1和5本身都没有余数,而7除以1和7本身也没有余数。
1.2 合数之间的最大公因数对于两个合数而言,它们的最大公因数可能存在多个。
最大公因数的求解方法可以采用质数分解的方法,即将两个合数分别进行质因数分解,然后找出它们的公共质因数,再将这些质因数相乘即可得到最大公因数。
例如,取两个合数12和24,它们分别可以分解为2x2x3和2x2x2x3。
从中可以看出,它们的公共质因数是2和3,将这两个质因数相乘得到最大公因数为6。
二、质数与合数的最小公倍数最小公倍数(Least Common Multiple,简称LCM)是指在给定一组数中,能够同时被这些数整除的最小正整数。
质数与合数之间的最小公倍数也有一定的特性。
2.1 质数之间的最小公倍数对于两个质数而言,它们的最小公倍数可以直接通过将这两个质数相乘得到。
因为质数只能被1和自身整除,所以它们的最小公倍数只能是这两个质数的乘积。
例如,取两个质数3和5,它们的最小公倍数为3x5=15。
2.2 合数之间的最小公倍数对于两个合数而言,它们的最小公倍数也可以通过质因数分解的方法进行求解。
首先将两个合数分别进行质因数分解,然后取它们的所有质因数的最高次幂的乘积即可得到最小公倍数。
一、知识点整理:1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。
几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号(,)。
两个数的公因数也是有限的。
4、两个素数的积一定是合数。
举例:3×5=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。
举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
举例:15和5,[15,5]=15,(15,5)=5素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
举例:[3,7]=21,(3,7)=1一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。
[5,8]=40,(5,8)=1相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
[9,8]=72,(9,8)=1特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。
二、经典例题:例1,写出每组数的最大公因数7和9 5和25 10和4写出每组数的最小公倍数8和10 51和3 5和4例2:有一批地砖,每块长45厘米、宽30厘米,至少要用多少块这样的地砖才能铺成一个正方形?在一长40厘米,宽32厘米的长方形红纸上裁出同样大小,面积最大的正方形,并且没有剩余。
一共可以裁出多少个这样的正方形?例3:五(1)班学生人数不超过50人,在分小组做游戏时,可以分为每组6人或者每组8人,两种分法都刚好分完。
公因数、最大公因数、公倍数和最小公倍数公因数、最大公因数、公倍数和最小公倍数在数学中,我们常常需要求出多个数的公因数、最大公因数、公倍数和最小公倍数。
掌握这些概念和求法是非常重要的。
最大公因数是几个数公有的因数中最大的那个,可以用列举法、观察法和短除法等方法求得。
例如,求8和6的最大公因数,我们可以先列出它们的因数,然后找出它们的公因数,最后找出它们的最大公因数,即2.观察法可以应用于特殊情况,例如两个数具有倍数关系时,它们的最大公因数就是其中较小的数;两个数是互质数时,它们的最大公因数就是1.如果两个数不是倍数和互质关系,我们可以用小数缩小法,即把较小的数缩小,每次缩小后看得到的商是不是另一个数的因数,直到所得的商是另一个数的因数为止。
短除法是一般情况下求最大公因数的常用方法。
我们可以用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止。
然后把最后所有的除数连乘,就得到了二个数最大公因数。
除了最大公因数,我们还需要掌握最小公倍数的求法。
最小公倍数是几个数公有的倍数中最小的那个,可以用列举法、分解质因数法和公式法等方法求得。
例如,求6和8的最小公倍数,我们可以先列出它们的倍数,然后找出它们的公倍数,最后找出它们的最小公倍数,即24.最后,我们需要学会如何解有关最大公因数和最小公倍数的应用题,例如求某些数的最大公因数或最小公倍数,或者求某些数的倍数关系等。
通过练,我们可以更好地掌握这些知识点,并在实际问题中灵活运用。
12和24的最大公因数是4,可以表示为(12,24)=4.互质数是指公因数只有1的两个数,例如1和任何自然数都是互质数,相邻两个自然数如2和3、8和9也是互质数。
两个质数一定是互质数,而两个合数可能是互质数,例如8和9、25和49.2和所有奇数都是互质数,质数与比它小的合数也是互质数。
需要注意的是,质数是对一个数来说,而互质数是对两个数的关系来说的。
在练中,需要判断每组数是不是互质关系或倍数关系,并求出它们的最大公因数。
第七讲因数与倍数(公因数和公倍数(二)【知识概述】这一讲我们主要介绍最小公倍数与最大公约数之间的关系。
定理一:两个自然数分别除以它们的最大公因数,所得的商互质,即:如果(a,b)=d,那么(a÷d,b÷d)=1。
定理二:两个数的最小公倍数与最大公因数之积等于这两个数的乘积。
即[a,b]×(a,b)=a×b。
定理三:两个数的公因数一定是这两个数的最大公因数的因数。
例题精学例1252,其中一个数是28,另一个数是多少【思路点拨】设一个数为A显然,7和a互质,否则4就不是最大公因数,那么252=4×7×a,a=9,A=4×9=36。
另外,我们可以根据定理:[a,b]×(a,b)=a×b。
求得4×252÷28=36。
1.某数与24的最大公因数是4,最小公倍数是168,这个数是多少2.甲数和乙数的最大公因数是6,最小公倍数是90,且小数不能整除大数,求这两个数。
3.四个连续奇数的最小公倍数为6435,这四个奇数中最大的一个为多少例2 两个自然数的和是50,它们的最大公因数是5,求这两个数的差。
【思路点拨】若(A,B)=d,可以假设A=ad,B=bd,那么a和b互质,即(a,b)=1。
在本题中,由于已知两数的最大公因数为5,故可设一个数为5a,另一个数为5b,(a,b)=1。
又因为这两个数的和为50,这样可以得到5a+5b=50,5(a+b)=50,a+b=10。
根据a与b互质,我们不难得到a=1,b=9或a=3,b=7。
这样可以求出这两个数是5×3=15和5×7=35或5×1=5或5×9=45。
它们的差也就好求了。
1.两个自然数的和是56,它们的最大公因数是7,求这两个数。
2.已知两个自然数的积是5766,它们的最大公因数是31,求这两个数。
3.两个数的和是70,它们的最大公因数是7,求这两个数的差是多少。
怎样求最大公因数和最小公倍数最大公因数和最小公倍数有着广泛的应用,特别是在分数四则运算中,更是不可缺失。
所以求最大公因数和最小公倍数是小学高年级数学的教学的重点,也是难点。
下面就我多年的探索及教学经验,就两个数的最大公因数和最小公倍数的求法,列举出来,供大家分享。
一、基本法求两个数的最大公因数,首先分别求出这两个数的因数,然后在这两个数的因数中,找出他们的公共的因数,即公因数。
再从中选出最大的一个,就得出了最大公因数了。
同理求出最小公倍数需要注意的是,两个数的公倍数是无限的,能找到公倍数即可。
二、分类法先根据两个数的关系进行分类,如果较大的数是较小数倍数,则是倍数关系,如果两个数只有公因数1的则是互质关系,如果不是这两种关系则是一般关系。
下面用表格来说明这种方法:表中的说的小数缩倍意思是用较小的数,分别除以2、3、4……等,从得数逐个检验是否为较大数的因数,如果是较大数的因数和,就得到了他们的最大公因数。
大数翻倍,道理相同。
三、短除法教学生会用短除的格式,这点比较简单,主要是要学生记住:在短除法中,除数的积是两个数的最大公因数,除数与两个商的积是两个数的最小公倍数。
例:求求18和24最大公因数和最小公倍数:四、分解质因数法把两个数分别分解质因数,其中他们公有的质因数的积,就是他们的最大公因数,他们公有的质因数积再乘以他们各自独有的质因数,得数就是最小公倍数。
例:求18和24最大公因数和最小公倍数:18=2×3×3 24=2×2×2×3。
18与24的最大公因数是2×3=6(2和3是18与24公有的质因数。
);18与24的最小公倍数是2×3×3×2×2(其中3是18独有的质因数,2、2是24独有的质数。
)北师大版的小学数学,只是介绍了求两个数学最大公因数和最小公倍数的基本法,对于其它方法没有提及,这也是有道理了,学生如果把这种方面搞熟了,其它方法是能够总结出来的,但是如果没能教师的引导,能对这些方法融会贯通,实在是不容易的。
公倍数公因数最大公因数最小公倍数的定义1. 引言1.1 什么是公倍数公倍数是指两个或多个数同时存在的倍数。
换句话说,公倍数就是能同时整除这些数的数。
2和3的公倍数包括6、12、18等等。
公倍数是数学中常见的概念,它在简化分数、求解方程等问题中起着重要作用。
通过找到两个数的公倍数,我们可以简化计算过程,使问题变得更加简单。
在求解两个数的最小公倍数时,我们只需要找到它们的公倍数中最小的那个数即可。
这样一来,我们可以节省时间和精力,提高计算的效率。
通过理解和掌握公倍数的概念,我们可以更好地理解数学中的相关知识,提高解决问题的能力。
掌握公倍数这一概念对于数学学习和应用来说是非常重要的。
希望大家能够认真学习公倍数的概念,并灵活运用于实际问题的解决中。
这样一来,我们能更好地理解数学,提高数学水平。
1.2 什么是公因数公因数,顾名思义是指能够同时整除两个或多个数的数。
换句话说,如果一个数能够同时整除两个数,那么这个数就是这两个数的公因数。
公因数在数学中具有重要的作用,它可以帮助我们简化分数、化简多项式、求解方程等。
对于数字12和18,它们的公因数包括1、2、3、6。
因为这些数字都可以整除12和18,所以它们是12和18的公因数。
而最大的公因数就是能够同时整除两个数中最大的那个数,即12和18的最大公因数是6。
公因数的概念在数学中有着广泛的应用,特别是在分解质因数、求解最大公约数等方面。
通过寻找两个或多个数的公因数,我们可以更快地找到它们的最大公因数,从而简化计算过程。
公因数是能够同时整除两个或多个数的数,它在数学中扮演着重要的角色,能够帮助我们简化计算、解决问题。
通过深入理解公因数的概念,我们可以更好地应用它们在数学中的各种场景中,提高计算效率,优化解决方案。
1.3 什么是最大公因数最大公因数是指一组数中可以同时整除这组数的最大整数。
换句话说,最大公因数是该组数的所有公因数中最大的一个。
最大公因数的概念在数论和代数中非常重要,它可以帮助我们简化分式运算、化简等式以及解决整数问题。
2021-2022学年五年级数学下册典型例题系列之第三单元最大公因数与最小公倍数部分(解析版)编者的话:《2021-2022学年五年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第三单元最大公因数与最小公倍数部分。
本部分内容主要是最大公因数和最小公倍数的求法及其应用,建议作为本章重点内容进行讲解,考点划分较多,共划分为十四个考点,欢迎使用。
【考点一】求最大公因数。
【方法点拨】1.最大公因数的定义几个数公有的因数叫做这几个数的公因数。
其中最大的一个叫做这几个数的最大公因数2.求两个数的最大公因数的方法:(1)列举法;(2)短除法3.短除法的口诀:求最大公因乘一边,求最小公倍乘一圈。
注意:求两个数的最大公因数用小括号表示。
【典型例题】求最大公因数。
(1)18和6 (2)11和13 (3)8和36 (4)18和24解析:6;1;4;6【对应练习1】求下面每组数的最大公因数。
6和10 18和24 34和17解析:2;6;17【对应练习2】写出每组数的最大公因数。
(4,50)=(10,25)=(20,21)=(12,36)=解析:2;5;1;12【对应练习3】求两组数的最大公因数。
24和60 36和45解析:12;9【考点二】求最小公倍数。
【方法点拨】1.最小公倍数的定义:几个数公有的倍数,叫做它们的公倍数,其中最小的一个叫做它们的最小公倍数。
2.求最小公倍数的方法:(1)列举法;(2)短除法。
3.短除法的口诀:求最大公因乘一边,求最小公倍乘一圈。
注意:求两个数的最小公因数用中括号表示。
【典型例题】求下面每组数的最小公倍数。
(1)28和21 (2) 11和7 (3)34和68解析:84;77;68【对应练习1】求下列各组数的最大公因数和最小公倍数。
学生已掌握两数的乘积等于两数的最大公因数与最小公倍数的乘积,但对于只知道两数中的一数及最小公倍数,求出另一数的情况不知从何下手。
在五年级下册的数学典中点中已经出现此类题目,下面我将方法呈现如下:已知两数的最小公倍数和其中一个数,如何求另一个数的做法及练习题和答案例:已知36和另一个数的最小公倍数是144,问另一个数可能是多少?方法:144÷36=4=2×236=2×2×3×3 用短除法分解质因数144=2×2×3×3×2×2直接用36分解后的结果再乘以2个2就可以了分解后,完全相同项(因数及其个数完全相同)为3×3,排除完全相同项后,最小公倍数剩下的是2×2×2×2=16,然后16不乘或分别乘以完全相同项的不同组合,得出结果。
所以,本题另一个数的可能性:(1)16 (2)16×3=48(3)16×3×3=144共三种。
再举个例子看一下已知70与另一个数的最小公倍数是210,求另一个数可能是多少?210÷70=370=2×5×7210=2×5×7×3另一个数可能是(1)3(2)3×2(3)3×5(4)3×7(5)3×2×5(6)3×2×7(7)3×5×7(8)3×2×5×7注:如果分解后没有完全相同项,则只有一种可能即最小公倍数。
例:12=2×2×372=2×2×3×2×3则另一数只能是72练习题1、已知27与另一数既不互质又不是倍数关系,且两数的最小公倍数是108,另一数可能是多少?2、已知48与另一数的最小公倍数是144,另一数可能是多少?3、已知24与另一数的最小公倍数是144,另一数是多少?4、已知24与另一数的最小公倍数是96,另一数是多少?5、已知36与另一数不是倍数关系,且它们的最小公倍数是108,求另一数是多少?6、已知60与另一数的最小公倍数是120,求另一数。
公倍数和公因数的符号一、公倍数的定义和符号1.1 公倍数的概念公倍数是指能被两个或多个数整除的数。
简单来说,就是某个数同时是两个或多个数的倍数。
1.2 公倍数的符号公倍数常用符号是L,可以写成L(a,b),表示整数a和b的最小公倍数。
公倍数还有一个更特殊的表示方法,叫做最小公倍数,通常使用LCM来表示。
二、公因数的定义和符号2.1 公因数的概念公因数是指能同时整除两个或多个数的因数。
简单来说,就是某个数同时是两个或多个数的因数。
2.2 公因数的符号公因数常用符号是H,可以写成H(a,b),表示整数a和b的最大公因数。
公因数还有一个更特殊的表示方法,叫做最大公因数,通常使用GCD来表示。
三、公倍数和公因数的关系3.1 公倍数和公因数的定义公倍数是能整除两个或多个数的数,而公因数是能被两个或多个数同时整除的数。
公倍数和公因数是两个完全不同的概念。
3.2 公倍数和公因数的关系公倍数和公因数之间有一个重要的关系,就是它们的乘积等于这两个数的乘积。
也就是说,两个数a和b的公倍数m,与它们的公因数n之间存在如下关系:m * n = a * b这个关系是推出最小公倍数和最大公因数的重要依据。
四、最小公倍数和最大公因数的计算方法4.1 最小公倍数的计算方法最小公倍数(LCM)的计算方法有多种,其中最常用的是因数分解法和公式法。
4.1.1 因数分解法通过将两个数进行因数分解,然后取两个数因式的乘积和多余因式的乘积,即可得到最小公倍数。
例如,计算12和20的最小公倍数:12 = 2² * 3 → 12的因数分解为2² * 320 = 2² * 5 → 20的因数分解为2² * 5取各因式的最高次幂并相乘,得到最小公倍数:LCM(12, 20) = 2² * 3 * 5 = 604.1.2 公式法最小公倍数也可以通过公式法计算。
公式法的计算步骤如下: 1. 找到两个数的最大公因数(GCD)。
最大公因数与最小公倍数的关系
日期(Class) __ 姓名(Name) _ 学号(Number) _ 得分_____
我们上节课学习了最大公因数与最小公倍数,下面我们来做两道题来回顾一下。
[12,15] =60;(12,15)=3
[20,35] =140;(20,35)=5
好,大家都做出来了,说明大家掌握的都很好。
下面我们来探讨一下最大公因数与最小公倍数的关系。
首先,我们已经知道了[12,15] =60;(12,15)=3,现在大家算一算,12×15=180, 60×3=180,它们两个的结果相等,都是180,会不会是一种巧合呢,我们再来看另外两个数,随便说两个数,24和40,[24,40]=120,(24,40)=4,120×4=480,24×40=480,也是相等的。
好,大家可以再随便几组数字,我们会发现一个关系,老师想考考大家的归纳总结能力,那谁能告诉我它们之间的关系。
对了,同学们说得都非常好,它们的关系就是:
两个数的乘积等于它们的最大公因数与最小公倍数的乘积。
大家要理解的记忆,不要死记硬背,要知道这个关系式怎么得来的。
我们可以设这两个数为A,B,这样,我们就可以得到一个关系式:
A×B=[A,B] ×(A,B)
例:两个数的最大公因数为10,最小公倍数为400,其中一个数为50,求另一个数?
10×400=4000
4000÷50=80
答:另一个数为80。
大家回去的时候,要理解并会把它们运用到应用题及现实生活中。
我们再来总结一下今天所讲的内容,最大公因数与最小公倍数的关系,就是:
两个数的乘积等于它们的最大公因数与最小公倍数的乘积。
A×B=[A, B] ×(A, B)。